Уравнение с одним неизвестным, которое после раскрытия скобок и приведения подобных членов принимает вид
aх + b = 0, где a и b произвольные числа, называется линейным уравнением с одним неизвестным. Cегодня разберёмся, как эти линейные уравнения решать.
Например, все уравнения:
2х + 3= 7 – 0,5х; 0,3х = 0; x/2 + 3 = 1/2 (х – 2) — линейные.
Значение неизвестного, обращающее уравнение в верное равенство называется решением или корнем уравнения.
Например, если в уравнении 3х + 7 = 13 вместо неизвестного х подставить число 2 , то получим верное равенство 3· 2 +7 = 13. Значит, значение х = 2 есть решение или корень уравнения.
А значение х = 3 не обращает уравнение 3х + 7 = 13 в верное равенство, так как 3· 2 +7 ≠ 13. Значит, значение х = 3 не является решением или корнем уравнения.
Решение любых линейных уравнений сводится к решению уравнений вида
aх + b = 0.
Перенесем свободный член из левой части уравнения в правую, изменив при этом знак перед b на противоположный, получим
aх = ‒ b.
Если a ≠ 0, то х = ‒ b/a .
Пример 1. Решите уравнение 3х + 2 =11.
Перенесем 2 из левой части уравнения в правую, изменив при этом знак перед 2 на противоположный, получим 
3х = 11 – 2.
Выполним вычитание, тогда 
3х = 9.
Чтобы найти х надо разделить произведение на известный множитель, то есть      
х = 9 : 3.
Значит, значение х = 3 является решением или корнем уравнения.
Ответ: х = 3.
Если а = 0 и b = 0, то получим уравнение 0х = 0. Это уравнение имеет бесконечно много решений, так как при умножении любого числа на 0 мы получаем 0,но b тоже равно 0. Решением этого уравнения является любое число.
Пример 2. Решите уравнение 5(х – 3) + 2 = 3 (х – 4) + 2х ‒ 1.
Раскроем скобки: 
5х – 15 + 2 = 3х – 12 + 2х ‒ 1.
Сгруппируем  в левой части члены, содержащие неизвестные, а в правой ‒ свободные члены: 
5х – 3х ‒ 2х =  – 12  ‒ 1 + 15 ‒ 2.
Приведем подобные члены: 
0х = 0.
Ответ: х — любое число.
Если а = 0 и b ≠ 0, то получим уравнение 0х = — b. Это уравнение решений не имеет, так как при умножении любого числа на 0 мы получаем 0, но b ≠ 0 .
Пример 3. Решите уравнение х + 8 = х + 5.
Сгруппируем  в левой части члены, содержащие неизвестные, а в правой ‒ свободные члены: 
х – х = 5 ‒ 8.
Приведем подобные члены:  
0х = ‒ 3.
Ответ: нет решений.
На рисунке 1 изображена схема решения линейного уравнения
Составим общую схему решения уравнений с одной переменной. Рассмотрим решение примера 4.
Пример 4. Пусть надо решить уравнение
1) Умножим все члены уравнения на наименьшее общее кратное знаменателей, равное 12.
2) После сокращения получим
4 (х – 4) + 3·2 (х + 1) ‒ 12 = 6·5 (х – 3) + 24х – 2 (11х + 43)
3) Чтобы отделить члены, содержащие неизвестные и свободные члены, раскроем скобки:
4х – 16 + 6х + 6 – 12 = 30х – 90 + 24х – 22х – 86 .
4) Сгруппируем в одной части члены, содержащие неизвестные, а в другой – свободные члены:
4х + 6х – 30х – 24х + 22х = ‒ 90 – 86 + 16 – 6 + 12.
5) Приведем подобные члены:
‒ 22х = ‒ 154.
6) Разделим на  – 22 , Получим 
х = 7.
Как видим, корень уравнения равен семи.
Вообще такие уравнения можно решать по следующей схеме:
а) привести уравнение к целому виду;
б) раскрыть скобки;
в) сгруппировать члены, содержащие неизвестное, в одной части уравнения, а свободные члены ‒ в другой;
г) привести подобные члены;
д) решить уравнение вида aх = b,которое получили после приведения подобных членов.
Однако эта схема не обязательна для всякого уравнения. При решении многих более простых уравнений приходится начинать не с первого, а со второго (Пример. 2), третьего (Пример. 1, 3) и даже с пятого этапа, как в примере 5.
СЛОЖНА-А-А 🙀 Ты же знаешь, что если не разобраться в теме сейчас, то потом придется исправлять оценки. Беги на бесплатное онлайн-занятие с репетитором (подробности тут + 🎁).
Пример 5. Решите уравнение 2х = 1/4.
Находим неизвестное  х = 1/4 : 2, 
х = 1/8 .
Рассмотрим решение некоторых линейных уравнений, встречающихся на основном государственном экзамене.
Пример 6. Решите уравнение 2 (х + 3) = 5 – 6х.
Решение
2х + 6 = 5 – 6х
2х + 6х = 5 – 6
8х = ‒1
х = ‒1 : 8
х = ‒ 0, 125
Ответ: ‒ 0, 125
Пример 7. Решите уравнение – 6 (5 – 3х) = 8х – 7.
Решение
– 30 + 18х = 8х – 7
18х – 8х = – 7 +30
10х = 23
х = 23 : 10
х = 2,3
Ответ: 2,3
Пример 8. Решите уравнение
 
Решение:
3(3х – 4) = 4 · 7х + 24
9х – 12 = 28х + 24
9х – 28х = 24 + 12
-19х = 36
х = 36 : (-19)
х = — 36/19
Ответ: — 
Пример 9. Найдите f(6), если f (x + 2) = 37-х
Решение
Так как надо найти f(6), а нам известно f (x + 2), 
то х + 2 = 6.
Решаем линейное уравнение х + 2 = 6, 
получаем х = 6 – 2, х = 4.
Если х = 4, тогда 
f(6) = 37-4 = 33 = 27
Ответ: 27.
Молодец! Раз ты дочитал это до конца, вероятно, ты все отлично усвоил. Но если вдруг что-то еще непонятно — попробуй онлайн-занятие с репетитором (подробности тут + 🎁).
Если у Вас остались вопросы, есть желание разобраться с решением уравнений более основательно, записывайтесь на мои уроки в РАСПИСАНИИ. Буду рада Вам помочь!
Также TutorOnline советует посмотреть новый видеоурок от нашего репетитора Ольги Александровны, который поможет разобраться как с линейными уравнениями, так и с другими.
© blog.tutoronline.ru,
                    при полном или частичном копировании материала ссылка на первоисточник обязательна.
                
План урока:
Целое уравнение и его степень
Решение уравнений методом подбора корня
Решение уравнений с помощью разложения многочлена на множители
Графический метод решения уравнений
Решение дробно-рациональных уравнений
Целое уравнение и его степень
Ранее мы уже изучали понятие целого выражения. Так называют любое выражение с переменной, в котором могут использоваться любые арифметические операции, а также возведение в степень. Однако есть важное ограничение – в целом выражении переменная НЕ может находиться в знаменателе какой-нибудь дроби или быть частью делителя. Также переменная не может находиться под знаком корня. Для наглядности приведем примеры целых выражений:
х – 5;
(а3 + 6а)(а – 5а2);
(n3 + 7)/5 (в знаменателе находится только число, без переменной);
А вот примеры нецелых выражений:
Отличительной особенностью целых выражений является то, что в них переменная может принимать любое значение. В нецелых же выражениях возникают ограничения на значения переменной, ведь знаменатель дроби не должен равняться нулю, в выражение под знаком корня не должно быть отрицательным.
Введем понятие целого уравнения.
Приведем примеры целых ур-ний:
0,75х7 + 0,53х6 – 45х = 18
Напомним, что в математике существует понятие равносильных уравнений.
Когда мы решаем ур-ния, мы в каждой новой строчке записываем ур-ние, равносильное предыдущему. Для этого используются равносильные преобразования (перенос слагаемых через знак «=» с противоположным знаком, деление обоих частей равенства на одинаковые числа и т. д.).
Можно доказать (мы этого делать не будем), что любое целое ур-ние можно возможно преобразовать так, чтобы получилось иное, равносильное ему ур-ние, где в левой части будет находиться многочлен, а справа – ноль. Для этого надо лишь раскрыть скобки и умножить ур-ние на какое-нибудь число, чтобы избавиться от дробей.
Пример. Преобразуйте целое ур-ние
так, чтобы слева стоял многочлен, а справа – ноль.
Решение. В ур-нии есть дроби со знаменателями 5 и 4. Если умножить обе части на 20 (это наименьшее общее кратное чисел 5 и 4), то дроби исчезнут:
Теперь раскроем скобки:
4(5х3 – 3х4 + 45х – 27х2) – 40 = 10х2 + 5х + 35
20х3 – 12х4 + 180х – 108х2 – 40 = 10х2 + 5х + 35
Осталось перенести все слагаемые влево и привести подобные слагаемые:
20х3 – 12х4 + 180х – 108х2 – 40 – 10х2 – 5х – 35 = 0
– 12х4 + 20х3 – 118х2 + 175х – 75 = 0
Получили ур-ние в той форме, которую и надо было найти по условию.
Ответ:– 12х4 + 20х3 – 118х2 + 175х – 75 = 0
В математике любой полином можно обозначить как Р(х). Если ур-ние привели к тому виду, когда в одной части многочлен, а в другой ноль, то говорят, что получили ур-ние вида Р(х) = 0.
Получается, что решение целого уравнения всегда можно свести к решению равносильного ему ур-ния Р(х) = 0. Именно поэтому многочлены играют такую большую роль в математике
Напомним, что степенью многочлена называется максимальная степень входящего в его состав одночлена. Это же число является и степенью целого уравнения Р(х) = 0, а также степенью любого равносильного ему целого ур-ния.
Пример. Определите степень ур-ния
(х3 – 5)(2х + 7) = 2х4 + 9
Решение. Приведем ур-ние к виду Р(х) = 0. Для этого раскроем скобки:
(х3 – 5)(2х + 7) = 2х4 + 9
2х4 + 7х3 – 10х – 35 = 2х4 + 9
Перенесем все слагаемые влево и приведем подобные слагаемые:
2х4 + 7х3 – 10х – 35 – 2х4 – 9 = 0
7х3 – 10х – 44 = 0
Получили в левой части многочлен 3-ей степени. Следовательно, и исходное ур-ние имело такую же степень
Ответ: 3
Приведем примеры ур-ний первой степени:
5х + 8 = 0
9z– 6 = 0
5,4568у + 0,0002145 = 0
Все они являются линейными ур-ниями, метод их решения изучался ранее. Они имеют 1 корень.
Приведем примеры ур-ний второй степени:
6t2 + 98t – 52 = 0
54у + 23у = 0
12x2– 65 = 0
Это квадратные ур-ния. У них не более двух действительных корней. Для их нахождения в общем случае надо вычислить дискриминант и использовать формулу
Квадратные и линейные ур-ния умели решать ещё в Древнем Вавилоне 4 тысячи лет назад! А вот с ур-ния 3-ей степени (их ещё называют кубическими уравнениями) оказались значительно сложнее. Приведем их примеры:
2х3 + 4х2 – 19х + 17 = 0
у3 – 5у + 7 = 0
Лишь в 1545 году итальянец Джералимо Кардано опубликовал книгу, в которой описывался общий алгоритм решения кубических ур-ний. Он достаточно сложный и не входит в школьный курс математики. Его ученик, Лодовико Феррари, предложил метод решения ур-ний четвертой степени. В качестве примера такого ур-ния можно привести:
5х4 + 6х3 – 2х2 – 10х + 1 = 0
Лишь в XIX веке было доказано, что для ур-ний более высоких степеней (5-ой, 6-ой и т. д.) не существует универсальных формул, с помощью которых можно было бы найти их корни.
Отметим, что если степень целого ур-ния равна n, то у него не более n корней (но их число может быть и меньше). Так, количество корней кубического уравнения не превышает трех, а у ур-ния 4-ой степени их не более 4.
Чтобы доказать это утверждение, сначала покажем способ составления уравнения Р(х) = 0, имеющего заранее заданные корни. Пусть требуется составить ур-ние, имеющее корни k1, k2,k3,…kn. Приравняем к нулю следующее произведение скобок:
(х – k1)(х – k2)(х – k3)…(х – kn) = 0
Составленное ур-ние имеет все требуемые корни и никаких других корней. Действительно, произведение множителей может равняться нулю только в случае, если хотя бы один из множителей нулевой. Поэтому для решения ур-ния
(х – k1)(х – k2)(х – k3)…(х – kn) = 0
надо каждую скобку приравнять к нулю:
х – k1 = 0 или х – k2 = 0 или х – k3 = 0 или…х – kn = 0
Перенесем второе слагаемое вправо в каждом равенстве и получим:
х = k1 или х = k2 или х = k3 или…х = kn
Чтобы вместо произведения скобок слева стоял многочлен, надо просто раскрыть скобки.
Пример. Составьте уравнение в виде Р(х) = 0, имеющее корни 1, 2, 3 и 4.
Запишем целое ур-ние, имеющее требуемые корни:
(х – 1)(х – 2)(х – 3)(х – 4) = 0
Будем поочередно раскрывать скобки, умножая 1-ую скобку на 2-ую, полученный результат на 3-ю и т.д.:
(х2 – 3х + 2)(х – 3)(х – 4) = 0
(х3 – 6х2 + 11х – 6)(х – 4) = 0
х4 – 10х3 + 35х2 – 50х +24 = 0
Получили ур-ние вида Р(х) = 0. Для проверки вычислений можно подставить в него числа 1, 2, 3 и 4 и убедиться, что они обращают ур-ние в верное равенство.
Ответ: х4 – 10х3 + 35х2 – 50х +24 = 0
Заметим, что в рассмотренном примере, когда мы перемножали многочлены, мы получали новый полином, чья степень увеличивалась на единицу. Мы перемножили 4 скобки (х – k1), а потому получили полином 4 степени. Если бы мы перемножали, скажем, 10 таких скобок, то и многочлен бы получился 10-ой степени. Именно поэтому ур-ние n-ой степени не более n корней.
Действительно, предположим, что какое-то ур-ние n-ой степени имеет хотя бы (n + 1) корень. Обозначим эти корни как k1, k2,k3,…kn, kn+1 и запишем уравнение:
(х – k1)(х – k2)(х – k3)…(х – kn)(х – kn+1) = 0
Оно, по определению, равносильно исходному ур-нию, ведь оно имеет тот же набор корней. Слева записаны (n + 1) скобок, поэтому при их раскрытии мы получим полином степени (n + 1). Значит, и исходное ур-ние на самом деле имеет степень n + 1, а не n. Получили противоречие, которое означает, что на самом деле у уравнения n-ой степени не более n корней.
Особо акцентируем внимание на том факте, что если корнями уравнения являются некоторые числа k1, k2,k3,…kn, то этому ур-нию равносильна запись (х – k1)(х – k2)(х – k3)…(х – kn) = 0
Этот факт будет использован далее при решении ур-ний.
Решение уравнений методом подбора корня
Необязательно преобразовывать ур-ние, чтобы найти его корни. Одним из приемов решения целых уравнений является метод подбора корня. Ведь если надо доказать, что какое-то число – это корень ур-ния, достаточно просто подставить это число в ур-ние и получить справедливое равенство!
Пример. Докажите, что корнями ур-ния
х3 – 2х2 – х + 2 = 0
являются только числа (– 1), 1 и 2.
Решение. Подставим в ур-ние каждую из предполагаемых корней и получим справедливое равенство. При х = – 1 имеем:
(– 1)3 – 2(– 1)2 – (– 1) + 2 = 0
–1 – 2 + 1 + 2 = 0
0 = 0
При х = 1 получаем:
13 – 2•12 – 1 + 2 = 0
1 – 2 – 1 + 2 = 0
0 = 0
Наконец, рассмотрим случай, когда х = 2
23 – 2•22 – 2 + 2 = 0
8 – 8 – 2 + 2 = 0
0 = 0
Исходное ур-ние имеет 3-ю степень, поэтому у него не более 3 корней. То есть других корней, кроме (– 1), 1 и 2 , у него нет.
Конечно, просто так подобрать корни довольно тяжело. Однако есть некоторые правила, которые помогают в этом. Для начала введем понятие коэффициентов уравнения.
Понятно, что ур-ние Р(х) = 0 в общем виде можно записать так:
а0xn + a1xn–1 + … + аn–1х + аn = 0
Числа а0, а1, а2,…аnи называют коэффициентами уравнений.
Например, для уравнения
5х4 – 7х3 + 9х2 – х + 12 = 0
коэффициенты равны
а0 = 5
а1 = – 7
а2 = 9
а3 = – 1
а4 = + 12
Если одна из слагаемых «пропущено» в уравнении, то считают, что коэффициент перед ним равен нулю. Например, в ур-нии
х3 + 2х – 15 = 0
нет слагаемого с буквенной частью х2. Можно считать, что ур-ние равносильно записи
х3 + 0х2 + 2х – 15 = 0
где слагаемое х2 есть, но перед ним стоит ноль. Тогда коэффициент а1 = 0.
Для обозначения первого коэффициента а0 может использоваться термин старший коэффициент, а для последнего коэффициента аn – термин «свободный член» или «свободный коэффициент».
Изучение коэффициентов ур-ния помогает быстрее подобрать корень. Существует следующая теорема:
Докажем это утверждение. Пусть m – это целый корень уравнения с целыми коэффициентами
а0xn + a1xn–1 + … + аn–1х + аn = 0
Тогда можно подставить туда число m и получить верное равенство:
а0mn + a1mn–1 + … + аn–1m + аn = 0
Поделим обе его части на m и получим
а0mn–1 + a1mn–2 + … + аn–1 + аn/m = 0
Справа – целое число (ноль), значит, и сумма чисел слева также целая. Все числа а0mn–1, a1mn–2, аn–1, очевидно, целые (так как и целыми являются и m, и все коэффициенты). Значит, и число аn/m должно быть целым. Но это возможно лишь в том случае, если m является делителем числа аn.
Из доказанной теоремы следует, что при подборе корней ур-ния достаточно рассматривать только те из них, которые являются делителями свободного члена. При этом следует учитывать и отрицательные делители.
Пример. Найдите целые корни уравнения
2х4 – х3 – 9х2 + 4х + 4 = 0
Решение. Все коэффициенты ур-ния – целые, а потому целый корень должен быть делителем свободного члена, то есть числа 4. Делителями четверки являются 1 и (– 1), 2 и (– 2), 4 и (– 4). Подставляя каждое из этих чисел в ур-ние, получим верные равенства только для чисел 1, 2 и (– 2):
2•14 – 13 – 9•12 + 4•1 + 4 = 2 – 1 – 9 + 4 + 4 = 0
2•24 – 23 – 9•22 + 4•2 + 4 = 32 – 8 – 36 + 8 + 4 = 0
2•(– 2)4 – (– 2)3 – 9•(– 2)2 + 4(– 2) + 4 = 32 + 8 – 36 – 8 + 4 = 0
Таким образом, только эти числа и могут быть целыми корнями ур-ния. Так как мы рассматриваем ур-ние 4 степени, то, возможно, у него помимо 3 целых корней есть ещё один дробный.
Ответ: 1; 2; (– 2).
Пример. Решите ур-ние
0,5х3 + 0,5х + 5 = 0
Решение. У ур-ния дробные коэффициенты. Умножим обе части равенства на 2 и получим ур-ние с целыми коэффициентами:
0,5х3 + 0,5х + 5 = 0
(0,5х3 + 0,5х + 5)•2 = 0•2
х3 + х + 10 = 0
Попытаемся подобрать целый корень ур-ния. Он должен быть делителем свободного члена, то есть десятки. Возможными кандидатами являются числа 1 и (– 1), 2 и (– 2), 5 и (– 5), 10 и (– 10). Подходит только корень х = – 2:
(– 2)3 + (– 2) + 10 = – 8 – 2 + 10 = 0
Обратим внимание, что в левой части ур-ния стоит сумма функций, возрастающих на всей числовой прямой: у = х3 и у = х + 10. Значит, и вся левая часть х3 + х + 10 монотонно возрастает. Это значит, что у ур-ния есть только один корень, и мы его нашли ранее подбором.
Ответ: – 2
Ещё быстрее можно узнать, является ли единица корнем уравнения.
Докажем это. Подставим в ур-ние
а0xn + a1xn–1 + … + аn–1х + аn = 0
значение х = 1. Так как единица в любой степени равна самой единице, то получим:
а01n + a11n–1 + … + аn–11 + аn = 0
а0 + a1 + … + аn–1 + аn = 0
Получили равенство, в котором слева стоит сумма коэффициентов, в справа – ноль. Если сумма коэффициентов действительно равна нулю, то равенство верное, а, значит, единица является корнем ур-ния.
Пример. Укажите хотя бы 1 корень ур-ния
499х10 – 9990х7 + 501х6 – 10х5 + 10000х4 – 1000 = 0
Решение. Заметим, что при сложении коэффициентов ур-ния получается 0:
499 – 9990 + 501 – 10 + 10000 – 1000 = (499 + 501 – 1000) + (10000 – 9990 – 10) = 0 + 0 = 0
Следовательно, единица является его корнем.
Ответ: 1.
Решение уравнений с помощью разложения многочлена на множители
Если в уравнении вида P(x) = 0в левой части удается выполнить разложение многочлена на множители, то дальше каждый из множителей можно отдельно приравнять к нулю.
Пример. Решите ур-ние
х4 – 16 = 0
Решение. Степень х4 можно представить как (х2)2, а 16 – как 42. Получается, что слева стоит разность квадратов, которую можно разложить на множители по известной формуле:
х4 – 16 = 0
(х2 – 4)(х2 + 4) = 0
Приравняем каждую скобку к нулю и получим два квадратных ур-ния:
х2 – 4 = 0 или х2 + 4 = 0
х2 = 4 или х2 = – 4
Первое ур-ние имеет два противоположных корня: 2 и (– 2). Второе ур-ние корней не имеет.
Ответ: 2 и (– 2).
Предположим, что у ур-ния 3-ей степени есть 3 корня, и подбором мы нашли один из них. Как найти оставшиеся корни? Здесь помогает процедура, известная как «деление многочленов в столбик». Продемонстрируем ее на примере. Пусть надо решить ур-ние
100х3 – 210х2 + 134х – 24 = 0
Можно заметить, сумма всех коэффициентов ур-ния равна нулю:
100 – 210 + 134 – 24 = 0
Следовательно, первый корень – это 1.
Предположим, что у исходного ур-нияР(х) = 0 есть 3 корня, k1, k2и k3. Тогда ему равносильно другое ур-ние
(х – k1)(х – k2)(х – k3) = 0
Мы нашли, что первый корень k1 = 1, то есть
(х – 1)(х – k2)(х – k3) = 0
Обозначим как P1(x) = 0 ещё одно ур-ние, корнями которого будут только числа k2 и k3. Очевидно, что корнями ур-ния
(х – 1)•P1(x) = 0
Будут числа 1, k2 и k3. Его корни совпадают с корнями исходного ур-ния, а потому запишем
(х – 1)•P1(x) = 100х3 – 210х2 + 134х – 24
Поделим обе части на (х – 1):
Итак, если «поделить» исходное ур-ние на х – 1, то получим какой-то многочлен Р1(х), причем решением уравнения P1(x) = 0 будут оставшиеся два корня, k2и k3. Деление можно выполнить в столбик. Для этого сначала запишем «делимое» и «делитель», как и при делении чисел:
Смотрим на первое слагаемое делимого. Это 100х3. На какой одночлен нужно умножить делитель (х – 1), чтобы получился полином со слагаемым 100х3? Это 100х2. Действительно, (х – 1)100х2 = 100х3 – 100х2. Запишем слагаемое 100х2 в результат деления, а результат его умножения на делитель, то есть 100х3 – 100х2, вычтем из делимого:
Теперь вычтем из делимого то выражение, которое мы записали под ним. Слагаемые 100х3, естественно, сократятся:
(100х3 – 210х2) – (100х3 – 100х2) = 100х3 – 210х2 – 100х3 + 100х2 = – 110х2
Далее снесем слагаемое 134х вниз:
На какое слагаемое нужно умножить (х – 1), что получился полином со слагаемым (– 110х2). Очевидно, на (– 110х):
(х – 1)(– 110х2) = –110х2 + 110х
Запишем в поле «ответа» слагаемое (– 110х2), а под делимый многочлен – результат его умножения на (х – 1):
При вычитании из (–110х2 + 134х) полинома (–110х2 + 110х) остается 24х. Далее сносим последнее слагаемое делимого многочлена вниз:
Выражение х – 1 нужно умножить на 24, чтобы получить 24х – 24. Запишем в поле «ответа» число 24, а в столбике произведение 24(х –1) = 24х – 24:
В результате в остатке получился ноль. Значит, всё сделано правильно. С помощью деления столбиком мы смогли разложить полином 100х3 – 210х2 + 134х – 24 на множители:
100х3 – 210х2 + 134х – 24 = (х – 1)(100х2 – 110х + 24)
Теперь перепишем исходное ур-ние с учетом этого разложения:
100х3 – 210х2 + 134х – 24 = 0
(х – 1)(100х2 – 110х + 24) = 0
Теперь каждую отдельную скобку можно приравнять нулю. Получим ур-ние х – 1 = 0, корень которого, равный единице, мы уже нашли подбором. Приравняв к нулю вторую скобку, получим квадратное ур-ние:
100х2 – 110х + 24 = 0
D =b2 – 4ас = (– 110)2 – 4•100•24 = 12100 – 9600 = 2500
Итак, мы нашли три корня ур-ния: 1; 0,3 и 0,8.
В данном случае мы воспользовались следующим правилом:
Пример. Решите уравнение
2х3 – 8х2 + 16 = 0
Решение. Все коэффициенты целые, а потому, если у уравнения есть целый корень, то он должен быть делителем 16. Перечислим эти делители: 1, – 1, 2, – 2, 4, – 4, 8, – 8, 16, – 16. Из всех них подходит только двойка:
2•23 – 8•22 + 16 = 16 – 32 + 16 = 0
Итак, первый корень равен 2. Это значит, что исходный многочлен можно разложить на множители, один из которых – это (х – 2). Второй множитель найдем делением в столбик. Так как в многочлене 2х3 – 8х2 + 16 нет слагаемого с буквенной часть х, то искусственно добавим её:
2х3 – 8х2 + 16 = 2х3 – 8х2 + 0х + 16
Теперь возможно деление:
Получили, что 2х3 – 8х2 + 16 = (х – 2)(2х – 4х –  
С учетом этого перепишем исходное ур-ние:
2х3 – 8х2 + 16 = 0
(х – 2)(2х – 4х –  
х – 2 = 0 или 2х – 4х – 8 = 0
Решим квадратное ур-ние
D =b2 – 4ас = (– 4)2 – 4•2•(–  
В 8 классе мы узнали, что если у квадратного ур-ния ах2 + bx + c = 0 есть два корня, то многочлен ах2 + bx + c можно разложить на множители по формуле
ах2 + bx + c = а(х – k1)(х – k2)
где k1 и k2– корни квадратного ур-ния. Оказывается, такое же действие можно выполнять с многочленами и более высоких степеней. В частности, если у кубического ур-ния есть 3 корня k1, k2 и k3, то его можно разложить на множители по формуле
ах3 +bx2 + cx + d = a(х – k1)(х – k2)(х – k3)
Пример. Разложите на множители многочлен 2х3 – 4х2 – 2х + 4.
Решение. Целые корни этого многочлена (если они есть), должны быть делителем четверки. Из всех таких делителей подходят три: 1, (– 1) и 2:
2•13 – 4•12 – 2•1 + 4 = 2 – 4 – 2 + 4 = 0
2•(– 1)3 – 4•(– 1)2 – 2•(– 1) + 4 = – 2 – 4 + 2 + 4 = 0
2•23 – 4•22 – 2•2 + 4 = 16 – 16 – 4 + 4 = 0
Значит, многочлен можно разложить на множители:
2х3 – 4х2 – 2х + 4 = 2(х + 1)(х – 1)(х – 2)
Возникает вопрос – почему перед скобками нужна двойка? Попробуем сначала перемножить скобки без ее использования:
(х + 1)(х – 1)(х – 2) = (х2 – 1)(х – 2) = х3 – 2х2 – х + 2
Получили не тот многочлен, который стоит в условии. Однако ур-ние
х3 – 2х2 – х + 2 = 0
имеет те же корни (1, 2 и (– 1)), что и ур-ние
2х3 – 4х2 – 2х + 4 = 0
Дело в том, что это равносильные ур-ния, причем второе получено умножением первого на два:
2•(х3 – 2х2 – х + 2) = 2х3 – 4х2 – 2х + 4
Надо понимать, что хотя ур-ния 2х3 – 4х2 – 2х + 4 = 0 и х3 – 2х2 – х + 2 = 0, по сути, одинаковы, многочлены в их левой части различны. Заметим, что при перемножении скобок (х – k1), (х – k2), (х – k3) и т.д. всегда будет получаться полином, у которого старший коэффициент равен единице. Поэтому, чтобы учесть этот самый коэффициент, надо домножить произведение скобок на него:
2х3 – 4х2 – 2х + 4= 2•(х3 – 2х2 – х + 2) = 2(х + 1)(х – 1)(х – 2)
Ответ: 2(х + 1)(х – 1)(х – 2).
Графический метод решения уравнений
Любое ур-ние с одной переменной можно представить в виде равенства
у(х) = g(x)
где у(х) и g(x) – некоторые функции от аргумента х.
Построив графики этих функций, можно примерно найти точки их пересечений. Они и будут соответствовать корням уравнения.
Пример. Решите графически уравнение
х3 – х2 – 1 = 0
Решение. Строить график уравнения х3 – х2 – 1 = 0 довольно сложно, поэтому перенесем слагаемое (– х2 – 1) вправо:
х3 – х2 – 1 = 0
х3 = х2 + 1
Построим графики у = х3 и у = х2 + 1 (второй можно получить переносом параболы у = х2 на единицу вверх):
Видно, они пересекаются в точке, примерно соответствующей значению х ≈ 1,4. Если построить графики уравнения более точно (с помощью компьютера), то можно найти, что х ≈ 1,46557.
Ответ: х ≈ 1,46557
Конечно, графический метод решения уравнений не является абсолютно точным, однако он помогает быстро найти примерное положение корня. Также с его помощью можно определить количество корней уравнения. В рассмотренном примере был только 1 корень.
Пример. Определите количество корней уравнений
а)х3 – х – 3 = 0
б) х3 – 2х + 0,5 = 0
Решение. Перенесем два последних слагаемых вправо в каждом ур-нии:
а) х3 = х + 3
б) х3 = 2х – 0,5
Построим графики функций у = х3, у = х + 3 и у = 2х – 0,5:
Видно, что прямая у = х + 3 пересекает график у = х3 в одной точке, поэтому у первого ур-ния будет 1 решение.Прямая у = 2х – 0,5 пересекает кубическую параболу в трех точках, а потому у второго ур-ния 3 корня.
Ответ: а) один корень; б) три корня.
Решение дробно-рациональных уравнений
До этого мы рассматривали только целые ур-ния, где переменная НЕ находится в знаменателе какого-нибудь выражения. Однако, если в ур-нии есть выр-ние, содержащее переменную в знаменателе, или присутствует деление на выр-ние с переменной, то его называют дробно-рациональным уравнением.
Приведем несколько примеров ур-ний, считающихся дробно-рациональными:
С помощью равносильных преобразований любое дробно-рациональное ур-ние возможно записать в виде отношения двух полиномов:
Дробь равна нулю лишь тогда, когда ее числитель равен нулю, а знаменатель – не равен. Таким образом, нужно сначала решить ур-ние Р(х) = 0 и потом проверить, что полученные корни не обращают полином Q(x) в ноль.
Обычно для решения дробно-рациональных уравнений используют такой алгоритм:
1) Приводят все дроби к единому знаменателю, умножают на него ур-ние и получают целое ур-ние.
2) Решают полученное целое ур-ние.
3) Исключают из числа корней те, которые обращают знаменатель хотя бы одной из дробей в ноль.
Пример. Решите ур-ние
Решение.
Умножим обе части равенства на знаменатель 1-ой дроби:
2х2 – 3х – 2 = х2(х – 2)
Раскроем скобки и перенесем все слагаемые в одну сторону:
2х2 – 3х – 2 = х3– 2х2
х3 – 2х2 – 2х2 + 3х + 2 = 0
х3 – 4х2 + 3х + 2 = 0
У ур-ния могут быть только те целые корни, которые являются делителями двойки. Из кандидатов 1, – 1, 2 и – 2 подходит только двойка:
23 – 4•22 + 3•2 + 2 = 8 – 16 + 6 + 2 = 0
Нашли один корень, а потому исходный многочлен можно поделить в столбик на (х – 2):
Получили, что х3 – 4х2 + 3х + 2 = (х – 2)(х2 – 2х – 1)
Тогда ур-ние примет вид:
(х – 2)(х2 – 2х – 1) = 0
х – 2 = 0 или х2 – 2х – 1 = 0
Решим квадратное ур-ние:
D =b2 – 4ас = (– 2)2 – 4•1•(– 1) = 4 + 4 = 8
Мы нашли все 3 корня кубического ур-ния. Теперь надо проверить, не обращают ли какие-нибудь из них знаменатели дроби в исходном ур-нии
в ноль. Очевидно, что при х = 2 знаменатель (х – 2) превратится в ноль:
х – 2 = 2 – 2 = 0
Это значит, что этот корень надо исключить из списка решений. Такой корень называют посторонним корнем ур-ния.
Также ясно, что два остальных корня не обращают знаменатель в ноль, а потому они НЕ должны быть исключены из ответа:
Пример. Найдите все корни ур-ния
Решение. Если сразу привести выражение слева к общему знаменателю 4(х2 + х – 2)(х2 + х – 20), то получится очень длинное и неудобное выражение. Однако знаменатели довольно схожи, поэтому можно провести замену. Обозначим х2 + х как у:
у = х2 + х
Тогда уравнение примет вид
Приведем дроби к общему знаменателю 4(у – 2)(у – 20):
Знаменатель должен равняться нулю:
4(у – 20) + 28(у – 2) + (у – 2)(у – 20) = 0
4у – 80 + 28у – 56 + у2 – 20у – 2у + 40 = 0
у2 + 10у – 96 = 0
Решаем квадратное ур-ние:
D =b2 – 4ас = (10)2 – 4•1•(– 96) = 100 + 384 = 484
Получили, что у1 = – 16, а у2 = 6. Произведем обратную замену:
у = х2 + х
х2 + х = – 16 или х2 + х = 6
х2 + х + 16 = 0 или х2 + х – 6 = 0
Дискриминант 1-ого ур-ния отрицателен:
D =b2 – 4ас = (1)2 – 4•1•(16) = 1– 64 = – 63
А потому оно не имеет решений. Решим 2-ое ур-ние:
D = b2 – 4ас = (1)2 – 4•1•(– 6) = 1+ 24 = 25
Нашли два корня: 2 и (– 3). Осталось проверить, не обращают ли они знаменатели дробей в ур-нии
в ноль. Подстановкой можно убедиться, что не обращают.
Ответ: – 3 и 2.
При решении дробно-рациональных ур-ний может использоваться и графический метод.
Пример. Сколько корней имеет уравнение
Решение. Построим графики функций у = х2 – 4 и у = 2/х:
Видно, что графики пересекаются в 3 точках, поэтому ур-ние имеет 3 корня.
Ответ: 3 корня.
Уравнением с одной переменной — это равенство, содержащее только одну переменную. Корнем (или решением) уравнения называется такое значение переменной, при котором уравнение превращается в верное числовое равенство.
Содержание:
- Определение уравнения. Корни уравнения
 - Равносильность уравнений
 - Линейные уравнения
 - Квадратные уравнения
 - Неполные квадратные уравнения
 - Теорема Виета
 - Системы и совокупности уравнений
 - Уравнения, содержащие переменную под знаком модуля
 - Понятие следствия уравнения. Посторонние корни
 - Уравнения с переменной в знаменателе
 - Область определения уравнения (ОДЗ)
 - Рациональные уравнения
 - Решение уравнения р(х) = 0 методом разложения его левой части на множители
 - Решение уравнений методом введения новой переменной
 - Биквадратные уравнения
 - Решение задач с помощью составления уравнений
 - Иррациональные уравнения
 - Показательные уравнения
 - Логарифмические уравнения
 - Примеры решения показательно-логарифмических уравнений
 - Простейшие тригонометрические уравнения
 - Методы решения тригонометрических уравнений
 - Однородные тригонометрические уравнения
 - Универсальная подстановка (для тригонометрических уравнений)
 - Метод введения вспомогательного аргумента (для тригонометрических уравнений)
 - Графическое решение уравнений
 - Уравнения с параметром
 
Определение уравнения. Корни уравнения
Равенство с переменной f(x) = g (х) называют уравнением с одной переменной х, если поставлена задача найти все те же значения х, при которых равенство с переменной обращается в верное числовое равенство. Всякое значение переменной, при котором выражения /(х) и g(x) принимают равные числовые значения, называют корнем уравнения.
Решить уравнение — это значит найти все его корни или доказать, что их нет.
Пример 1.
Уравнение 3 + х = 7 имеет единственный корень 4, так как при этом и только при этом значении переменной равенство 3 + х = 7 является верным.
Пример 2.
Уравнение (х — 1)(х — 2) = 0 имеет два корня: 1 и 2.
Пример 3.
Уравнение 
Заметим, что можно говорить и о мнимых корнях уравнений. Так, уравнение 

Равносильность уравнений
Уравнения, имеющие одни и те же корни, называют равносильными. Равносильными считаются и уравнения, каждое из которых не имеет корней.
Например, уравнения х + 2 = 5 и х + 5 = 8 равносильны, так как каждое из них имеет единственный корень — число 3. Равносильны и уравнения 
Уравнения 
В процессе решения уравнения его стараются заменить более простым, но равносильным данному. Поэтому важно знать, при каких преобразованиях данное уравнение переходит в равносильное ему уравнение.
Теорема 1.
Если в уравнении какое-нибудь слагаемое перенести из одной части в другую, изменив его знак, то получится уравнение, равносильное данному.
Например, уравнение 
Теорема 2.
Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.
Например, уравнение 

Линейные уравнения
Линейным уравнением с одной переменной х называют уравнение вида
где 


Для линейного уравнения 
1)    

2)    

3)    

Многие уравнения в результате преобразований сводятся к линейным.
Пример 1.
Решить уравнение 
Решение:
По теореме 1 (см. п. 135), данное уравнение равносильно уравнению 


Пример 2.
Решить уравнение
Решение:
Это уравнение сводится к линейному уравнению. Умножив обе части уравнения на 12 (наименьшее общее кратное знаменателей 3, 4, 6,12), получим
и далее
Квадратные уравнения
Уравнение вида
где 







Выражение 
В случае, когда D = О, иногда говорят, что квадратное уравнение имеет два одинаковых корня.
Используя обозначение 


Итак,
Формула (3) особенно удобна, если 

Пример 1.
Решить уравнение
Решение:
Здесь 
Так как 
Итак, 
Пример 2.
Решить уравнение 
Решение:
Здесь 

Пример 3.
Решить уравнение 
Решение:
Здесь 
Неполные квадратные уравнения
Если в квадратном уравнении 

Пример 1.
Решить уравнение 
Решение:
Имеем х(2х — 5) = 0. Значит, либо х = 0, либо 2х — 5 = 0, т. е. х = 2,5.
Итак, уравнение имеет два корня: 0 и 2,5.
Пример 2.
Решить уравнение 
Решение:
Разделив обе части уравнения на 3, получим 
Значит, либо 



Итак, уравнение имеет два корня: 
Пример 3.
Решить уравнение 
Решение:
Так как 

Теорема Виета
Теорема 3.
Если приведенное квадратное уравнение
имеет действительные корни, то их сумма равна -р, а произведение равно q, т. е.
(сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену).
Выведем еще некоторые соотношения между корнями и коэффициентами приведенного квадратного уравнения
Найдем сумму квадратов корней:
Воспользовавшись формулами (1), получим
Найдем сумму кубов корней:
Воспользовавшись формулами (1) и (2), получим
Справедлива теорема, обратная теореме Виета.
Теорема 4.
Если числа 


Эта теорема позволяет в ряде случаев находить корни квадратного уравнения без использования формулы корней.
Пример 1.
Решить уравнение 
Решение:
Попробуем найти два числа 
Такими числами являются 2 и 7. По теореме 4, они и служат корнями заданного квадратного уравнения.
Пример 2.
Решить уравнение 
Решение:
Попробуем найти такие два числа 
Такими числами будут -7 и 4. Они и являются корнями заданного уравнения.
Системы и совокупности уравнений
Рассмотрим уравнение
Ясно, что 
Поэтому сначала надо решить уравнения 



В том случае, когда нужно найти значения переменной, удовлетворяющие обоим заданным уравнениям, говорят, что задана система уравнений. Для обозначения системы используют фигурную скобку:
Рассмотрим теперь уравнение 
Поэтому сначала надо решить уравнения 

Несколько уравнений с одной переменной образуют совокупность уравнений, если ставится задача найти все такие значения переменной, каждое из которых является корнем хотя бы одного из данных уравнений. Для обозначения совокупности иногда используют квадратную скобку:
Уравнения, содержащие переменную под знаком модуля
Пример 1.
Решить уравнение |3х — 5| = 2.
Решение:
 Если 





Итак, уравнение имеет два корня. 
Пример 2.
Решить уравнение |2х — 8| = Зх + 1.
Решение:
Способ 1-й. Если 
Из уравнения 2х — 8 = Зх + 1 находим х = -9. Однако при этом значении переменной неравенство 
Если 2х — 8 < 0, то |2х — 8| = -(2х —  
Из уравнения 8 — 2х = Зх + 1 находим 


Способ 2-й. Так как Зх + 1 = |2х — 8|, должно выполняться условие 


2x — 8 = 3x + 1; 2х — 8 = — (Зх + 1).
Из первого уравнения находим х = -9 , из второго 


Уравнение вида 
Понятие следствия уравнения. Посторонние корни
Пусть даны два уравнения:
Если каждый корень уравнения (1) является одновременно и корнем уравнения (2), то уравнение (2) называют следствием уравнения (1). Равносильность уравнений означает, что каждое из уравнений является следствием другого.
В процессе решения уравнения часто приходится применять такие преобразования, которые приводят к уравнению, являющемуся следствием исходного. Уравнению-следствию удовлетворяют все корни исходного уравнения, но кроме них уравне-ние-следствие может иметь и такие решения, которые не являются корнями исходного уравнения; это так называемые посторонние корни. Чтобы выявить и отсеять посторонние корни, обычно поступают так: все найденные корни уравнения-следствия проверяют подстановкой в исходное уравнение.
Если при решении уравнения мы заменили его уравнением-следствием, то указанная выше проверка является неотъемлемой частью решения уравнения. Поэтому важно знать, при каких преобразованиях данное уравнение переходит в уравнение-следствие.
Рассмотрим уравнение
f(x) = g(x) (3)
и умножим обе его части на одно и то же выражение h(x), имеющее смысл при всех значениях х. Получим уравнение
корнями которого служат как корни уравнения (3), так и корни уравнения h(x) = 0. Значит, уравнение (4) есть следствие уравнения (3). Ясно, что уравнения (3) и (4) равносильны, если «постороннее» уравнение h(x) = 0 не имеет корней.
Итак, если обе части уравнения умножить на выражение h(x), имеющее смысл при любых значениях х, то получится уравнение, являющееся следствием исходного. Полученное уравнение будет равносильно исходному, если уравнение h(x) = 0 не имеет корней. Заметим, что обратное преобразование, т. е. переход от уравнения (4) к уравнению (3) путем деления обеих частей уравнения (4) на выражение h(x), как правило, недопустимо, поскольку может привести к потере корней (в этом случае могут «потеряться» корни уравнения h(x) = 0). Например, уравнение (х — 2)(х — 3) = 2(х — 3) имеет два корня: 3 и 4. Деление же обеих частей уравнения на х — 3 приводит к уравнению х — 2 = 2, имеющему только один корень 4; произошла потеря корня.
Снова возьмем уравнение (3) и возведем обе его части в квадрат. Получим уравнение
корнями которого служат как корни уравнения (3), так и корни «постороннего» уравнения f(x) = -g(x); уравнение (5) — следствие уравнения (3).
Например, уравнение х — 1 = 3 имеет корень 4. Если обе части уравнения х — 1 = 3 возвести в квадрат, то получится уравнение 


Итак, при возведении обеих частей уравнения в квадрат (и вообще в любую четную степень) получается уравнение, являющееся следствием исходного. Значит, при указанном преобразовании возможно появление посторонних корней. Заметим, что возведение обеих частей уравнения в одну и ту же нечетную степень приводит к уравнению, равносильному данному.
Уравнения с переменной в знаменателе
Рассмотрим уравнение вида
Решение уравнения (1) основано на следующем утверждении: дробь 
В соответствии со сказанным, решение уравнения 

Таким образом, уравнение р(х) = 0 является следствием (см. п. 142) уравнения 


Пример:
Решить уравнение 
Решение:
Из уравнения Зх — 6 = 0 находим х = 2. Так как при х = 2 знаменатель 
Область определения уравнения (ОДЗ)
Областью определения уравнения f(x) = g(x) называют множество всех тех значений переменной х, при которых выражения f(x) и g(x) имеют смысл (одновременно).
Пример 1.
Найти область определения уравнения:
Решение:
а) Выражения 
б)    Выражение 

в)    Корень четной степени имеет смысл лишь при неотрицательных значениях подкоренного выражения. Значит, одновременно должны выполняться условия    

г) Логарифм имеет смысл лишь при положительных значениях логарифмируемого выражения. Значит, должны одновременно выполняться два неравенства: х — 3 > 0, откуда х>3, и 5 — х > 0, откуда х < 5. Итак, (3; 5) — область определения уравнения.
Вместо термина «область определения уравнения» часто используют термин «область допустимых значений переменной» (ОДЗ).
Ясно, что корни уравнения f(x) = g(х) должны принадлежать его области определения (его ОДЗ). Но иногда бывает так, что в процессе преобразований уравнения его область определения меняется (чаще всего она расширяется) и из найденных значений переменной одни принадлежат области определения уравнения f(x) = g(х), а другие не принадлежат. Тогда первые являются корнями уравнения, а вторые — нет (это посторонние корни).
Так, при решении уравнения 
(см. п. 143), область определения которого задается условием 
Общий вывод таков: если в процессе преобразований уравнения его область определения расширилась, то могут появиться посторонние корни. Поэтому все найденные значения переменной надо проверить подстановкой в исходное уравнение или с помощью области определения (ОДЗ) исходного уравнения.
Пример 2.
Решить уравнение
lg (х — 5) = lg (2х — 9). (1)
Решение:
Если 





откуда находим х = 4. Но при переходе от уравнения (1) к уравнению (2) область определения расширилась: в уравнении (1) она задается неравенством х > 5, тогда как для уравнения (2) областью определения служит вся числовая прямая. Поэтому найденное значение х = 4, являющееся корнем уравнения (2), может оказаться посторонним корнем для уравнения (1). В данном случае именно это и происходит, поскольку х = 4 не принадлежит области определения уравнения (1) (не удовлетворяет неравенству х > 5). Итак, х = 4 — посторонний корень, т. е. заданное уравнение не имеет корней.
Рациональные уравнения
Уравнение f(x) = g(x) называют рациональным, если f(x) и g(x) — рациональные вьфажения. При этом если f(x) и g(x) — целые выражения, то уравнение называют целым; если же хотя бы одно из выражений f(х), g(x) является дробным, то рациональное уравнение f(x) = g(x) называют дробным.
Например, целыми являются линейные (см. п. 136), квадратные (см. п. 137) уравнения.
Чтобы решить рациональное уравнение, нужно:
1) найти общий знаменатель всех имеющихся дробей;
2) заменить данное уравнение целым, умножив обе его части на общий знаменатель;
3) решить полученное целое уравнение;
4) исключить из его корней те, которые обращают в нуль общий знаменатель.
Пример:
Решить уравнение
Решение:
Общим знаменателем имеющихся дробей является 2х(2 — х). Найдя дополнительные множители для каждой дроби, освободимся от знаменателей. Имеем:
Из уравнения 


Решение уравнения р(х) = 0 методом разложения его левой части на множители
Суть этого метода состоит в следующем. Пусть нужно решить уравнение р(х) = 0, где р(х) — многочлен степени 







Значит, 
Верно и обратное: если 



Итак, если 


Пример 1.
Решить уравнение 
Решение:
Разложим на множители левую часть уравнения. Имеем 
Значит, либо х + 2 = 0, либо 
Метод разложения на множители применим к любым уравнениям вида р(х) = 0, где р(х) необязательно многочлен. Пусть 


Пример 2.
Решить уравнение 
Решение:
Имеем 





Но х = -3 не удовлетворяет исходному уравнению, так как при этом значении не определено выражение 
Итак, уравнение имеет два корня: 3; 0.
Решение уравнений методом введения новой переменной
Суть этого метода поясним на примерах.
Пример 1.
Решить уравнение
Решение:
Положив 
откуда находим 
Первое квадратное уравнение не имеет действительных корней, так как его дискриминант отрицателен.
Из второго квадратного уравнения находим 
Пример 2.
Решить уравнение
Решение:
Положим 
и уравнение примет вид
Решив это уравнение (см. п. 145), получим
Но 
Из первого уравнения находим 



Биквадратные уравнения
Биквадратным уравнением называют уравнение вида
Биквадратное уравнение решается методом введения новой переменной: положив 
Пример:
Решить уравнение 
Решение:
Положив 




Решение задач с помощью составления уравнений
С помощью уравнений решаются многочисленные задачи, к которым приводят самые разнообразные вопросы физики, механики, экономики и т. д. Прежде всего напомним общий порядок решения задач с помощью уравнений.
1) Вводят переменные, т. е. буквами х, у, z обозначают неизвестные величины, которые либо требуется найти в задаче, либо они необходимы для отыскания искомых величин.
2) С помощью введенных переменных и данных в задаче чисел и их соотношений составляют систему уравнений (или одно уравнение).
3) Решают составленную систему уравнений (или уравнение) и из полученных решений отбирают те, которые подходят по смыслу задачи.
4) Если буквами х, у, z обозначили не искомые величины, то с помощью полученных решений находят ответ на вопрос задачи.
Задача 1.
Для перевозки 60 т груза из одного места в другое затребовали некоторое количество машин. Ввиду неисправности дороги на каждую машину пришлось грузить на 0,5 т меньше, чем предполагалось, поэтому дополнительно потребовались 4 машины. Какое количество машин было затребовано первоначально?
Решение: Обозначим через х количество машин, затребованных первоначально. Тогда на самом деле было вызвано (х + 4) машин. Так как надо было перевезти 60 т груза, то предполагалось, что на одну машину будут грузить 

Это уравнение имеет два корня: х = -24, х = 20. Ясно, что по смыслу задачи значение х = —24 не подходит. Таким образом, первоначально было затребовано 20 машин.
Задача 2.
Моторная лодка, движущаяся со скоростью 20 км/ч, прошла расстояние между двумя пунктами по реке туда и обратно без остановок за 6 ч 15 мин. Расстояние между пунктами равно 60 км. Найти скорость течения реки.
Решение:
Пусть х км/ч — скорость течения реки. Тогда лодка, собственная скорость которой 20 км/ч, идет по течению со скоростью (20 + х) км/ч, а против течения — со скоростью (20 — х) км/ч. Время, за которое лодка пройдет путь между пунктами по течению, составит 


решив которое, находим два корня: х = 4, х = -4. Ясно, что значение х = -4 не подходит по смыслу задачи. Итак, скорость течения реки равна 4 км/ч.
Задача 3.
Найти двузначное число, зная, что цифра его единиц на 2 больше цифры десятков и что произведение искомого числа на сумму его цифр равно 144.
Решение:
Напомним, что любое двузначное число может быть записано в виде 10х + у, где х — цифра десятков, а у — цифра единиц. Согласно условию, если х — цифра десятков, то цифра единиц равна х + 2 и мы получаем
Решив это уравнение, найдем 
Второй корень не подходит по смыслу задачи.
Итак, цифра десятков равна 2, цифра единиц равна 4; значит, искомое число равно 24.
Задача 4.
Двое рабочих, работая вместе, выполнили некоторую работу за 6 ч. Первый из них, работая отдельно, может выполнить всю работу на 5 ч скорее, чем второй рабочий, если последний будет работать отдельно. За сколько часов каждый из них, работая отдельно, может выполнить всю работу?
Решение:
Производительность труда, т. е. часть работы, выполняемая в единицу времени (обозначим ее через А), и время, необходимое для выполнения всей работы (обозначим его через t), — взаимно обратные величины, т. е. At = 1. Поэтому если обозначить через х ч время, необходимое для выполнения всей работы первому рабочему, а через (х + 5) ч — второму, то часть работы, выполняемая первым рабочим за 1 ч, равна 



решив которое, найдем х = 10.
Итак, первый рабочий может выполнить всю работу за 10 ч, а второй — за 15 ч.
Задача 5.
Из сосуда емкостью 54 л, наполненного кислотой, вылили несколько литров и долили сосуд водой, потом опять вылили столько же литров смеси. Тогда в оставшейся в сосуде смеси оказалось 24 л чистой кислоты. Сколько кислоты вылили в первый раз?
Решение:
Пусть в первый раз было вылито х л кислоты. Тогда в сосуде осталось (54 — х) л кислоты. Долив сосуд водой, получили 54 л смеси, в которой растворилось (54 — х) л кислоты. Значит, в 1 л смеси содержится 


за два раза вылито 54 — 24 = 30 л кислоты. В результате приходим к уравнению
Решив это уравнение, найдем два корня: 

Итак, в первый раз было вылито 18 л кислоты.
Задача 6.
Имеется кусок сплава меди с оловом массой 12 кг, содержащий 45% меди. Сколько чистого олова надо прибавить к этому куску, чтобы получившийся новый сплав содержал 40% меди?
Решение:
Пусть масса добавленного олова составляет х кг. Тогда получится сплав массой (12 + х) кг, содержащий 40% меди. Значит, в новом сплаве имеется 0,4(12 + х) кг меди. Исходный сплав массой 12 кг содержал 45% меди, т. е. меди в нем было 
Решив это уравнение, получим х = 1,5. Таким образом, к исходному сплаву надо добавить 1,5 кг олова.
Задача 7.
Имеется сталь двух сортов с содержанием никеля 5% и 40%. Сколько стали того и другого сорта надо взять, чтобы после переплавки получить 140 т стали с содержанием никеля 30% ?
Решение:
Пусть масса стали первого сорта равна х т, тогда стали второго сорта надо взять (140 — х) т. Содержание никеля в стали первого сорта составляет 5%; значит, в х т стали первого сорта содержится 0,05л; т никеля. Содержание никеля в стали второго сорта составляет 40%; значит, в (140 — х) т стеши второго сорта содержится 0,4 (140 — х) т никеля. По условию после соединения взятых двух сортов должно получиться 140 т стали с 30% -ным содержанием никеля, т. е. после переплавки в полученной стали должно быть 0,3 * 140 т никеля. Но это количество никеля складывается из 0,05л; т, содержащихся в стали первого сорта, и из 0,4 (140 — х) т, содержащихся в стали второго сорта. Таким образом, приходим к уравнению
0,05х + 0,4 (140 — х) = 0,3 * 140,
из которого находим х = 40. Следовательно, надо взять 40 т стали с 5% -ным и 100 т стали с 40% -ным содержанием никеля.
Иррациональные уравнения
Иррациональным называют уравнение, в котором переменная содержится под знаком радикала или под знаком возведения в дробную степень. Например, иррациональными являются уравнения 
Используются два основных метода решения иррациональных уравнений:
1) метод возведения обеих частей уравнения в одну и ту же степень;
2) метод введения новых переменных (см. п. 147).
Метод возведения обеих частей уравнения в одну
и ту же степень состоит в следующем:
а) преобразуют заданное иррациональное уравнение к виду
б) возводят обе части полученного уравнения в п-ю степень:
в)    учитывая, что 
f(x) = g(x);
г) решают уравнение и, в случае четного п, делают проверку, так как возведение обеих частей уравнения в одну и ту же четную степень может привести к появлению посторонних корней (см. п. 142). Эта проверка чаще всего осуществляется с помощью подстановки найденных значений переменной в исходное уравнение.
Пример 1.
Решить уравнение 
Решение:
Возведем обе части уравнения в шестую степень; получим х — 3 = 64, откуда х = 67.
Проверка:
Подставив 67 вместо х в данное уравнение, получим 
Ответ: 67.
Пример 2.
Решить уравнение
Решение:
Преобразуем уравнение к виду
и возведем обе части его в квадрат. Получим
далее,
Еще раз возведем обе части уравнения в квадрат:
откуда 
Проверка:
1) При х = 5 имеем

Таким образом, х = 5 является корнем заданного уравнения.
2) При х = 197 имеем 
Ответ: 5.
Пример 3.
Решить уравнение
Решение:
Применим метод введения новой переменной.
Положим 

Теперь задача свелась к решению совокупности уравнений
Возведя обе части уравнения 
Уравнение 
Ответ: 34.
Показательные уравнения
Показательное уравнение вида
где 
Имеются два основных метода решения показательных уравнений:
1)    метод уравнивания показателей, т. е. преобразование заданного уравнения к виду 
2) метод введения новой переменной.
Пример 1.
Решить уравнение 
Решение:
Данное уравнение равносильно уравнению 


Пример 2.
Решить уравнение
Решение:
Приведем все степени к одному основанию 




Пример 3.
Решить уравнение 
Решение:
Применим метод введения новой переменной. Так как 
Введем новую переменную, положив 


Из первого уравнения находим х = 2. Второе уравнение не имеет корней, так как 
Ответ: 2.
Логарифмические уравнения
Чтобы решить логарифмическое уравнение вида
где 
1) решить уравнение f(x) = g(x);
2) из найденных корней отобрать те, которые удовлетворяют неравенствам f(x) > 0 и g(x) > 0; остальные корни уравнения f(x) = g(x) являются посторонними для уравнения (1).
Имеются два основных метода решения логарифмических уравнений:
1)    метод, заключающийся в преобразовании уравнения к виду 
2) метод введения новой переменной.
Пример 1.
Решить уравнение
Решение:
Перейдем от заданного уравнения к уравнению 


Ответ: -3.
Пример 2.
Решить уравнение
Решение:
Воспользовавшись тем, что сумма логарифмов равна логарифму произведения (см. п. 120), преобразуем уравнение к виду
Из последнего уравнения находим 
Осталось сделать проверку. Ее можно выполнить с помощью системы неравенств
Подставив поочередно найденные значения -1 и -5,5 в эти неравенства, убеждаемся, что -1 удовлетворяет всем неравенствам, а -5,5 — нет, например при этом значении не выполняется первое неравенство. Значит, -5,5 — посторонний корень.
Ответ: -1.
Пример 3.
Решить уравнение
Решение:
Так как 
Введем новую переменную, положив 
и далее
Но 

Ответ: 4.
Примеры решения показательно-логарифмических уравнений
Пример 1.
Решить уравнение
Решение:
Область определения уравнения: х > 0. При этом условии выражения, входящие в обе части уравнения (1), принимают только положительные значения. Прологарифмировав обе части уравнения (1) по основанию 10, получим уравнение
равносильное уравнению (1). Далее имеем 
Полагая 




Здесь применен метод логарифмирования, заключающийся в переходе от уравнения f(x) = g(x) к уравнению
Пример 2.
Решить уравнение

Решение:
Воспользовавшись определением логарифма, преобразуем уравнение (2) к виду
Полагая 

Теперь задача сводится к решению совокупности уравнений
Так как 
откуда находим 
Простейшие тригонометрические уравнения
Уравнение 





Здесь 



Решения уравнения 

Уравнение 

а уравнение 

Пример 1.
Решить уравнение 
Решение:
По формуле (1) имеем
Так как 
Пример 2.
Решить уравнение 
Решение:
Воспользовавшись формулой (2), получим
Так как 
Пример 3.
Решить уравнение 
Решение:
Воспользовавшись формулой (3), получим
откуда находим
Заметим, что в некоторых случаях удобнее пользоваться частными формулами:
Во всех формулах 
Методы решения тригонометрических уравнений
Имеются два основных метода решения тригонометрических уравнений:
1) метод разложения на множители;
2) метод введения новой переменной.
Пример 1.
Решить уравнение
Решение:
Перенесем 1 в левую часть и, выполнив преобразования левой части, разложим ее на множители.
Применим к sin 5х + sin х формулу для суммы синусов (см. п. 130) и воспользуемся тем, что 
Из уравнения cos 2х = 0 находим 
Из уравнения 2 sin 3x — 1 = 0 находим 
Таким образом, решения заданного уравнения таковы:
Пример 2.
Решить уравнение
Решение:
Так как 
и далее 
Положив cos х = у, получим квадратное уравнение 



Ответ: 
Однородные тригонометрические уравнения
Однородными тригонометрическими уравнениями называют уравнения вида
(однородное уравнение 1-й степени),
(однородное уравнение 2-й степени).
Рассмотрим случай, когда 

При 


Пример 1.
Решить уравнение
8 sin х — 7 cos х = 0.
Решение:
Разделив обе части уравнения почленно на cos х, получим 8 tg х — 7 = 0. Далее имеем

Пример 2.
Решить уравнение
Решение:
Разделив обе части этого однородного уравнения второй степени на 


Решив совокупность уравнений tg х = -3, tg х = 1, получим
Пример 3.
Решить уравнение
Решение:
В полученном уравнении отсутствует член вида 



Теперь задача сводится к решению совокупности уравнений
cos х = 0; 
Из первого уравнения совокупности (2) находим 


Итак, получаем две серии решений:
Универсальная подстановка (для тригонометрических уравнений)
Если 
В самом деле,
Итак, sin х и cos х (а значит, и tg х, и ctg х) рационально выражаются через 

Она может быть использована в уравнениях вида R (sin х; cos х) = 0, где R (sin х; cos х) — рациональное выражение относительно sin х и cos х.
Поскольку использование универсальной подстановки возможно лишь при 

Пример 1.
Решить уравнение
3 sin х + 4 cos х = 5.
Решение:
Выразив sin х и cos х через 

Решив это уравнение, получим 

Проверкой убеждаемся, что значения 
Ответ: 
Пример 2.
Решить уравнение
3 sin 2х + cos 2х + 1 = 0.
Решение:
Воспользуемся универсальной подстановкой. Выразив sin 2х и cos 2х через tg х и введя новую переменную 
откуда 

Нужно еще проверить, не удовлетворяют ли заданному уравнению те значения х, при которых



Таким образом, значения 
Ответ: 
Метод введения вспомогательного аргумента (для тригонометрических уравнений)
Иногда при решении тригонометрических уравнений оказывается полезным заменить выражение 



Пример 1.
Решить уравнение
8 cos х + 15 sin х = 17.
Решение:
Разделив обе части уравнения на 

Так как 


Но 



Пример 2.
Решить уравнение
Решение:
Имеем:
Полагая 
и далее
Решив совокупность уравнений 

Учтя, что 
Графическое решение уравнений
На практике довольно часто оказывается полезным графический метод решения уравнений. Он заключается в следующем: для решения уравнения f(х) = 0 строят график функции у = f(x) и находят абсциссы точек пересечения графика с осью х; эти абсциссы и являются корнями уравнения. Так, для решения уравнения 

Например, график функции 



уравнение 
Часто уравнение f(x) = 0 заменяют равносильным уравнением g(x) = h(x), затем строят графики функций у = g(x) и у = h(x) (если это проще, чем построение графика функции у = f(x)) и находят абсциссы точек пересечения построенных графиков.
Так, для решения уравнения 


Пример 1.
Решить графически уравнение
Решение:
Уравнение целесообразно переписать в виде
Теперь решение уравнения может быть сведено к нахождению абсцисс точек пересечения графиков функций 
На рисунке 1.100 построены в одной системе координат графики функций 

Пример 2.
Решить уравнение 
Решение:
Построим в одной системе координат графики функций 
функции 


График этой функции изображен на рисунке 1.102.
На рисунке 1.103, оба графика изображены в одной системе координат. Они пересекаются в двух точках с абсциссами 
С графическим методом решения уравнения f(x) = g(x) связан функциональный метод решения уравнения, основанный на том, что если одна из функций у = f(x) и у = g(x) возрастает, а другая убывает, то уравнение f(x) = g(x) либо не имеет корней (рис. 1.104), либо имеет единственный корень (рис. 1.105).
Пример 3.
Решить уравнение 
Решение:
Легко заметить, что х = 2 — корень уравнения. Так как функция 
Уравнения с параметром
Пусть дано равенство с переменными х, 
Если ставится задача для каждого действительного значения а решить это уравнение относительно х, то уравнение 

Решить уравнение с параметром 

Пример 1.
Решить уравнение
Решение:
Рассмотрим прежде всего те значения параметра, которые обращают в нуль коэффициент при х (при этих значениях параметра невозможно деление обеих частей уравнения на коэффициент при х, а при остальных значениях параметра такое деление возможно). Такими значениями являются 






Таким образом, если 



Пример 2.
Решить уравнение
Решение:
Выделим особо значение параметра 







Если 


если 



Итак, если 






Пример 3.
При каких значениях параметра 
имеет два различных отрицательных корня?
Решение:
Так как уравнение должно иметь два различных действительных корня 
Значит, должно выполняться неравенство 
По теореме Виета для заданного уравнения имеем
Так как, по условию, 

В итоге мы приходим к системе неравенств (см. п. 177):
Из первого неравенства системы находим (см. п. 180, 183) 



Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:
- Математика решение заданий и задач
 
Смотрите также дополнительные лекции по предмету «Математика»:
Лекции:
- Найдите координаты точки пересечения графиков
 - Геометрический смысл производной в точке
 - Двойной интеграл: примеры решения
 - Асимптотическое поведение функций. Сравнение бесконечно малых функций
 - Прямая линия на плоскости
 - Определение производной
 - Первый замечательный предел: пример решения
 - Метод вариации постоянных
 - Система показательных уравнений
 - Поверхность второго порядка
 
Содержание:
Линейное уравнение с одной переменной
Уравнение — одно из важнейших понятий не только математики, но и многих прикладных наук. Это наиболее удобная математическая модель, наилучшее средство для решения сложнейших задач. Образно говоря, уравнение — это ключ, которым можно отворять тысячи дверей в неизвестное. Основные темы главы:
- общие сведения об уравнениях;
 - равносильные уравнения;
 - линейные уравнения;
 - решение задач с помощью уравнений.
 
Общие сведения об уравнении
Алгебра в течение многих столетий развивалась как наука об уравнениях.
Уравнение — это равенство, содержащее не-известные числа, обозначенные буквами.
Неизвестные числа в уравнении называют переменными. Переменные чаще всего обозначают буквами х, у, z (икс, игрек, зет), хотя их можно обозначить и другими буквами.
Примеры уравнений: 
Например:
Рассмотрим уравнение 

Число, удовлетворяющее уравнение, называется его корнем.
Уравнение 
Уравнение 
Уравнение 
Уравнение 
Решить уравнение — это означает, что надо найти все его корни или показать, что их не существует.
Простейшие уравнения можно решать, пользуясь известными зависимостями между слагаемыми и суммой, между множителями и произведением и т. п.
Пример:
Решите уравнение 
Решение:
В данном случае неизвестно вычитаемое. Чтобы найти его, следует от уменьшаемого отнять разность: 
Здесь неизвестный множитель х. Чтобы найти его, надо произведение разделить на известный множитель:
Ответ. х = 4.
Уравнение — это своеобразный кроссворд. Только в клеточки кроссворда вписывают буквы, чтобы получить нужные слова, а в уравнение вместо переменных подставляют числа, чтобы получались правильные равенства.
Например, уравнение 
Какое число надо поставить в квадратики, чтобы получилось верное равенство?
Уравнения бывают разных видов, в частности — содержащие неизвестную переменную в квадрате, в кубе, под знаком модуля и т. п. Решим, например, уравнения:
1) Ответим на вопрос: какое число надо возвести в квадрат, чтобы получить 9? Это числа 3 и -3. Это и есть корни данного уравнения.
2) Разделим обе части уравнения 
3) Если модуль числа x — 2, то это число равно 5 или -5. Имеем: x — 2 = 5, отсюда х = 7, или x — 2 = -5, отсюда х = -3. Значит, уравнение 
Пример:
Решите уравнение 
Решение:
Пример:
Я задумал число. Если его умножить на 3, от результата отнять 4, то получим 5. Какое число я задумал?
Решение:
Обозначим искомое число буквой х. Если умножить его на 3, то получим Зх. Отняв от результата 4, получим Зх — 4. Имеем уравнение: 
Решим это уравнение: 
Пример:
При каком значении а уравнение 
Решение:
Первый способ. Найдём неизвестный множитель х как частное от деления произведения 12 и известного множителя а + 5:
По условию x + 3, поэтому 

Второй способ. Подставим в уравнение 
Решим полученное уравнение относительно переменной а. Имеем:


Равносильные уравнения
Рассмотрим два уравнения: 
Два уравнения называют равносильными, если каждое из них имеет те же корни, что и другое. Равносильными считают и такие уравнения, которые не имеют корней.
Например:
Чтобы решать более сложные уравнения, нужно уметь заменять их более простыми и равносильными данным. Покажем, как это делается.
Из распределительного закона умножения следует, что при любом значении х числа 2x + 5x = 7x. Поэтому равносильными будут такие, например, уравнения: 
Из распределительного закона следует, что при каждом значении х числа 
Вообще, если в любой части уравнения свести подобные слагаемые или раскрыть скобки, то получим уравнение, равносильное данному.
Прибавив к обеим частям верного числового равенства одно и то же число, получим также верное равенство. Подобно этому тела с равными массами, положенные на чаши уравновешенных весов, не нарушают равновесия (рис. 4).
Отсюда следует, что когда, например, к обеим частям уравнения 

Вспомним также, что обе части числового равенства можно умножить или разделить на одно и то же число, отличное от нуля. Поэтому если обе части уравнения умножить иди разделить на одно и то же число, отличное от нуля, то получим уравнение, равносильное данному. Например, умножив обе части уравнения 



Всегда справедливы такие основные свойства уравнений.
- В любой части уравнения можно свести подобные слагаемые или раскрыть скобки, если они есть.
 - Любой член уравнения можно перенести из одной части уравнения в другую, изменив его знак на противоположный.
 - Обе части уравнения можно умножить или разделить на одно и то число, отличное от нуля.
 
В результате таких преобразований всегда получаем уравнение, равносильное данному.
Сформулированные свойства часто используют для решения уравнений. Для примера решим уравнение:
Решение:
Умножим обе части уравнения на 6:


Разделим обе части уравнения на 2:
Ответ. 
Откуда произошло название науки — алгебра? От названия книги об уравнениях узбекского математика IX в. Мухаммеда аль-Хо-резми (Мухаммеда из Хорезма). В те далёкие времена отрицательные числа не считались настоящими. Поэтому когда в результате перенесения отрицательного члена уравнения из одной его части в другую этот член становился положительным, считалось, что Qh восстанавливался, переходил из ненастоящего в настоящий. Такое преобразование уравнений Мухаммед аль-Хорезми назвал восстановлением (аль-джебр). Свойство об уничтожении одинаковых членов уравнения в обеих частях он назвал противопоставлением (аль-мукабала). Книга об этих преобразованиях называлась «Китаб мухтасар аль-джебр ва-л-мукабала» («Книга о восстановлении и противопоставлении»). Со временем её перевели на латинский Язык, взяв для названия только одно слово, которое стали писать Algebr. Отсюда и пошло название науки — алгебра. Преобразование «аль,-джебр» стало важным шагом в развитии алгебры, так как упростило решение уравнений.
Алгебра, арифметика, геометрия, математический анализ — основные составляющие математики (рис. 5). Арифметику — науку о числах и вычислениях — вы уже изучали на уроках математики. В 7-9 классах будете изучать алгебру и геометрию, с математическим анализом ознакомитесь в старших классах.
Пример:
Равносильны ли уравнения:
а)
б)
Решение:
а) Если раскрыть скобки в первом уравнении, то получим второе. Значит, уравнения равносильны.
б) Решим первое уравнение:

Ответ. а) Равносильны; б) не равносильны.
Пример:
Решите уравнение:
Решение:
Раскроем скобки и приведём подобные слагаемые: 
Разделим обе части уравнения на 2. Получим: х = 6. Ответ. х = 6.
Пример:
Найдите корни уравнения: 
Решение:
Умножим обе части уравнения на 3. Получим: 
Линейные уравнения
Уравнение вида ax = b, где a и b — данные числа, называется линейным уравнением с переменной х.
Числа a и b — коэффициенты уравнения ax = b , a— коэффициент при переменной х,b — свободный член уравнения.
Если 
Каждое уравнение первой степени с одной переменной имеет один корень. Линейное уравнение может не иметь корней, иметь один или бесконечное множество корней.
Линейное уравнение ах = b:
Например, уравнение 0x = 5 не имеет ни одного корня, так как не существует числа, которое при умножении на 0 в произведении давало бы 5.
Уравнение 0x = 0 имеет бесконечное множество корней, так как его удовлетворяет любое значение переменной х.
Решая уравнение, его сначала стараются упростить, свести к линейному. Делают это преимущественно в такой последовательности.
- Избавляются от знаменателей (если они есть).
 - Раскрывают скобки (если они есть).
 - Переносят члены, содержащие переменные, в левую часть уравнения, а не содержащие — в правую.
 - Приводят подобные слагаемые.
 
В результате такого преобразования получают уравнение, равносильное данному; его корни являются также корнями данного уравнения.
Пример 1. Решите уравнение:
Решение. Умножим обе части уравнения на 12 — наименьшее общее кратное знаменателей 2, 3, 4 и 12:
Ответ. -11.
Если коэффициенты уравнения многозначные, его удобно решать, пользуясь калькулятором. Пример 2. Решите уравнение
Ответ. 
Найденное значение корня — приближённое. Точное значение пришлось бы записать в виде смешанной дроби, а именно 
Уравнение первой степени — это отдельный вид линейных уравнений. Соотношение между этими двумя видами уравнений наглядно проиллюстрировано на рисунке 7.
Ниже приведём примеры линейных уравнений, которые не являются уравнениями первой степени.
Уравнения первой степени
Уравнения 
Почему уравнение вида ах = b называют линейными, станет понятно, когда вы ознакомитесь с линейными функциями.
Пример:
Решите уравнения:
а) 
Решение:
а) 

б) 

Ответ. а) Уравнение корней не имеет;
б) уравнение имеет бесконечное множество корней.
Пример:
Найдите два числа, полусумма которых вдвое больше их полуразности, которая равна 35.
Решение:
Если полуразность чисел равна 35, то разность будет вдвое больше, а именно — 70. Обозначим меньшее число буквой х, тогда большее будет равно
70 + х. По условию задачи 

Решение задач с помощью уравнений
Чтобы решить задачу с помощью уравнения, сначала надо составить соответствующее этой задаче уравнение. Образно говоря, надо перевести задачу с обычного языка на язык алгебры, то есть составить математическую модель данной задачи. Как это можно сделать, покажем на нескольких примерах.
Пример:
На двух токах 1000т зерна. Сколько зерна на каждом току, если на первом его на 200т меньше, чем на втором?
Решение:
Пусть на первом току 


отсюда 
Ответ. 
Уравнение 
Составить уравнения часто помогает рисунок или схема (рис. 10)
Данную задачу можно решить и другими способами.
Если на втором току есть у т зерна, то на первом 

Ответ тот же.
Рисунок 10, рисунок 11., уравнение 
Модель всегда подобна оригиналу. В ней отображаются те или иные важные свойства исследуемого объекта. Такими являются уменьшенные модели автомобиля, самолёта, строения. Глобус — модель Земли, кукла — модель человека. Если модель создана на основе уравнений, формул или других математических понятий, её называют математической моделью.
Для решения задач на движение также используют разные модели. Надо помнить, что при равномерном движении пройденное телом расстояние равно произведению скорости на время 
Рассмотрим задачу, составить уравнение к которой помогает таблица — ещё один вид математических моделей.
Пример:
Катер должен был пройти расстояние между городами со скоростью 15 км/ч, а на самом деле шёл со скоростью 12 км/ч и потому опоздал на 3 ч. Найдите расстояние между городами.
Ответ. Построим таблицу и заполним её в соответствии с условием задачи.
Катер шёл на 3 ч дольше, чем должен был идти. Этому условию соответствует уравнение:


Решив задачу с помощью уравнения, нужно всегда анализировать полученное значение неизвестного. Может получиться, что найденный корень уравнения не соответствует условию задачи.
Пример:
Периметр треугольника равен 17 см. Найдите его стороны, если одна из них короче другой на 2 см, а третьей — на б см.
Решение:
Пусть длина самой короткой стороны треугольника равна х см. Тогда длины других сторон соответственно будут равны 
Решим его: 
Если длина первой стороны 3 см, то вторая и третья соответственно будут равны 5 и 9 см.
Существует ли треугольник с такими сторонами? Нет, так как каждая сторона треугольника короче суммы двух других, а
Ответ. Задача не имеет решения.
Решение прикладных задач методом математического моделирования состоит из трёх этапов:
- создание математической модели данной задачи;
 - решение соответствующей математической задачи;
 - анализ ответа.
 
Иногда с помощью уравнения решают не всю задачу, а только её часть.
Покажем, например, как можно заполнять пустые клеточки магического квадрата — таблицы чисел с одинаковым количеством строк столбцов, с одинаковой суммой чисел во всех строках, столбцах и по диагоналям.
Пример:
Перерисуйте в тетрадь рисунок 12 и в его пустые клеточки впишите такие числа, чтобы получился магический квадрат.
Решение:
Обозначим буквой х число в правой верхней клеточке Тогда сумма всех чисел первой строки будет равна 5+6+x, или 11 + x Такими же должны быть суммы и в каждой диагонали, и в среднем столбце поэтому в нижней строке следует написать 4, x — 2 , x — 1 (рис. 13). Та как сумма чисел должна быть равна 11 + х, то составим уравнение:
Подставим вместо х его значение 10, после чего пустые клеточки рисунка 14 заполнить нетрудно. 

Пример:
Катер прошёл расстояние между пристанями по течению реки за 2 ч, а обратно — за 2,5 ч. Найдите собственную скорость катера, если скорость течения равна 2 км/ч.
Решение:
Пусть собственная скорость катера равна x км/ч. Тогда:




Расстояния 
Ответ. 18 км/ч.
Пример:
Решите математический кроссворд (рис. 15).
Решение:
В кружки следует вписать два числа так, чтобы их сумма была равна 200, а разность — 10. Если второе число обозначим буквой х, то первое будет равно 200 — х. Их разность равна 10, следовательно, 

Исторические сведения:
Уравнения первой степени с одной переменной люди научились решать очень давно. Египетские учёные почти четыре тысячи лет тому назад искомое неизвестное число называли «аха» (в переводе — «куча») и обозначали специальным знаком. В папирусе, дошедшем до нас, есть такая задача: «Куча и её седьмая часть составляют 19. Найдите кучу». Теперь бы мы сформулировали её так: «Сумма неизвестного числа и его седьмой части равна 19. Найдите неизвестное число».
Задача сводится к уравнению 
Подобные задачи умели решать учёные Древней Греции, древних Индии, Китая. Древнегреческий математик Диофант (III в.) решал и более сложные уравнения, в частности такие, которые в современных символах имеют вид 

Аль-Хорезми и многие его преемники все уравнения записывали словами, не используя математических знаков.
От фамилии аль-Хорезми происходит ещё один важный для современной науки термин — алгоритм. Так называют совокупность правил, пользуясь которыми можно решить любую задачу из определённого класса задач. Например, известный вам способ умножения чисел «столбиком», способ определения наибольшего общего делителя двух или нескольких чисел — это алгоритмы. В современной науке понятие «алгоритм» играет огромную роль, существует даже специальная область математики — теория алгоритмов. Подробнее с алгоритмами вы ознакомитесь в старших классах.
Сначала алгеброй называли науку, изучающую различные способы решения уравнений. Со временем она значительно расширилась, обогатилась новыми идеями. Теперь уравнение — только одна из составляющих алгебры.
Напомню:
Уравнение — это равенство, которое содержит неизвестные числа, обозначенные буквами.
Числа, удовлетворяющие уравнение, — его корни. Решить уравнение — это значит найти все его корни или показать, что их не существует.
Два уравнения называют равносильными, если каждое из них имеет те же корни, что и другое. Уравнения, которые не имеют корней, также считают равносильными друг другу.
Основные свойства уравнений.
- В любой части уравнения можно привести подобные слагаемые или раскрыть скобки, если они есть.
 - Любой член уравнения можно перенести из одной части уравнения в другую, изменив его знак на противоположный.
 - Обе части уравнения можно умножить или разделить на одно и то же число, отличное от нуля.
 
Уравнение вида ах = b, где а и b — произвольные числа, называют линейным уравнением с переменной х. Если 
Каждое уравнение первой степени ах = b имеет один корень 
Решение прикладных задач методом математического I моделирования состоит из трёх этапов:
- создание математической модели данной задачи;
 - решение соответствующей математической задачи;
 - анализ ответа.
 
Линейное уравнение с одной переменной
Рассмотрим три уравнения:
Очевидно, что число -1,5 является единственным корнем первого уравнения.
Поскольку произведение любого числа на нуль равно нулю, то корнем второго уравнения является любое число.
Понятно, что третье уравнение корней не имеет.
Несмотря на существенное различие полученных ответов, приведенные уравнения внешне похожи: все они имеют вид 


Уравнение вида 


Вот еще примеры линейных уравнений: 
Текст, выделенный жирным шрифтом, разъясняет смысл термина «линейное уравнение». В математике предложение, раскрывающее суть нового термина (слова, понятия, объекта), называют определением.
Итак, мы сформулировали (или говорят: «дали») определение линейного уравнения.
Заметим, что, например, уравнения 

Если 





Если же 

В первом случае получаем уравнение 


Во втором случае, когда 





Следующая таблица подытоживает приведенные рассуждения.
Пример:
Решите уравнение:
1) 
Решение:
1) Так как произведение нескольких множителей равно нулю, когда хотя бы один из множителей равен нулю, получаем:
Ответ: -0,7; 4.
2) Учитывая, что модуль только чисел 4 и -4 равен числу 4, имеем: 
Ответ: 2; 0,4.
Обратим ваше внимание на то, что рассмотренные уравнения не являются линейными, однако решение каждого из них сводится к решению линейных уравнений.
Пример:
Решите уравнение:
Решение:
1) При 


Ответ: если 

2) При 


Ответ: если 


Решение задач с помощью уравнений
Вам много раз приходилось решать задачи с помощью составления уравнений (текстовые задачи). И разнообразие решенных задач является лучшим подтверждением эффективности и универсальности этого метода. В чем же заключается секрет его силы?
Дело в том, что условия непохожих друг на друга задач удается записать математическим языком. Полученное уравнение — это результат перевода условия задачи с русского языка на математический.
Часто условие задачи представляет собой описание какой-то реальной ситуации. Составленное по этому условию уравнение называют математической моделью этой ситуации.
Конечно, чтобы получить ответ, уравнение надо еще решить. Для этого в алгебре разработаны различные методы и приемы. С некоторыми из них вы уже знакомы, многие другие вам еще предстоит изучить.
Найденный корень — это еще не ответ задачи. Следует выяснить, не противоречит ли полученный результат реальной ситуации, описанной в условии.
Рассмотрим, например, такие задачи:
- За 4 ч собрали 6 кг ягод. Сколько ягод собирали за каждый час?
 - Несколько мальчиков собрали 6 кг ягод. Каждый из них собрал по 4 кг. Сколько мальчиков собирали ягоды?
 
Обе задачи приводят к одному и тому же уравнению 
При решении задач на составление уравнений удобно пользоваться следующей схемой:
- по условию задачи составить уравнение (сконструировать математическую модель задачи);
 - решить уравнение, полученное на первом шаге;
 - выяснить, соответствует ли найденный корень смыслу задачи, и дать ответ.
 
Эту последовательность действий, состоящую из трех шагов, можно назвать алгоритмом решения текстовых задач.
Пример:
Рабочий должен был выполнить заказ за 8 дней. Однако, изготавливая ежедневно 12 деталей сверх нормы, он уже за 6 дней работы не только выполнил заказ, но и изготовил дополнительно 22 детали. Сколько деталей ежедневно изготавливал рабочий?
Решение:
Пусть рабочий изготавливал ежедневно 





Тогда
Ответ: 37 деталей.
Пример:
Велосипедист проехал 65 км за 5 ч. Часть пути он проехал со скоростью 10 км/ч, а оставшийся путь — со скоростью 15 км/ч. Сколько времени он ехал со скоростью 10 км/ч и сколько — со скоростью 15 км/ч?
Решение:
Пусть велосипедист ехал 



Следовательно, со скоростью 10 км/ч велосипедист ехал 2 ч, а со скоростью 15 км/ч — 3 ч.
Ответ: 2 ч, 3 ч.
——
Что такое уравнение, линейное уравнение, что значит решить уравнение
Алгебра длительное время была частью арифметики — одной из древнейших математических дисциплин. Слово «арифметика» в переводе с греческого означает «искусство чисел». Алгебру же после выделения ее в отдельную науку рассматривали как искусство решать уравнения.
В данном разделе мы выясним, что такое уравнение, линейное уравнение, что значит решить уравнение, как решать задачи с помощью уравнений.
Что такое уравнение
Рассмотрим задачу:
Масса 4 больших и 15 малых деталей равна 270 г. Масса большой детали в три раза больше массы малой. Какова масса малой детали?
Пусть масса малой детали равна 




Мы пришли к равенству, которое содержит неизвестное число, обозначенное буквой 



Равенство с неизвестным значением переменной называют уравнением с одной переменной (или уравнением с одним неизвестным).
Корень уравнения
Рассмотрим уравнение 

Значение переменной, при котором уравнение превращается в верное числовое равенство, называют корнем, или решением уравнения.
Итак, число 3 является корнем уравнения 
Количество корней уравнения
Уравнения могут иметь разное количество корней. Например:
уравнению 

Уравнение может и не иметь корней. Рассмотрим, например, уравнение 



Решить уравнение — значит найти все его корни или доказать, что корней нет.
Решим уравнение, составленное выше по условию задачи о больших и малых деталях:



Таким образом, масса малой детали равна 10 г.
Примеры решения уравнений:
Пример №86
Является ли число 2,5 корнем уравнения 
Решение:
Если 
значение левой части уравнения равно: 


- Заказать решение задач по высшей математике
 
Пример №87
Решить уравнение:
а) 


а) 




б) Произведение равно нулю только тогда, когда хотя бы один из множителей равен нулю. Следовательно, 



в) 


Решение уравнений. Свойства уравнений
Решение любого уравнения сводится к выполнению определенных преобразований, в результате которых данное уравнение заменяют более простым.
Решим, например, уравнение:

1. Раскроем скобки:

2. Приведем подобные слагаемые в левой части уравнения:

3. Перенесем слагаемые с переменной 

4. Приведем подобные слагаемые в каждой части уравнения:

5. Разделим обе части уравнения на 2:

Таким образом, уравнение (1) имеет единственный корень — число 4.
При решении уравнения (1) мы выполняли некоторые преобразования: раскрывали скобки, приводили подобные слагаемые, переносили слагаемые из одной части уравнения в другую, делили обе части уравнения на число. С этими преобразованиями связаны следующие основные свойства уравнений:
Свойство 1. В любой части уравнения можно раскрыть скобки или привести подобные слагаемые.
Свойство 2. Любое слагаемое можно перенести из одной части уравнения в другую, изменив при этом его знак на противоположный.
Свойство 3. Обе части уравнения можно умножить или разделить на одно и то же число, отличное от нуля.
Если в некотором уравнении выполнить одно из преобразований, указанных в свойствах 1, 2 или 3, то получим уравнение, имеющее те же корни, что и начальное уравнение.
Решая уравнение (1), мы последовательно получали уравнения (2), (3), (4), (5). Все они вместе с уравнением (1) имеют один и тот же корень — число 4.
Для тех, кто хочет знать больше
Свойства уравнений можно обосновать, используя следующие свойства числовых равенств:
Если а — b — верное числовое равенство и с — некоторое число, то:
Если к обеим частям верного числового равенства прибавить одно и то же число, то получим верное числовое равенство.
Если обе части верного числового равенства умножить на одно и то же число, то получим верное числовое равенство.
Если обе части верного числового равенства разделить на одно и то же число. отличное от нуля то получим верное числовое равенство.
Из первого свойства числовых равенств можно получить такое следствие: если из одной части верного числового равенства перенести в другую часть слагаемое, изменив его знак на противоположный, то получим верное числовое равенство.
Используя свойства числовых равенств, докажем, например, что уравнение

имеет тс же корни, что и уравнение

(Это свойство 2 для уравнения 
• Пусть 




Наоборот, пусть 




Примеры решения уравнений:
Пример №88
Решить уравнение 
Решение:
Умножив обе части уравнения на 14, получим:



Ответ. 15.
Пример №89
Решить уравнение 
Решение:
Разделив обе части уравнения на 25, получим:
Ответ. 1,6.
Линейные уравнения с одной переменной
Линейные уравнения с одной переменной
Рассмотрим уравнения:
Левая часть каждого из этих уравнений является произведением некоторого числа и переменной, а права часть — некоторым числом. Такие уравнения называют линейными уравнениями с одной переменной.
Определение:
Уравнение вида 


Числа а и b называют коэффициентами линейного уравнения.
Когда при решении уравнения выполняют некоторые преобразования, приводя данное уравнение к более простому, то во многих случаях этим «простым» уравнением является именно линейное уравнение.
Выясним, сколько корней может иметь линейное уравнение. Для этого рассмотрим сначала три следующих уравнения:
1) 


- Чтобы решить уравнение 
, достаточно обе его части разделить на 3. Получим один корень:
 - В уравнении 
значение левой части равно 0 для любого числа
. Правая же часть уравнения не равна нулю. Следовательно, данное уравнение корней не имеет.
 - Равенство 
является верным для любого числа
. Поэтому корнем уравнения
является любое число (уравнение имеет бесконечно много корней).
 
В общем случае для линейного уравнения 
Итог: количество корней линейного уравнения
| 
 
 уравнение  | 
Коэффициенты | Корни | 
![]()  | 
  — единственный корень | 
|
  и ![]()  | 
корней нет | |
  и ![]()  | 
корнем является любое число (уравнение имеет бесконечно много корней) | 
Уравнения с модулями
Напомним, что модулем положительного числа и числа 0 является это же число, модулем отрицательного числа является противоположное ему число:
Так, 


Уравнения 
Уравнение вида 



Рассмотрим уравнение 

Рис. 1
Уравнение 


В общем случае уравнение 
Решение уравнений с модулями, исходя из определения модуля числа
Решим уравнение

Это уравнение нельзя привести к виду 
1. Если 





2. Если 





Таким образом, уравнение 

Примеры выполнения заданий:
Пример №90
Решить уравнение 
Решение:
Ответ. -3.
Пример №91
Решить уравнение 
Решение:


Ответ. Уравнение корней не имеет.
Пример №92
Решить уравнение 
Решение:


Ответ. Корнем уравнения является любое число.
Пример №93
Решить уравнение 
Решение:
Умножив обе части уравнения на 36 (36 — наименьшее общее кратное знаменателей дробей), получим:




Ответ. 6.
Итог. При решении уравнения нужно придерживаться следующей схемы:
- Если в уравнении есть выражения с дробными коэффициентами, то умножить обе его части на наименьший общий знаменатель дробей.
 - Раскрыть скобки.
 - Перенести все слагаемые, содержащие переменную, в одну часть уравнения (как правило, в левую), а слагаемые, не содержащие переменной, — в другую часть (в правую).
 - Привести подобные слагаемые.
 - Разделить обе части уравнения на коэффициент при переменной, если он не равен нулю. Если же он равен 0, то уравнение или не имеет корней, или его корнем является любое число.
 
Пример №94
Решить уравнение 
Решение:
Если модуль числа равен 3, то этим числом является 3 или -3. Поэтому возможны два случая:
1) 
Ответ. 3; 0.
Пример №95
Решить уравнение 
Решение:
Ответ. -4; 4.
Решение задач с помощью уравнений
При решении задач с помощью уравнений в большинстве случаев придерживаются следующей схемы:
- выбирают неизвестное и обозначают его буквой 
(или какой-нибудь другой буквой);
 - используя условие задачи, составляют уравнение;
 - решают уравнение и отвечают на вопросы, поставленные в задаче.
 
Рассмотрим примеры.
Пример №96
В двух цистернах находится 66 т бензина, причем в первой бензина в 1,2 раза больше, чем во второй. Сколько бензина в каждой цистерне?
Решение:
Пусть во второй цистерне 


Решим это уравнение: 
Таким образом, во второй цистерне 30 т бензина, а в первой — 1,2 • 30 = 36 (т).
Ответ. 36 т, 30 т.
Примечание. Чтобы решить задачу 1, можно рассуждать и так. Пусть во второй цистерне 


Пример №97
Из. города А в город В выехал грузовой автомобиль. Через 30 мин навстречу ему из города В выехал легковой автомобиль, скорость которого на 25 км/ч больше скорости грузового. Автомобили встретились через 1,3 ч после выезда грузового автомобиля из города А. Найти расстояние между городами, если за все время движения грузовой автомобиль проехал на 10 км больше, чем легковой.
Решение:
Пусть скорость грузового автомобиля 

До момента встречи грузовой автомобиль был в пути 1,3 ч, а легковой на 30 мин = 0,5 ч меньше: 1,3 ч — 0,5 ч = 0,8 ч. За 1,3 ч грузо&ой автомобиль проехал 1,3



| Скорость, км/ч | Время, ч | Путь, км | |
| Грузовой автомобиль | ![]()  | 
1,3 | 1,3![]()  | 
| Легковой автомобиль | ![]()  | 
0,8 | ![]()  | 
Получили уравнение: 
Решим это уравнение:
Итак, скорость грузового автомобиля равна 60 км/ч.
Расстояние между городами равно сумме расстояний, которые проехали оба автомобиля, то есть 

Ответ. 146 км. •
Примечание. Опираясь на решение задач 1 и 2, проанализируем первые два шага приведенной выше схемы решения задач с помощью уравнений.
1) Выбор неизвестного, которое мы обозначали буквой, в решениях этих задач был разным. В задаче 1 мы обозначили через 



Таким образом, обозначать через 
2) Чтобы составить уравнение, сначала выражаем через 
Математическая модель:
Вам, наверное, уже приходилось видеть модели корабля, самолета, автомобиля, изготавливать модели куба, прямоугольного параллелепипеда. Каждая модель, в зависимости от ее предназначения, отображает некоторые свойства оригинала.
Математическая модель — это описание некоторого реального объекта или процесса на языке математики.
Опишем на языке математики задачу 2. Определяя скорость грузового автомобиля в этой задаче, мы обозначили ее через 

На языке математики расстояние, пройденное грузовым автомобилем, записывают: 1,3

По условию задачи грузовой автомобиль проехал на 10 км больше, чем легковой, что на языке математики можно выразить так: разность расстояний, пройденных грузовым и легковым автомобилями, равна 10 км, и записать: 
Полученное уравнение и является математической моделью задачи на движение автомобилей. Построив математическую модель, мы свели задачу на движение к математической задаче — решить уравнение.
Кроме уравнений, есть и другие виды математических моделей, с которыми ми познакомимся в процессе изучения алгебры.
Интересно знать. История науки знает немало примеров, когда в рамках удачно построенной математической модели с помощью вычислений, как говорят, «на кончике пера», удавалось предвидеть существование новых физических объектов и явлений. Так, опираясь на математические модели, астрономы Дж. Адамс (Англия) в 1845 году и У. Леверье (Франция) в 1846 году независимо друг от друга пришли к выводу о существовании неизвестной тогда еще планеты и указали ее расположение на небе. По расчетам Леверье астроном Г. Галле (Германия) нашел эту планету. Ее назвали Нептуном.
Интересно знать
На протяжении многих столетий алгебра была наукой об уравнениях и способах их решения. Линейные уравнения умели решать еще древние египтяне и вавилоняне (1 тысячелетие до н. э.).
О состоянии математики в Древнем Египте свидетельствуют математические тексты, написанные на особой бумаге — папирусе, изготовленном из стеблей растения, которое имеет такое же название. Написание некоторых папирусов относят к XVIII в. до н. э., хотя описанные в них математические факты были известны древним египтянам задолго до их изложения.
Один из таких папирусов был найден в 1872 году в одной из египетских пирамид. Его приобрел английский коллекционер древностей Райнд, и сейчас >тот папирус — папирус Райнда — хранится в Лондоне.
В папирусе Райнда особое место занимают задачи на «аха» («хау»).
Это задачи, которые решаются с помощью линейных уравнений с одним нечестным. «Аха» («хау») означает «совокупность», «куча» (неизвестная величина). Пример такой задачи: «Куча. Ее




Более заметные успехи в создании начал алгебры были достигнуты в Древнем Вавилоне. До нашего времени сохранились вавилонские глиняные плитки с комбинациями клиновидных черточек — клинописью. Такие плитки имели в Вавилоне то же значение, что и папирусы в Египте. На плитках встречаются и и клинописные математические тексты, которые свидетельствуют, что уже более 4000 лет гому назад в Вавилоне могли решать уравнения, содержащие квадрат неизвестного.
Начиная с VII в. до н. э., древние греки после знакомства с достижениями египтян и вавилонян в сфере математики продолжили их науку. При этом достаточно мало греческих ученых при решении задач использовали уравнения. Одним из тех, кто использовал уравнения, был древнегреческий математик Диофант.
О Диофанте известно мало, даже точно не установлены годы его жизни. Кое-что о жизни Диофанта и о том, сколько он прожил лет, можно узнать из надписи на его могильной плите.
| Надпись на плите | Языком алгебры | 
| Путник! Здесь погребен Диофант. И числа поведать могут, о чудо, сколь долог был век его жизни. | ![]()  | 
| Часть шестую его представляло прекрасное детство. | ![]()  | 
| Двенадцатая часть протекла его жизни — покрылся пухом тогда подбородок. | ![]()  | 
| Седьмую в бездетном браке провел Диофант. | ![]()  | 
| Прошло пятилетие; он был осчастливлен рождением прекрасного первенца-сына, | 5 | 
| коему рок дал половину лишь жизни прекрасной и светлой на земле по сравнению с отцом. | ![]()  | 
| И в печали глубокой старец земного удела конец воспринял, переживши года четыре с тех пор, как сына лишился. | 4 | 
| Скажи, сколько лет жизни достигнув, смерть воспринял Диофант? | ![]()  | 
Греческую науку в Средневековье заимствовали ученые Востока — индийцы и арабы. Именно на Востоке в IX в. алгебра становится самостоятельной математической наукой.
Происхождение слова «алгебра» также связано с Востоком.
Город Багдад в VII-IX в. был столицей могущественного Арабского халифата. Багдадские халифы оказывали содействие развитию природоведения и математических наук. За годы правления халифа Гаруна аль-Рашида в Багдаде была оборудована большая библиотека, а халиф аль-Мамун организовал своеобразную академию — «Дом мудрости» и построил хорошо оборудованную обсерваторию.
При дворе аль-Мамуна жил и работал ученый Мухаммед бен Муса аль-Хорезми (около 780 — около 850). Он собрал и систематизировал способы решения уравнений и описал их в работе «Китаб аль-джебр аль-мукабала», что дословно означает «Книга о восстановлении и противопоставлении». В то время отрицательные числа считались «ненастоящими», и, когда в процессе решения уравнения в какой-то его части появлялось отрицательное число, его нужно было перенести в другую часть. Эту операцию называли восстановлением (аль-джебр), то есть переведением «ненастоящих» (отрицательных) чисел в «настоящие» (положительные). С помощью противопоставления (аль-мукабала) отбрасывали одинаковые слагаемые в обеих частях уравнения.
В XII в. сочинение аль-Хорезми перевели на латинский язык, сохранив в его названии только слово «аль-джебр», которое вскоре стали произносить как алгебра.
Постепенно сформировалась современная алгебра, которая охватывает не только теорию решения уравнений, а и способы проведения операций (действий) с разнообразными объектами (в частности, с числами).
- Целые выражения
 - Одночлены
 - Многочлены
 - Формулы сокращенного умножения
 - Отношения и пропорции
 - Рациональные числа и действия над ними
 - Делимость натуральных чисел
 - Выражения и уравнения
 
Уравнения с одной переменной
На предыдущих занятиях мы знакомились с выражениями, а также учились их упрощать и вычислять. Теперь переходим к более сложному и интересному, а именно к уравнениям.
Уравнение и его корни
Равенство, содержащие переменную (-ые) называются уравнениями . Решить уравнение , значит найти значение переменной, при котором равенство будет верным. Значение переменной называют корнем уравнения .
Уравнения могут иметь, как один корень, так и несколько или вообще ни одного.
При решении уравнений используются следующие свойства:
- если в уравнении перенести слагаемое из одной части уравнения в другую, поменяв при этом знак на противоположный, то получится уравнение равносильное данному.
 - если обе части уравнения умножить или разделить на одно и тоже число, то получится уравнение равносильное данному.
 
Пример №1 Какие из чисел: -2, -1, 0, 2, 3 являются корнями уравнения:
Чтобы решить данное задание необходимо просто поочередно подставить вместо переменной x каждое из чисел и выделить те числа, при которых равенство считается верным.
( 4=4 ) — равенство верное, значит (-2) — корень нашего уравнения
( 1=7 ) — равенство неверное, поэтому (-1) — не является корнем уравнения
( 0=10 ) — равенство неверное, поэтому 0 не является корнем уравнения
( 4=4 ) — равенство верное, значит 2 — корень нашего уравнения
( 9=1 ) — равенство неверное, поэтому 3 не является корнем уравнения
Ответ: из представленных чисел, корнями уравнения ( x^2=10-3x ) являются числа -2 и 2.
Линейное уравнение с одной переменной
Линейное уравнение с одной переменной — это уравнения вида ax = b, где x — переменная, а a и b — некоторые числа.
Существует большое количество видов уравнений, но решение многих из них сводится именно к решению линейных уравнений, поэтому знание этой темы обязательно для дальнейшего обучения!
Пример №2 Решить уравнение: 4(x+7) = 3-x
Для решения данного уравнения, в первую очередь, нужно избавиться от скобки, а для этого домножим на 4 каждое из слагаемых в скобке, получаем:
Теперь нужно перенести все значения с «х» в одну сторону, а все остальное в другую сторону (не забывая менять знак на противоположный), получаем:
Теперь вычитаем значение слева и справа:
Чтобы найти неизвестный множитель (х) нужно произведение (25) разделить на известный множитель (5):
Если сомневаетесь в ответе можно проверить, подставив полученное значение в наше уравнение вместо х:
8 = 8 — уравнение решено верно!
Решить теперь что-нибудь по-сложнее:
Пример №3 Найти корни уравнения: ( (y+4)-(y-4)=6y )
В первую очередь, также избавимся от скобок:
Сразу видим в левой части y и -y, а значит их можно просто вычеркнуть, а полученные числа просто сложить, и записать выражение:
Теперь можно перенести значения с «y» в левую сторону, а значения с числами в правую. Но ведь это не обязательно, ведь не важно с какой стороны находятся переменные, главное, чтобы они были без чисел, а значит, ничего переносить не будем. Но для тех кто не понял, то сделаем, как гласит правило и разделим обе части на (-1), как гласит свойство:
Чтобы найти неизвестный множитель нужно произведение разделить на известный множитель:
Также можно проверить ответ, но сделайте это самостоятельно.
Пример №4 ( (0,5x+1,2)-(3,6-4,5x)=(4,8-0,3x)+(10,5x+0,6) )
Теперь я просто решу, без объяснений, а вы посмотрите на ход решения и правильную запись решения уравнений:
Если что-то не понятно по ходу решения пишите в комментариях
Решение задач с помощью уравнений
Зная что такое уравнения и научившись их вычислять — вы также открываете себе доступ к решению множества задач, где для решения используются именно уравнения.
Не буду вдаваться в теорию, лучше показать все и сразу на примерах
Пример №5 В корзине было в 2 раза меньше яблок, чем в ящике. После того, как из корзины переложили в ящик 10 яблок, в ящике их стало в 5 раз больше, чем в корзине. Сколько яблок было в корзине, а сколько в ящике?
В первую очередь нужно определить, что мы примем за «х», в данной задаче можно принять и ящики, и корзины, но я возьму яблоки в корзине.
Значит, пусть в корзине было x яблок, так как в ящике яблок было в два раза больше, то возьмем это за 2х. После того, как из корзины яблоки переложили в ящик в корзине яблок стало: х — 10, а значит, в ящике стало — (2х + 10) яблок.
Теперь можно составить уравнение:
5(х-10) — в ящике стало в 5 раз больше яблок, чем в корзине.
Приравняем первое значение и второе:
2x+10 = 5(x-10) и решаем:
х = -60/-3 = 20 (яблок) — в корзине
Теперь, зная сколько яблок было в корзине, найдем сколько яблок было в ящике — так как их было в два раза больше, то просто результат умножим на 2:
2*20 = 40 (яблок) — в ящике
Ответ: в ящике — 40 яблок, а в корзине — 20 яблок.
Я понимаю, что многие из вас, возможно, не до конца разобрались в решении задач, но уверяю к этой теме мы вернемся и еще не раз на наших уроках, а пока если у вас остались вопросы — задавайте их в комментариях.
Под конец еще несколько примеров на решения уравнений
Пример №6 ( 2x — 0,7x = 0 )
Пример №7 ( 3p — 1 -(p+3) = 1 )
Пример №8 ( 6y-(y-1) = 4+5y )
( 0y=3 ) — корней нет, т.к. на ноль делить нельзя!
Всем спасибо за внимание. Если что-то непонятно спрашивайте в комментариях.
Уравнения с одной переменной
Уравнением с одной переменной — это равенство, содержащее только одну переменную. Корнем (или решением) уравнения называется такое значение переменной, при котором уравнение превращается в верное числовое равенство.
Содержание:
Определение уравнения. Корни уравнения
Равенство с переменной f(x) = g (х) называют уравнением с одной переменной х, если поставлена задача найти все те же значения х, при которых равенство с переменной обращается в верное числовое равенство. Всякое значение переменной, при котором выражения /(х) и g(x) принимают равные числовые значения, называют корнем уравнения.
Решить уравнение — это значит найти все его корни или доказать, что их нет.
Пример 1.
Уравнение 3 + х = 7 имеет единственный корень 4, так как при этом и только при этом значении переменной равенство 3 + х = 7 является верным.
Пример 2.
Уравнение (х — 1)(х — 2) = 0 имеет два корня: 1 и 2.
Пример 3.
Уравнение 
Заметим, что можно говорить и о мнимых корнях уравнений. Так, уравнение 

Равносильность уравнений
Уравнения, имеющие одни и те же корни, называют равносильными. Равносильными считаются и уравнения, каждое из которых не имеет корней.
Например, уравнения х + 2 = 5 и х + 5 = 8 равносильны, так как каждое из них имеет единственный корень — число 3. Равносильны и уравнения 
Уравнения 
В процессе решения уравнения его стараются заменить более простым, но равносильным данному. Поэтому важно знать, при каких преобразованиях данное уравнение переходит в равносильное ему уравнение.
Теорема 1.
Если в уравнении какое-нибудь слагаемое перенести из одной части в другую, изменив его знак, то получится уравнение, равносильное данному.
Например, уравнение 
Теорема 2.
Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.
Например, уравнение 

Линейные уравнения
Линейным уравнением с одной переменной х называют уравнение вида
где 


Для линейного уравнения 
1) 

2) 

3) 

Многие уравнения в результате преобразований сводятся к линейным.
Пример 1.
Решить уравнение 
Решение:
По теореме 1 (см. п. 135), данное уравнение равносильно уравнению 


Пример 2.
Решение:
Это уравнение сводится к линейному уравнению. Умножив обе части уравнения на 12 (наименьшее общее кратное знаменателей 3, 4, 6,12), получим
Квадратные уравнения
где 







Выражение 
В случае, когда D = О, иногда говорят, что квадратное уравнение имеет два одинаковых корня.
Используя обозначение 


Формула (3) особенно удобна, если 

Пример 1.
Решение:
Здесь 
Так как 
Итак, 

Пример 2.
Решить уравнение 
Решение:
Здесь 

Пример 3.
Решить уравнение 
Решение:
Здесь 
Рациональные уравнения
Уравнение f(x) = g(x) называют рациональным, если f(x) и g(x) — рациональные вьфажения. При этом если f(x) и g(x) — целые выражения, то уравнение называют целым; если же хотя бы одно из выражений f(х), g(x) является дробным, то рациональное уравнение f(x) = g(x) называют дробным.
Например, целыми являются линейные (см. п. 136), квадратные (см. п. 137) уравнения.
Чтобы решить рациональное уравнение, нужно:
1) найти общий знаменатель всех имеющихся дробей;
2) заменить данное уравнение целым, умножив обе его части на общий знаменатель;
3) решить полученное целое уравнение;
4) исключить из его корней те, которые обращают в нуль общий знаменатель.
Пример:
Решение:
Общим знаменателем имеющихся дробей является 2х(2 — х). Найдя дополнительные множители для каждой дроби, освободимся от знаменателей. Имеем:
Из уравнения 


Решение уравнения р(х) = 0 методом разложения его левой части на множители
Суть этого метода состоит в следующем. Пусть нужно решить уравнение р(х) = 0, где р(х) — многочлен степени 







Значит, 
Верно и обратное: если 



Итак, если 



Пример 1.
Решить уравнение 
Решение:
Разложим на множители левую часть уравнения. Имеем 
Значит, либо х + 2 = 0, либо 
Метод разложения на множители применим к любым уравнениям вида р(х) = 0, где р(х) необязательно многочлен. Пусть 



Пример 2.
Решить уравнение 
Решение:
Имеем 





Но х = -3 не удовлетворяет исходному уравнению, так как при этом значении не определено выражение 
Итак, уравнение имеет два корня: 3; 0.
Решение уравнений методом введения новой переменной
Суть этого метода поясним на примерах.
Пример 1.
Решение:
Положив 
откуда находим 
Первое квадратное уравнение не имеет действительных корней, так как его дискриминант отрицателен.
Из второго квадратного уравнения находим 
Пример 2.
Решение:
Положим 
и уравнение примет вид
Решив это уравнение (см. п. 145), получим
Но 
Из первого уравнения находим 



Биквадратные уравнения
Биквадратным уравнением называют уравнение вида
Биквадратное уравнение решается методом введения новой переменной: положив 
Пример:
Решить уравнение 
Решение:
Положив 




Решение задач с помощью составления уравнений
С помощью уравнений решаются многочисленные задачи, к которым приводят самые разнообразные вопросы физики, механики, экономики и т. д. Прежде всего напомним общий порядок решения задач с помощью уравнений.
1) Вводят переменные, т. е. буквами х, у, z обозначают неизвестные величины, которые либо требуется найти в задаче, либо они необходимы для отыскания искомых величин.
2) С помощью введенных переменных и данных в задаче чисел и их соотношений составляют систему уравнений (или одно уравнение).
3) Решают составленную систему уравнений (или уравнение) и из полученных решений отбирают те, которые подходят по смыслу задачи.
4) Если буквами х, у, z обозначили не искомые величины, то с помощью полученных решений находят ответ на вопрос задачи.
Задача 1.
Для перевозки 60 т груза из одного места в другое затребовали некоторое количество машин. Ввиду неисправности дороги на каждую машину пришлось грузить на 0,5 т меньше, чем предполагалось, поэтому дополнительно потребовались 4 машины. Какое количество машин было затребовано первоначально?
Решение: Обозначим через х количество машин, затребованных первоначально. Тогда на самом деле было вызвано (х + 4) машин. Так как надо было перевезти 60 т груза, то предполагалось, что на одну машину будут грузить 

Это уравнение имеет два корня: х = -24, х = 20. Ясно, что по смыслу задачи значение х = —24 не подходит. Таким образом, первоначально было затребовано 20 машин.
Задача 2.
Моторная лодка, движущаяся со скоростью 20 км/ч, прошла расстояние между двумя пунктами по реке туда и обратно без остановок за 6 ч 15 мин. Расстояние между пунктами равно 60 км. Найти скорость течения реки.
Решение:
Пусть х км/ч — скорость течения реки. Тогда лодка, собственная скорость которой 20 км/ч, идет по течению со скоростью (20 + х) км/ч, а против течения — со скоростью (20 — х) км/ч. Время, за которое лодка пройдет путь между пунктами по течению, составит 


решив которое, находим два корня: х = 4, х = -4. Ясно, что значение х = -4 не подходит по смыслу задачи. Итак, скорость течения реки равна 4 км/ч.
Задача 3.
Найти двузначное число, зная, что цифра его единиц на 2 больше цифры десятков и что произведение искомого числа на сумму его цифр равно 144.
Решение:
Напомним, что любое двузначное число может быть записано в виде 10х + у, где х — цифра десятков, а у — цифра единиц. Согласно условию, если х — цифра десятков, то цифра единиц равна х + 2 и мы получаем
Решив это уравнение, найдем 
Второй корень не подходит по смыслу задачи.
Итак, цифра десятков равна 2, цифра единиц равна 4; значит, искомое число равно 24.
Задача 4.
Двое рабочих, работая вместе, выполнили некоторую работу за 6 ч. Первый из них, работая отдельно, может выполнить всю работу на 5 ч скорее, чем второй рабочий, если последний будет работать отдельно. За сколько часов каждый из них, работая отдельно, может выполнить всю работу?
Решение:
Производительность труда, т. е. часть работы, выполняемая в единицу времени (обозначим ее через А), и время, необходимое для выполнения всей работы (обозначим его через t), — взаимно обратные величины, т. е. At = 1. Поэтому если обозначить через х ч время, необходимое для выполнения всей работы первому рабочему, а через (х + 5) ч — второму, то часть работы, выполняемая первым рабочим за 1 ч, равна 



решив которое, найдем х = 10.
Итак, первый рабочий может выполнить всю работу за 10 ч, а второй — за 15 ч.
Задача 5.
Из сосуда емкостью 54 л, наполненного кислотой, вылили несколько литров и долили сосуд водой, потом опять вылили столько же литров смеси. Тогда в оставшейся в сосуде смеси оказалось 24 л чистой кислоты. Сколько кислоты вылили в первый раз?
Решение:
Пусть в первый раз было вылито х л кислоты. Тогда в сосуде осталось (54 — х) л кислоты. Долив сосуд водой, получили 54 л смеси, в которой растворилось (54 — х) л кислоты. Значит, в 1 л смеси содержится 


за два раза вылито 54 — 24 = 30 л кислоты. В результате приходим к уравнению
Решив это уравнение, найдем два корня: 

Итак, в первый раз было вылито 18 л кислоты.
Задача 6.
Имеется кусок сплава меди с оловом массой 12 кг, содержащий 45% меди. Сколько чистого олова надо прибавить к этому куску, чтобы получившийся новый сплав содержал 40% меди?
Решение:
Пусть масса добавленного олова составляет х кг. Тогда получится сплав массой (12 + х) кг, содержащий 40% меди. Значит, в новом сплаве имеется 0,4(12 + х) кг меди. Исходный сплав массой 12 кг содержал 45% меди, т. е. меди в нем было 
Решив это уравнение, получим х = 1,5. Таким образом, к исходному сплаву надо добавить 1,5 кг олова.
Задача 7.
Имеется сталь двух сортов с содержанием никеля 5% и 40%. Сколько стали того и другого сорта надо взять, чтобы после переплавки получить 140 т стали с содержанием никеля 30% ?
Решение:
Пусть масса стали первого сорта равна х т, тогда стали второго сорта надо взять (140 — х) т. Содержание никеля в стали первого сорта составляет 5%; значит, в х т стали первого сорта содержится 0,05л; т никеля. Содержание никеля в стали второго сорта составляет 40%; значит, в (140 — х) т стеши второго сорта содержится 0,4 (140 — х) т никеля. По условию после соединения взятых двух сортов должно получиться 140 т стали с 30% -ным содержанием никеля, т. е. после переплавки в полученной стали должно быть 0,3 * 140 т никеля. Но это количество никеля складывается из 0,05л; т, содержащихся в стали первого сорта, и из 0,4 (140 — х) т, содержащихся в стали второго сорта. Таким образом, приходим к уравнению
0,05х + 0,4 (140 — х) = 0,3 * 140,
из которого находим х = 40. Следовательно, надо взять 40 т стали с 5% -ным и 100 т стали с 40% -ным содержанием никеля.
Иррациональные уравнения
Иррациональным называют уравнение, в котором переменная содержится под знаком радикала или под знаком возведения в дробную степень. Например, иррациональными являются уравнения 
Используются два основных метода решения иррациональных уравнений:
1) метод возведения обеих частей уравнения в одну и ту же степень;
2) метод введения новых переменных (см. п. 147).
Метод возведения обеих частей уравнения в одну
и ту же степень состоит в следующем:
а) преобразуют заданное иррациональное уравнение к виду
б) возводят обе части полученного уравнения в п-ю степень:
в) учитывая, что 
г) решают уравнение и, в случае четного п, делают проверку, так как возведение обеих частей уравнения в одну и ту же четную степень может привести к появлению посторонних корней (см. п. 142). Эта проверка чаще всего осуществляется с помощью подстановки найденных значений переменной в исходное уравнение.
Пример 1.
Решить уравнение 
Решение:
Возведем обе части уравнения в шестую степень; получим х — 3 = 64, откуда х = 67.
Проверка:
Подставив 67 вместо х в данное уравнение, получим 
Ответ: 67.
Пример 2.
Решение:
Преобразуем уравнение к виду
и возведем обе части его в квадрат. Получим
Еще раз возведем обе части уравнения в квадрат:
откуда 
Проверка:
1) При х = 5 имеем
 
Таким образом, х = 5 является корнем заданного уравнения.
2) При х = 197 имеем 
Ответ: 5.
Пример 3.
Решение:
Применим метод введения новой переменной.
Положим 

Теперь задача свелась к решению совокупности уравнений
Возведя обе части уравнения 
Уравнение 
Ответ: 34.
Показательные уравнения
Показательное уравнение вида
где 
Имеются два основных метода решения показательных уравнений:
1) метод уравнивания показателей, т. е. преобразование заданного уравнения к виду 
2) метод введения новой переменной.
Пример 1.
Решить уравнение 
Решение:
Данное уравнение равносильно уравнению 


Пример 2.
Решение:
Приведем все степени к одному основанию 




Пример 3.
Решить уравнение 
Решение:
Применим метод введения новой переменной. Так как 
Введем новую переменную, положив 


Из первого уравнения находим х = 2. Второе уравнение не имеет корней, так как 
Ответ: 2.
Логарифмические уравнения
Чтобы решить логарифмическое уравнение вида
где 
1) решить уравнение f(x) = g(x);
2) из найденных корней отобрать те, которые удовлетворяют неравенствам f(x) > 0 и g(x) > 0; остальные корни уравнения f(x) = g(x) являются посторонними для уравнения (1).
Имеются два основных метода решения логарифмических уравнений:
1) метод, заключающийся в преобразовании уравнения к виду 
2) метод введения новой переменной.
Пример 1.
Решение:
Перейдем от заданного уравнения к уравнению 


Ответ: -3.
Пример 2.
Решение:
Воспользовавшись тем, что сумма логарифмов равна логарифму произведения (см. п. 120), преобразуем уравнение к виду
Из последнего уравнения находим 
Осталось сделать проверку. Ее можно выполнить с помощью системы неравенств
Подставив поочередно найденные значения -1 и -5,5 в эти неравенства, убеждаемся, что -1 удовлетворяет всем неравенствам, а -5,5 — нет, например при этом значении не выполняется первое неравенство. Значит, -5,5 — посторонний корень.
Ответ: -1.
Пример 3.
Решение:
Так как 

Введем новую переменную, положив 
Но 

Ответ: 4.
Примеры решения показательно-логарифмических уравнений
Пример 1.
Решение:
Область определения уравнения: х > 0. При этом условии выражения, входящие в обе части уравнения (1), принимают только положительные значения. Прологарифмировав обе части уравнения (1) по основанию 10, получим уравнение
равносильное уравнению (1). Далее имеем 
Полагая 




Здесь применен метод логарифмирования, заключающийся в переходе от уравнения f(x) = g(x) к уравнению
Пример 2.
 
Решение:
Воспользовавшись определением логарифма, преобразуем уравнение (2) к виду
Полагая 

Теперь задача сводится к решению совокупности уравнений
Так как 
если 



Итак, если 






Пример 3.
При каких значениях параметра 
имеет два различных отрицательных корня?
Решение:
Так как уравнение должно иметь два различных действительных корня 
Значит, должно выполняться неравенство 
По теореме Виета для заданного уравнения имеем
Так как, по условию, 

В итоге мы приходим к системе неравенств (см. п. 177):
Из первого неравенства системы находим (см. п. 180, 183) 



Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:
Смотрите также дополнительные лекции по предмету «Математика»:
Присылайте задания в любое время дня и ночи в ➔ 
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
6.5.1. Линейное уравнение с одной переменной
У очень многих школьников возникает вопрос — как решить уравнение с x. Что значит решить уравнение и как найти корень уравнения. Давайте рассмотрим основную схему решения обычного уравнения, называемого линейным, с одной переменной.
Правила и определения
Основные правила и определения для линейного уравнения с одной переменной.
- Равенство с переменной называют уравнением.
 - Решить уравнение – значит найти множество его корней. Уравнение может иметь один, два, несколько, множество корней или не иметь их вовсе.
 - Каждое значение переменной, при котором данное уравнение превращается в верное равенство, называется корнем уравнения.
 - Уравнения, имеющие одни и те же корни, называются равносильными уравнениями.
 - Любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
 - Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.
 
Примеры. Решить уравнение.
Уравнение 1
- 1,5х-0,3х = -2-4. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
 - 1,2х = -6. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).
 - х = -6 : 1,2. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.
 - х = -5. Делили по правилу деления десятичной дроби на десятичную дробь:
 - чтобы разделить число на десятичную дробь, нужно перенести запятые в делимом и делителе на столько цифр вправо, сколько их стоит после запятой в делителе, а затем выполнить деление на натуральное число: 6 : 1,2 = 60 : 12 = 5.
 
Ответ: 5.
Уравнение 2
3∙(2х-9) = 4∙(х-4).
- 6х-27 = 4х-16. Раскрыли скобки, используя распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно отдельно уменьшаемое и отдельно вычитаемое умножить на третье число, а затем из первого результата вычесть второй результат, т.е. (a-b) ∙ c = a ∙ c-b ∙ c.
 - 6х-4х = -16+27. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
 - 2х = 11. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).
 - х = 11 : 2. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.
 
Ответ: 5,5.
Уравнение 3
- 7х-3-2х = х-9. Раскрыли скобки по правилу раскрытия скобок, перед которыми стоит знак «-»: если перед скобками стоит знак «-», то убираем скобки, знак «-» и записываем слагаемые, стоявшие в скобках, с противоположными знаками.
 - 7х-2х-х = -9+3. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
 - 4х = -6. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).
 - х = -6 : 4. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.
 
Ответ: -1,5.
Уравнение 4
- 3 ∙ (х-5) = 7 ∙ 12 — 4 ∙ (2х-11). Умножили обе части равенства на 12 – наименьший общий знаменатель для знаменателей данных дробей.
 - 3х-15 = 84-8х+44. Раскрыли скобки, используя распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно отдельно уменьшаемое и отдельно вычитаемое умножить на третье число, а затем из первого результата вычесть второй результат, т.е. (a-b) ∙ c = a ∙ c-b ∙ c.
 - 3х+8х = 84+44+15. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
 - 11х = 143. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).
 - х = 143 : 11. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.
 
Ответ: 13.
Уравнения для самостоятельного решения
Решить самостоятельно уравнения:
а) 3-2,6х = 5х+1,48;
б) 1,6 · (х+5) = 4 · (4,5-0,6х);
в) 9х- (6х+2,5) = — (х-5,5);
5а) 0,2; 5б) 2,5; 5в) 2; 5г) -1.
Важные выводы
Итак, для того, чтобы решить уравнение — надо определить его переменную, перенести неизвестную переменную в левую часть уравнения, а известные — в праву. При необходимости упростить левую и правую части и затем найти корень уравнения.
http://natalibrilenova.ru/uravneniya-s-odnoj-peremennoj/
http://mathematics-repetition.com/reshit-uravnenie-kak-nayti-koren-uravneniya/






































































































































































































































































































































 — единственный корень
 и 

























