Как найти корень уравнения часть в

Как извлечь корень из обеих частей уравнения

Решите уравнение методом возведения обеих частей в одну и ту же степень.

Нам нужно решить иррациональное уравнение (см. что такое иррациональное уравнение). Метод решения нам указан. Общая схема действий по указанному методу возведения обеих частей уравнения в одну и ту же степень выглядит так:

  • Осуществляется переход к уравнению, которое проще исходного в том смысле, что его проще решить. Для этого столько раз, сколько необходимо, последовательно выполняются следующие действия:
    • Уединяется радикал.
    • Выполняется возведение обеих частей уравнения в одну и ту же степень.
    • Упрощается полученное уравнение.
  • Дальше решается полученное уравнение.
  • Если на первом этапе проводилось возведение обеих частей в четную степень, то выполняется проверка для отсеивания посторонних корней.

Пройдем первый этап. Для этого выполним тройку действий — уединение радикала, возведение в степень, упрощение – первый раз.

Уединять радикал нам не нужно, так как в заданном уравнении радикал уже уединен (в левой части уравнения стоит только корень). Переходим к возведению в степень обеих частей уравнения.

Возводим обе части уравнения в квадрат (степени корней равны двум, поэтому для дальнейшего освобождения от корней возводим именно в квадрат), имеем .

Теперь упрощаем вид полученного уравнения, осуществляя преобразования уравнений. Первым преобразованием будет замена выражений в левой и правой части тождественно равными им выражениями. Из определения корня следует, что выражение в левой части тождественно равно 9−x 2 , а выражение в правой части тождественно равно x+9 . Учитывая это, переходим к уравнению 9−x 2 =x+9 . И еще упростим его вид:
9−x 2 −(x+9)=0 ,
9−x 2 −x−9=0 ,
−x 2 −x=0 ,
x 2 +x=0 .

В последующих прохождениях тройки действий – уединение радикала, возведение в степень, упрощение – нет необходимости, так как мы уже получили довольно простое для решения уравнение, и на этом первый этап можно считать завершенным.

Переходим ко второму этапу метода возведения обеих частей иррационального уравнения в одну и ту же степень – к решению полученного уравнения. Для нахождения корней уравнения x 2 +x=0 , а это неполное квадратное уравнение, представляем его левую часть в виде произведения, то есть, переходим к уравнению x·(x+1)=0 , откуда видим, что x=0 или x+1=0 , откуда x1=0 , x2=−1 . Итак, уравнение, полученное на первом этапе, решено, оно имеет два корня x1=0 , x2=−1 . На этом второй этап завершен, переходим к последнему – третьему этапу.

Третий этап – это отсеивание посторонних корней. В нашем случае – это обязательное мероприятие. Действительно, мы прибегали к возведению обеих частей уравнения в одну и ту же четную степень, а, как известно, это преобразование приводит к уравнению-следствию. Более того, при переходе от уравнения к уравнению 9−x 2 −(x+9)=0 расширилась ОДЗ, что также могло привести к появлению посторонних корней. Итак, нам нужно отсеять посторонние корни. Сделаем это через проверку подстановкой, то есть, подставим найденные корни x1=0 , x2=−1 в исходное уравнение и посмотрим, дает ли это верные числовые равенства:

Таким образом, иррациональное уравнение имеет два корня 0 и −1 .

Приведем компактную запись решения:

Основные методы решения уравнений

Что такое решение уравнения?

Тождественное преобразование. Основные

виды тождественных преобразований.

Посторонний корень. Потеря корня.

Решение уравнения – это процесс, состоящий в основном в замене заданного уравнения другим уравнением, ему равносильным . Такая замена называется тождественным преобразованием . Основные тождественные преобразования следующие:

Замена одного выражения другим, тождественно равным ему. Например, уравнение ( 3x+ 2 ) 2 = 15x+10 можно заменить следующим равносильным: 9 x 2 + 12x + 4 = 15x + 10 .

Перенос членов уравнения из одной стороны в другую с обратными знаками. Так, в предыдущем уравнении мы можем перенести все его члены из правой части в левую со знаком « – »: 9 x 2 + 12x + 4 15x – 10 = 0, после чего полу чим: 9 x 2 3x – 6 = 0 .

Умножение или деление обеих частей уравнения на одно и то же выражение (число), отличное от нуля. Это очень важно, так как новое уравнение может не быть равносильным предыдущему, если выражение, на которое мы умножаем или делим, может быть равно нулю.

П р и м е р . Уравнение x – 1 = 0 имеет единственный корень x = 1.

Умножив обе его части на x – 3 , мы получим уравнение

( x – 1 )( x – 3 ) = 0, у которого два корня: x = 1 и x = 3.

Последнее значение не является корнем заданного уравнения

x – 1 = 0. Это так называемый посторонний корень.

И наоборот, деление может привести к потере корня. Так

в нашем случае, если ( x – 1 )( x – 3 ) = 0 является исходным

уравнением, то корень x = 3 будет потерян при делении

обеих частей уравнения на x – 3 .

В последнем уравнении (п.2) мы можем разделить все его члены на 3 (не ноль!) и окончательно получим:

Это уравнение равносильно исходному:

( 3x+ 2 ) 2 = 15x + 10 . 4.

Можно возвести обе части уравнения в нечётную степень или извлечь и з обеих частей уравнения корень нечётной степени . Необходимо помнить, что:

а) возведение в чётную степень может привести к приобретению посторонних корней ;

б) неправильное извлечение корня чётной степени может привести к потере корней.

П р и м е р ы . Уравнение 7 x = 35 имеет единственный корень x = 5 .

Возведя обе части этого уравнения в квадрат, получим

имеющее два корня: x = 5 и x = 5. Последнее значение

является посторонним корнем.

Неправильное извлечение квадратного корня из обеих

частей уравнения 49 x 2 = 1225 даёт в результате 7 x = 35,

и мы теряем корень x = 5.

Правильное извлечение квадратного корня приводит к

уравнению: | 7 x | = 35, а следовательно, к двум случаям:

1) 7 x = 35, тогда x = 5 ; 2) 7 x = 35, тогда x = 5 .

Следовательно, при правильном извлечении квадратного

корня мы не теряем корней уравнения.

Что значит правильно извлечь корень? Здесь мы встречаемся

с очень важным понятием арифметического корня

Copyright © 2004 — 2012 Др. Юрий Беренгард. All rights reserved.

Как извлечь корень из обеих частей уравнения

Ключевые слова: решение уравнения, тождественное преобразование, тождественные преобразования, посторонний корень, потеря корня.

Решение уравнения это процесс, состоящий в основном в замене заданного уравнения другим уравнением, ему равносильным . Такая замена называется тождественным преобразованием .

Основные тождественные преобразования:

Замена одного выражения другим, тождественно равным ему. Например, уравнение ( 3x+ 2 ) 2 = 15x+10 можно заменить следующим равносильным: 9x 2 + 12x + 4 = 15x + 10

Перенос членов уравнения из одной стороны в другую с обратными знаками. Так, в предыдущем уравнении мы можем перенести все его члены из правой части в левую со знаком « – »: 9x 2 + 12x + 4 15x – 10 = 0, после чего полу чим: 9x 2 3x – 6 = 0 .

Умножение или деление обеих частей уравнения на одно и то же выражение (число), отличное от нуля. Это очень важно, так как новое уравнение может не быть равносильным предыдущему, если выражение, на которое мы умножаем или делим, может быть равно нулю. Уравнение x – 1 = 0 имеет единственный корень x = 1. Умножив обе его части на x – 3 , мы получим уравнение ( x – 1 )( x – 3 ) = 0, у которого два корня: x = 1 и x = 3. Последнее значение не является корнем заданного уравнения x – 1 = 0. Это так называемый посторонний корень. И наоборот, деление может привести к потере корня. Так, если ( x – 1 )( x – 3 ) = 0 является исходным уравнением, то корень x = 3 будет потерян при делении обеих частей уравнения на x – 3 .

Можно возвести обе части уравнения в нечетную степень или извлечь и з обеих частей уравнения корень нечетной степени . Необходимо помнить, что: а) возведение в четную степень может привести к приобретению посторонних корней ; б) неправильное извлечение корня четной степени может привести к потере корней.

Уравнение 7 x = 35 имеет единственный корень x = 5 . Возведя обе части этого уравнения в квадрат, получим уравнение: 49 x 2 = 1225 ,
имеющее два корня: x = 5 и x = 5. Последнее значение является посторонним корнем. Неправильное извлечение квадратного корня из обеих
частей уравнения 49 x 2 = 1225 даёт в результате 7 x = 35,и мы теряем корень x = 5. Правильное извлечение квадратного корня приводит к
уравнению: | 7 x | = 35, а следовательно, к двум случаям: 1) 7 x = 35, тогда x = 5 ; 2) 7 x = 35, тогда x = 5 .Следовательно, при правильном извлечении квадратного корня мы не теряем корней уравнения.

Пример. Решите уравнение $$sqrt-x> + sqrt<2 — x — x^<2>> = sqrt — 1$$

Решение. В этом примере наоборот сложно его решение. Однако поиск ОДЗ приносит несомненную пользу.
В самом деле, ОДЗ: $$left< begin
x^2 — x ge 0 \
2 — x — x^2 ge 0 \
x ge 0
end right., Leftrightarrow left< begin
x in left( < — infty ;0>right] cup left[ <1; + infty >right) \
x in left[ < — 2;1>right] \
x in left[ <0; + infty >right)
end right., Leftrightarrow left[ begin
x = 0 \
x = 1
end right.$$

Значит, ОДЗ нашего уравнения содержит только два числа. А поскольку вне ОДЗ решений быть не может, то корнями нашего уравнения могут быть только эти два числа. Для того чтобы понять, какое из них действительно является решением, нужно полученные числа подставить в уравнение. Подстановка даёт, что x = 0 не является решением уравнения, а x = 1 − является.

Ответ. 1.

Таким образом, к понятию ОДЗ нужно относиться творчески и искать его, только если в этом возникает существенная необходимость. Так, например, в равносильном переходе $$sqrt = g(x), Leftrightarrow left< begin
g(x) ge 0, \
f(x) = g^2 (x)
end right.$$

требование g ( x ) ? 0 задает ОДЗ. Однако, если искать g ( x ) очень сложно, то проще подставить найденные корни в исходное уравнение, чем выяснять, при каких x выполнено неравенство g ( x ) ? 0.

источники:

http://www.bymath.net/studyguide/alg/sec/alg12.html

http://uztest.ru/abstracts/?idabstract=463907

Решение квадратных уравнений

6 июля 2011

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

Дискриминант

Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x2 − 8x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. x2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 32 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Формула корней квадратного уравнения

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

Задача. Решить квадратные уравнения:

  1. x2 − 2x − 3 = 0;
  2. 15 − 2xx2 = 0;
  3. x2 + 12x + 36 = 0.

Первое уравнение:
x2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2)2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Решение простого квадратного уравнения

Второе уравнение:
15 − 2xx2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2)2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

[begin{align} & {{x}_{1}}=frac{2+sqrt{64}}{2cdot left( -1 right)}=-5; \ & {{x}_{2}}=frac{2-sqrt{64}}{2cdot left( -1 right)}=3. \ end{align}]

Наконец, третье уравнение:
x2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 122 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

[x=frac{-12+sqrt{0}}{2cdot 1}=-6]

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x2 + 9x = 0;
  2. x2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax2 + c = 0. Немного преобразуем его:

Решение неполного квадратного уравнения

Решение неполного квадратного уравнения

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c/a) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax2 + c = 0 выполнено неравенство (−c/a) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c/a) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c/a) ≥ 0. Достаточно выразить величину x2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Разложение уравнения на множители

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x2 − 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 − 9 = 0.

x2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x1 = 0; x2 = −(−7)/1 = 7.

5x2 + 30 = 0 ⇒ 5x2 = −30 ⇒ x2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x2 − 9 = 0 ⇒ 4x2 = 9 ⇒ x2 = 9/4 ⇒ x1 = 3/2 = 1,5; x2 = −1,5.

Смотрите также:

  1. Теорема Виета
  2. Следствия из теоремы Виета
  3. Тест на тему «Значащая часть числа»
  4. Метод коэффициентов, часть 1
  5. Однородные тригонометрические уравнения: общая схема решения
  6. Задача B4: строительные бригады

Математика

6 класс

Урок №50

Уравнения.Часть 2

Перечень рассматриваемых вопросов:

– уравнения;

– корни уравнений.

Тезаурус

Уравнение – равенство содержащее букву, значение которой надо найти.

Решить уравнение – значит найти все его корни.

Корнем уравнения называют такое число, при подстановке которого в уравнение вместо неизвестного, получается верное числовое равенство.

Список литературы

Обязательная литература:

1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017, стр. 258.

Дополнительная литература:

1. Чулков П. В. Математика: тематические тесты.5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина – М.: Просвещение, 2009, стр. 142.

2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин – М.: Просвещение, 2014, стр. 95.

Теоретический материал для самостоятельного изучения

Как решаются уравнения? Чем уравнение отличается от буквенного выражения? На эти и другие вопросы, связанные с уравнениями, мы сегодня и будем отвечать.

Дадим определение уравнению. Уравнением называют равенство, содержащее букву, значение которой надо найти.

Например, 2х – 5=17.

Решить уравнение – значит найти все его корни.

В нашем случае x=11.

Корнем уравнения называют такое число, при подстановке которого в уравнение вместо неизвестного, получается верное числовое равенство.

Подставим в уравнение корень

2 ∙ 11 – 5 = 17,

17 = 17.

Получается, что левая и правая части равны семнадцати.

При решении уравнений можно использовать следующие приёмы:

– переносить числа из одной части уравнения в другую, меняя их знак на противоположный.

– делить или умножать обе части уравнения на одно и тоже число отличное от нуля.

Решим уравнение:

2х + 7 = – 3х – 8.

Равенство не изменится, если к обеим частям уравнения прибавить по числу три икс:

2х + 3х + 7 = – 8.

Перенесём число 7 из левой части в правую часть уравнения с противоположным знаком:

2х + 3х = – 8 – 7.

Применим распределительный закон для правой части:

(2 + 3)х = – 8 – 7.

Упростим левую и правую части уравнения:

5х = – 15.

Равенство не изменится, если обе части уравнения разделить на 5:

x = – 15 : 5.

Корень уравнения:

х = – 3.

Ответ: х = – 3.

Проверка:

2х + 7 = – 3х – 8,

х = – 3,

2 ∙ (– 3) + 7 = – 3 ∙ (– 3) – 8,

– 6 + 7 = 9 – 8,

1 = 1.

Значит, корень уравнения найден верно.

Решим уравнение:

1/2 x+3=-8.

Перенесём число 3 в правую часть уравнения с противоположным знаком:

Где используются уравнения?

Ответ на этот вопрос достаточно прост. Уравнения используются практически везде. В школе мы решаем с помощью уравнений текстовые задачи. В окружающем нас мире все природные и жизненные процессы протекают по определённым закономерностям, большинство из которых можно описать с помощью уравнений. Например, если нужно определить во сколько должен выехать автомобиль, чтобы прибыть вовремя из пункта А в пункт В, необходимо использовать уравнения движения. Для точного расчёта затрат и прибыли на предприятиях используют экономические уравнения. В медицине для обработки данных ультразвуковых исследований организма тоже используются уравнения.

Итак, уравнения – это универсальный инструмент для решения самых разных прикладных задач.

Разбор заданий тренировочного модуля

Тип 1.Найдите корни уравнения.

2х – х – 5= – 18

Решение.

Перенесём – 5 в правую часть уравнения с противоположным знаком:

2х – х= – 18 + 5.

Вычислим отдельно левую и правую части уравнения.

x= – 13.

Это и есть корень уравнения.

Ответ: х= – 13.

Тип 2. Будет ли являться корнем данного уравнения число 7?

x+6= 17 – 2х

Решение.

Чтобы выполнить данное задание нужно подставить число 7 вместо неизвестного х и проверить, будут лиравны правая и левая части уравнения. Если будут равны, то число является корнем уравнения, если правая и левая части уравнения не равны, то число не является корнем уравнения.

Получаем

7+6=17 – 2 • 7

13= 17 – 14

13 ≠ 3

Видно, что при подстановке в уравнение числа 7 верное равенство не получилось. Следовательно, число 7не является корнем уравнения.

Что такое иррациональные уравнения?

Не секрет же, что большинство чисел можно представить в виде обыкновенной дроби с натуральными числами в числителе и знаменателе?

Например, число 7 – это (frac{21}{3})

Иррациональные числа не такие. Их невозможно представить в виде дроби. Они странные.

Гиппас создал античным математикам множество проблем: их теории о том, что все в мире соизмеримо целым числам, рушились одна за другой. И они боялись.

Но мы будем смелыми 🙂

Сначала разберемся, что такое рациональные уравнения, а потом научимся находить решение иррациональных уравнений.

Итак, что из себя представляют рациональные уравнения, а что – иррациональные:

  • ( 3cdot (x+1)=x) – как думаешь, какое это? Тут сложение, умножение, нет корней, и степеней никаких – рациональное!
  • ( 3cdot (x+1)=sqrt{x}) – вот тебе и корень из переменной, значит уравнение НЕ рациональное (или иррациональное);
  • ( 3cdot (x+1)=frac{1}{x}) – а это – рациональное;
  • ( 3cdot (x+1)={{x}^{2}}) – тут вот степень, но она с целым показателем степени (( 2)– целое число) – значит, это тоже рациональное уравнение;
  • ( 3cdot (x+1)={{x}^{-1}}) – даже уравнение с отрицательным показателем степени тоже является рациональным, ведь, по сути, ( {{x}^{-1}}) – это ( frac{1}{x});
  • ( 3cdot (x+1)={{x}^{0}}) – тоже рациональное, т.к. ( {{x}^{0}}=1);
  • ( 3cdot (x+1)={{x}^{frac{1}{2}}}) – а с ним поосторожнее, степень-то дробная, а по свойству корней ( {{x}^{frac{1}{2}}}=sqrt{x}), как ты помнишь, корня в рациональных уравнениях не бывает.

Надеюсь, теперь ты сможешь различить, к какому виду относится то или иное уравнение.

Дадим oпределение:

Иррациональными уравнениями называются уравнения, в которых переменная содержится под знаком корня или знаком возведения в дробную степень. 

А вот как это выглядит: ( sqrt{x}); ( {{x}^{frac{1}{3}}}).

Но только отличать рациональное от иррационального недостаточно, тебе же решать их надо! Вся сложность в корнях, так?

Так избавься от них, вот и все дела!

Если еще не догадался, как, то я подскажу: просто возведи в нужную степень обе части уравнения, а потом решай его как простое рациональное уравнение.

Но проверяй все корни! Позже ты поймешь, почему делать это необходимо.

Как рациональные уравнения решать помнишь? Если забыл, то советую почитать «Рациональные уравнения».

Если читать лень, напомню вкратце. Для верного решения рациональных уравнений, ты должен придерживаться следующего алгоритма:

Пример №3

( sqrt{12-x}=x)

После возведения обеих частей в квадрат имеем:

( 12-x={{x}^{2}}), упрощаем и решаем квадратное уравнение по теореме Виета

( {{x}^{2}}+{x}-12=0)

( left[ begin{array}{l}{{x}_{1}}=3\{{x}_{2}}=-4end{array} right.)

У нас два корня, пробуем их подставить в исходное для проверки.

Подставляем ( 3), ( sqrt{9}=3), ( 3=3) – подходит.

Подставим ( -4), получим ( sqrt{16}=-4)…

Но ведь ( 4ne -4)! Что же получается, ( -4) – посторонний корень.

Заговор какой-то!

Думаю, интрига затянулась, настало время объяснить, почему получаются какие-то посторонние корни.

Опять объяснять буду на примере:

( -2ne 2), но если мы возведем в квадрат обе части, ( {{(-2)}^{2}}={{(2)}^{2}}), ( 4=4).

Ну как тебе фокус? 🙂

То же самое получается и в нашем примере с иррациональным уравнением, в результате преобразования мы можем найти все корни, но могут примешаться и посторонние.

Их надо отфильтровать проверкой, проверив, будет ли соблюдаться равенство исходного уравнения при их подстановке.

А если взять не вторую, а третью степень:

( {{(-2)}^{3}}ne {{(2)}^{3}})

( -8ne 8)

Пример №4 (метод уединения радикала)

( sqrt{2x+1}+sqrt{x}=1)

В этом примере есть два подкоренных выражения и число ( 1).

Чтобы избавиться от корня, нужно обе части возвести в квадрат, но, прежде чем сделать это, перенесем ( sqrt{x}) в правую часть. 

( sqrt{2x+1}=1-sqrt{x})

«Зачем?» –  спросишь ты.

Дело в том, что, если возводить в квадрат в таком виде, упрощать придется дольше, не веришь – попробуй сам, а я, пожалуй, избавлю себя от расписывания этого 🙂

Теперь возводим в квадрат обе части и упрощаем.

( sqrt{2x+1}=1-sqrt{x})

( 2x+1=1-2sqrt{x}+x)

( x=-2sqrt{x})

Понял, в чем сложность?

Этот метод решения математики называют «метод уединения радикала».

Радикал (выражение с корнем) надо уединить в одной стороне уравнения. Но уединять и возводить в степень придется не один раз.

Чтобы избавиться от корней и получить нормальное (рациональное 🙂 ) уравнение, придется выполнять множество замысловатых махинаций, которые заключаются в уединении и возведении в степень.

С другой стороны, можно заметить, что на определенной стадии решения становится без дальнейших упрощений понятно, что в уравнении, например, нет решений.

Например…

Корни степени больше 2

Ты спросишь: а что всё про квадратные корни? Как же быть с остальными степенями?

Спрошу в ответ: а чем они отличаются?

Отличие, на самом деле, есть. Но важна не конкретная степень корня, а четность этой степени.

Корни четной степени

Корни ( displaystyle 2), ( displaystyle 4), ( displaystyle 6), и т.д. степеней очень похожи друг на друга, и принцип решения уравнений с ними абсолютно одинаковый. Дело в том, что корень четной степени можно всегда привести к квадратному (вспоминаем тему «Корень и его свойства»!):

( displaystyle sqrt[4]{x}=sqrt{sqrt{x}};text{ }sqrt[6]{x}=sqrt{sqrt[3]{x}};text{ }sqrt[2k]{x}=sqrt{sqrt[k]{x}})

Например:

( displaystyle sqrt[4]{A}=Btext{ }Leftrightarrow text{ }left{ begin{array}{l}A={{B}^{4}}\Bge 0end{array} right.)

Корни нечетной степени

С нечетными степенями (( displaystyle 3), ( displaystyle 5), …) все намного проще!

Дело в том, что корень нечетной степени можно извлекать из любого числа! (И снова, если ты этого не знал, вспомни тему «Корень и его свойства»!)

Что это значит?

Теперь никаких дополнительных условий, никаких ограничений – просто возводим все в нужную степень и решаем:

( displaystyle begin{array}{l}sqrt[3]{A}=Btext{ }Leftrightarrow text{ }A={{B}^{3}}\sqrt[5]{A}=Btext{ }Leftrightarrow text{ }A={{B}^{5}}end{array})

Примеры:

  • ( displaystyle sqrt[5]{2-x}=-2)
  • ( displaystyle sqrt[4]{3+2{x}-{{x}^{2}}+{{x}^{4}}}=x)
  • ( displaystyle sqrt[3]{{{x}^{3}}+3x+5}=x)
  • ( displaystyle sqrt[3]{6+{{x}^{2}}-{{x}^{3}}}=1-x)

Ответы:

Уравнения бывают разные. Вы изучите их многие виды в курсе математике, но все они решаются по одним правилам, эти правила мы сейчас рассмотрим подробно.

Что такое уравнение? Смысл и понятия.

Узнаем сначала все понятия, связанные с уравнением.

Определение:
Уравнение – это равенство, содержащее переменные и числовые значения.

Переменные (аргументы уравнения) или неизвестные уравнения – их обозначают в основном латинскими буквами (x, y, z, f и т.д.). При подстановки числового значения переменной в уравнение получаем верное равенство – это корень уравнения.

Решить уравнение – это значит найти все корни уравнения или доказать, что у данного уравнения нет корней.

Корни уравнения – это значение переменной при котором уравнение превращается в верное равенство.

Рассмотрим теперь, все термины на простом примере:
x+1=3

В данном случае x – переменная или неизвестное значение уравнения.

Можно устно решить данное уравнение. Какое надо число прибавить к 1, чтобы получить 3? Конечно, число 2. То есть наша переменная x =2. Корень уравнения равен 2. Проверим правильно ли мы решили уравнение? Чтобы проверить уравнение, нужно вместо переменной подставить полученный корень уравнения.

2+1=3

Получили верное равенство. Значит, правильно нашли корни уравнения.

Но бывают более сложные уравнения, которые устно не решить. Нужно прибегать к правилам решения уравнений. Рассмотрим правила решения уравнений ниже, которые объяснят нам как решать уравнения.

Правила уменьшения или увеличения уравнения на определенное число.

Чтобы понять правило рассмотрим подробно простой пример:
Решите уравнение x+2=7

Решение:
Чтобы решить данное уравнение нужно левую и правую часть уменьшить на 2. Это нужно сделать для того, чтобы переменная x осталась слева, а известные (т.е. числа) справа. Что значит уменьшить на 2? Это значит отнять от левой части двойку и одновременно от правой части отнять двойку. Если мы делаем какое-то действие, например, вычитание применяя его одновременно к левой части уравнения и к правой, то уравнение не меняет смысл.

x+2-2=7-2
x+0=7-2
x=7-2

Нужно остановиться на этом моменте подробно. Другими словами, мы +2 перенесли с левой части на правую и знак поменяли стало число -2.

Уравнение правила переноса

x=5

Как проверить правильно ли вы нашли корень уравнения? Ведь не все уравнения будут простыми как данное. Чтобы проверить корень уравнения его значение нужно поставить в само уравнение.

Проверка:
Вместо переменной x подставим 5.

x+2=7
5+2=7
Получили верное равенство, значит уравнение решено верно.
Ответ: 5.

Разберем следующий пример:
Решите уравнение x-4=12.

Решение:
Чтобы решить данное уравнение нужно увеличить левую и правую часть уравнения на 4, чтобы переменная x осталось в левой стороне, а известные (т.е. числа) в правой стороне. Прибавим к левой и правой части число 4. Получим:

x-4+4=12+4
x=12+4

Другими словами, мы -4 перенесли из левой части уравнения в правую и получили +4. При переносе через равно знаки меняются на противоположные.

Уравнение правила

x=16

Теперь выполним проверку, вместо переменной x подставим в уравнение полученное число 16.
x-4=12
16-4=12
Ответ: 16

Очень важно понять правила переноса частей уравнения через знак равно. Не всегда нужно переносить числа, иногда нужно перенести переменные или даже целые выражения.

Рассмотрим пример:
Решите уравнение 4+3x=2x-5

Решение:
Чтобы решить уравнение необходимо неизвестные перенести в одну сторону, а известные в другую. То есть переменные с x будут в левой части, а числа в правой части.
Сначала перенесем 2x с правой стороны в левую сторону уравнения и получим -2x.

4+3x=2x-5
4+3x-2x=-5

Далее 4 с левой стороны уравнения перенесем на правую сторону и получим -4
4+3x-2x=-5
3x-2x=-5-4

Теперь, когда все неизвестные в левой стороне, а все известные в правой стороне посчитаем их.
(3-2)x=-9
1x=-9 или x=-9

Сделаем проверку, правильно ли решено уравнение? Для этого вместо переменной x в уравнение подставим -9.
4+3x=2x-5
4+3⋅(-9)=2⋅(-9)-5
4-27=-18-5
-23=-23

Получилось верное равенство, уравнение решено верно.
Ответ: корень уравнения x=-9.

Правила уменьшения или увеличения уравнения в несколько раз.

Данное правило подходит тогда, когда вы уже посчитали все неизвестные и известные, но какой-то коэффициент остался перед переменной. Чтобы избавится от не нужного коэффициента мы применяем правило уменьшения или увеличения в несколько раз коэффициент уравнения.

Рассмотрим пример:
Решите уравнение 5x=20.

Решение:
В данном уравнение не нужно переносить переменные и числа, все компоненты уравнения стоят на месте. Но нам мешает коэффициент 5 который стоит перед переменной x. Мы не можем его просто взять и перенести в правую сторону уравнения, потому что между число 5 и переменно x стоит умножение 5⋅х. Если бы между переменной и числом стоял знак плюс или минус, мы могли бы 5 перенести вправо. Но мы так поступить не можем. За то мы можем все уравнение уменьшить в 5 раз или поделить на 5. Обязательно делим правую и левую сторону одновременно.

5x=20
5x:5=20:5
5:5x=4
1x=4 или x=4

Делаем проверку уравнения. Вместо переменной x подставляем 4.
5x=20
5⋅4=20
20=20 получили верное равенство, корень уравнение найден правильно.
Ответ: x=4.

Рассмотрим следующий пример:
Найдите корни уравнения   .

Решение:
Так как перед переменной x стоит коэффициент  необходимо от него избавиться. Надо все уравнение увеличить в 3 раза или умножить на 3, обязательно умножаем левую часть уравнения и правую часть.

1x=21 или x=21

Сделаем проверку уравнения. Подставим вместо переменной x полученный корень уравнения 21.

7=7 получено верное равенство.

Ответ: корень уравнения равен x=21.

Следующий пример:
Найдите корни уравнения

Решение:
Сначала перенесем -1 в правую сторону уравнения относительно знака равно, а   в левую сторону и знаки у них поменяются на противоположные.
Теперь нужно все уравнение умножить на 5, чтобы в коэффициенте  перед переменной x убрать из знаменателя 5.

3x=45

Далее делим все уравнение на 3.

3x:3=45:3
(3:3)x=15

1x=15 или x=15

Сделаем проверку. Подставим в уравнение найденный корень.

5=5

Ответ: x=15

Как решать уравнения? Алгоритм действий.

Подведем итог разобранной теме уравнений, рассмотрим общие правила решения уравнений:

  1. Перенести неизвестные в одну сторону, а известные в другую сторону уравнения относительно равно.
  2. Преобразовать и посчитать подобные в уравнении, то есть переменные с переменными, а числа с числами.
  3. Избавиться от коэффициента при переменной если нужно.
  4. В итоге всех действий получаем корень уравнение. Выполняем проверку.

Эти правила действуют на любой вид уравнения (линейный, квадратный, логарифмический, тригонометрический, рациональные, иррациональные, показательные и другие виды). Поэтому важно понять эти простые правила и научиться ими пользоваться.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти абонента билайн по геолокации
  • Как составить коммерческое предложение коммерческому директору
  • Как найти в телефоне хонор 10 лайт
  • Как найти массовую долю вещества naoh
  • Как найти человека бесплатно в контакте

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии