В данной публикации мы рассмотрим формулы, с помощью которых можно найти координаты вектора, заданного координатами его начальной и конечной точек, а также разберем примеры решения задач по этой теме.
- Нахождение координат вектора
- Примеры задач
Нахождение координат вектора
Для того, чтобы найти координаты вектора AB, нужно из координат его конечной точки (B) вычесть соответствующие координаты начальной точки (A).
Формулы для определения координат вектора
| Для плоских задач | AB = {Bx — Ax; By — Ay} |
| Для трехмерных задач | AB = {Bx — Ax; By — Ay; Bz — Az} |
| Для n-мерных векторов | AB = {B1 — A1; B2 — A2; … Bn — An} |
Примеры задач
Задание 1
Найдем координаты вектора AB, если у его точек следующие координаты: A = (2; 8), B = (5; 12).
Решение:
AB = {5 – 2; 12 – 8} = {3; 4}.
Задание 2
Определим координаты точки B вектора AB = {6; 14}, если координаты точки A = (2; 5).
Решение:
Координаты точки B можно вывести из формулы для расчета координат вектора:
Bx = ABx + Ax = 6 + 2 = 8.
By = ABy + Ay = 14 + 5 = 19.
Таким образом, B = (8; 19).
Нахождение координат вектора через координаты точек
Отложим от начала координат единичные векторы, то есть векторы, длины которых равны единице. Направление вектора i → должно совпадать с осью O x , а направление вектора j → с осью O y .
Векторы i → и j → называют координатными векторами.
Координатные векторы неколлинеарны. Поэтому любой вектор p → можно разложить по векторам p → = x i → + y j → . Коэффициенты x и y определяются единственным образом. Коэффициенты разложения вектора p → по координатным векторам называются координатами вектора p → в данной системе координат.
Координаты вектора записываются в фигурных скобках p → x ; y . На рисунке вектор O A → имеет координаты 2 ; 1 , а вектор b → имеет координаты 3 ; — 2 . Нулевой вектор представляется в виде 0 → 0 ; 0 .
Если векторы a → и b → равны, то и y 1 = y 2 . Запишем это так: a → = x 1 i → + y 1 j → = b → = x 2 i → + y 2 j → , значит x 1 = x 2 , y 1 = y 2 .
Таким образом, координаты равных векторов соответственно равны.
Если точка координат не совпадает с его началом системы координат, тогда рассмотрим задачу. Пусть в декартовой системе координат на O x y заданы координаты точек начала и конца A B → : A x a , y a , B x b , y b . Найти координаты заданного вектора.
Изобразим координатную ось.
Из формулы сложения векторов имеем O A → + A B → = O B → , где O – начало координат. Отсюда следует, что A B → = O B → — O A → .
O A → и O B → – это радиус-векторы заданных точек А и В, значит координаты точек имеют значения O A → = x a , y a , O B → = x b , y b .
По правилу операций над векторами найдем A B → = O B → — O A → = x b — x a , y b — y a .
Нахождение в трехмерном пространстве проходит по такому же принципу, только для трех точек.
Для нахождения координат вектора, необходимо найти разность его точек конца и начала.
Найти координаты O A → и A B → при значении координат точек A ( 2 , — 3 ) , B ( — 4 , — 1 ) .
Для начала определяется радиус-вектор точки A . O A → = ( 2 , — 3 ) . Чтобы найти A B → , нужно вычесть значение координат точек начала из координат точек конца.
Получаем: A B → = ( — 4 — 2 , — 1 — ( — 3 ) ) = ( — 6 , 2 ) .
Ответ: O A → = ( 2 , — 3 ) , A B → = ( — 6 , — 2 ) .
Задано трехмерное пространство с точкой A = ( 3 , 5 , 7 ) , A B → = ( 2 , 0 , — 2 ) . Найти координаты конца A B → .
Подставляем координаты точки A : A B → = ( x b — 3 , y b — 5 , z b — 7 ) .
По условию известно, что A B → = ( 2 , 0 , — 2 ) .
Известно, что равенство векторов справедливо тогда, когда координаты равны соответственно. Составим систему уравнений: x b — 3 = 2 y b — 5 = 0 z b — 7 = — 2
Отсюда следует, что координаты точки B A B → равны: x b = 5 y b = 5 z b = 5
Ответ: B ( 5 , 5 , 5 ) .
Нахождение координат вектора
В данной публикации мы рассмотрим формулы, с помощью которых можно найти координаты вектора, заданного координатами его начальной и конечной точек, а также разберем примеры решения задач по этой теме.
Нахождение координат вектора
Для того, чтобы найти координаты вектора AB , нужно из координат его конечной точки (B) вычесть соответствующие координаты начальной точки (A).
Формулы для определения координат вектора
» data-lang=»default» data-override=»<«emptyTable»:»»,»info»:»»,»infoEmpty»:»»,»infoFiltered»:»»,»lengthMenu»:»»,»search»:»»,»zeroRecords»:»»,»exportLabel»:»»,»file»:»default»>» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>
| Для плоских задач | AB = x — Ax; By — Ay> |
| Для трехмерных задач | AB = x — Ax; By — Ay; Bz — Az> |
| Для n-мерных векторов | AB = 1 — A1; B2 — A2; . Bn — An> |
Примеры задач
Задание 1
Найдем координаты вектора AB , если у его точек следующие координаты: , .
Задание 2
Определим координаты точки B вектора , если координаты точки .
Решение:
Координаты точки B можно вывести из формулы для расчета координат вектора:
Bx = AB x + Ax = 6 + 2 = 8.
By = AB y + Ay = 14 + 5 = 19.
Координаты вектора
Координаты вектора — это числа, которые описывают расположение вектора в координатной плоскости.
Координатами вектора с началом в точке A(x1; y1) и концом в точке B(x2; y2) называются числа
Таким образом, чтобы найти координаты вектора, надо из координат его конца вычесть координаты начала.
Координаты вектора записывают в круглых скобках рядом с буквенным обозначением вектора:
Иногда координаты вектора записывают без буквенного обозначения, просто со знаком вектора над скобками:
Нулевой вектор имеет нулевые координаты:
Найти: координаты векторов
1) Чтобы найти координаты вектора, из координат его конца (точки B) вычитаем координаты начала (точки A):
Содержание:
- Формула
- Примеры нахождения координат вектора
Формула
Чтобы найти координаты вектора $overline {A B}$, если заданы координаты его начала и конца,
необходимо от координат конца отнять соответствующие координаты начала. В случае если точки заданы на плоскости и имеют соответственно
координаты $Aleft(x_{A} ; y_{A}right)$ и $Bleft(x_{B} ; y_{B}right)$, то координаты вектора $overline {A B}$ вычисляются по формуле:
$$overline{A B}=left(x_{B}-x_{A} ; y_{B}-y_{A}right)$$
Если точки заданы в пространстве и имеют координаты
$Aleft(x_{A} ; y_{A} ; z_{A}right)$ и $Bleft(x_{B} ; y_{B} ; z_{B}right)$ соответственно, то координаты вектора
$overline {A B}$ вычисляются по следующей формуле:
$$overline{A B}=left(x_{B}-x_{A} ; y_{B}-y_{A} ; z_{B}-z_{A}right)$$
Примеры нахождения координат вектора
Пример
Задание. Даны точки
$A(5 ; 1)$ и $B(4 ;-3)$. Найти координаты векторов
$overline {A B}$ и
$overline {B A}$
Решение. Точки заданны на плоскости, поэтому координаты вектора
$overline {A B}$ вычислим по формуле:
$$overline{A B}=left(x_{B}-x_{A} ; y_{B}-y_{A}right)$$
Подставляя координаты заданных точек, получим:
$$overline{A B}=(4-5 ;-3-1)=(-1 ;-4)$$
Для нахождения вектора $overline {B A}$ исходная формула примет вид:
$$overline{B A}=left(x_{A}-x_{B} ; y_{A}-y_{B}right)$$
то есть
$$overline{B A}=(5-4 ; 1-(-3))=(1 ; 4)$$
Ответ. $overline{A B}=(-1 ;-4), overline{B A}=(1 ; 4)$

236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Даны точки
$A(4 ; 3 ; 2)$, $B(-3 ; 2 ;-1)$ и $C(-1 ; 0 ; 1)$ . Найти координаты вектора
$overline {A B}$,
$overline {C B}$ .
Решение. Точки заданны в пространстве, поэтому для нахождения координат искомых векторов будем пользоваться формулой
$overline{A B}=left(x_{B}-x_{A} ; y_{B}-y_{A} ; z_{B}-z_{A}right)$
Подставляя заданные координаты, получим:
$$overline{A B}=(-3-4 ; 2-3 ;-1-2)=(-7 ;-1 ;-3)$$
Для вектора $overline {C B}$ имеем:
$overline{C B}=left(x_{B}-x_{C} ; y_{B}-y_{C} ; z_{B}-z_{C}right)$
$overline{C B}=(-3-(-1) ; 2-0 ;-1-1)=(-2 ; 2 ;-2)$
Ответ. $overline{A B}=(-7 ;-1 ;-3), overline{C B}=(-2 ; 2 ;-2)$
Читать дальше: как найти направляющие косинусы вектора.
Задачи с векторами только на первый взгляд кажутся сложными, особенно если задача связана с трехмерным пространством. Но не стоит пугаться ведь если разобраться по-лучше в данной тематике задачи решаются в два счета. Так например в данной статье мы разберем тематику определения координат вектора, исходными данными для которого известны координаты начальной и конечной точки.
Для того чтобы определить координаты некоторого вектора MN⃗vec{MN}, зная координаты начала и конца, необходимо из координат конечной точки вычесть соответствующие координаты начальной точки.
Задача 1
Рассмотрим первый вариант задачи. Вектор задан в двухмерном пространстве {x,y}. Тогда у каждой точки вектора существует две координаты, соответственно относящиеся к оси ОХ и ОУ. Формула для определения координаты вектора в таком случае принимает вид:
MN⃗=Mx−Nx;My−Ny.vec{MN}={M_x{-N}_x;M_y{-N}_y}.
Рассмотрим на примере: На некоторой плоскости заданы точки M и N, координаты которых равны соответственно (1,2) и (3,5). Необходимо найти координаты вектора MN⃗vec{MN}
Решение
Возьмем некоторую плоскость ОХУОХУ и отметим точки ММ и NN. Затем соединим исходные точки и рассчитаем координаты полученного вектора. MN⃗={3−1;5−2}=2;3.vec{MN}=left{3-1;5-2right}={2;3}.
Вот так вот мы получили простое решение искомой задачи. Вариация таких задач может сочетать в себе нахождение не только координат вектора, но и отдельных координат исходных точек вектора.
Но у меня задача может быть не только одно- или двухмерное, но также трехмерное или как мы будем называть их n-мерное. Формула тогда в таком случае немного изменит вид, но смысл не меняется.
Задача 2
Сформулируем формулу для определения координат вектора расположенного в n-мерном пространстве.
Такое пространство подразумевает координаты точек в виде M(M1;M2;M3;..;Mn)M(M_1;M_2{;M}_3;..{;M}_n) и формула примет вид:
MN⃗=Mx−Nx;My−Ny;..;Mn−Nn.vec{MN}={M_x{-N}_x;M_y{-N}_y{;..;M}_n{-N}_n}.
Рассмотрим задачу на примере 5-мерного пространства. Необходимо найти координаты точки N вектора
MN⃗={3,8,4,1,7}vec{MN}={3,8,4,1,7}, если известны координаты точки M(1,9,6,7,4).M(1,9,6,7,4).
Решение
Не стоит пугаться при виде слов 5-мерное пространство, т.к. рисовать данную систему координат не обязательно. Стоит лишь правильно понимать и применять формулу которую мы рассмотрели выше. Перепишем ее еще раз для нашего случая.
MN⃗={M1−N1;M2−N2;M3−N3;M4−N4;M5−N5}.vec{MN}= {M_1{-N}_1;M_2{-N}_2{;M_3{-N}_3{;M}_4{-N}_4;M}_5{-N}_5}.
Тогда рассмотрим систему:
{1−N1=39−N2=86−N3=47−N4=14−N5=7begin{cases}1-N_1=3 \
9-N_2=8 \
6-N_3=4\
7-N_4=1\
4-N_5=7end{cases}
и решив данную систему, получим
{N1=−2N2=1N3=2N4=6N5=−3begin{cases}N_1=-2\
N_2=1\
N_3=2\
N_4=6\
N_5=-3\ end{cases}
Тогда получим ответ на задачу N(−2,1,2,6,−3).N(-2,1,2,6,-3).
Основное соотношение.Чтобы найти координаты вектора AB, зная координаты его начальной точек А и конечной точки В, необходимо из координат конечной точки вычесть соответствующие координаты начальной точки.
Формулы определения координат вектора заданного координатами его начальной и конечной точки
Формула определения координат вектора для плоских задач
В случае плоской задачи вектор AB заданный координатами точек A(Ax ; Ay) и B(Bx ; By) можно найти воспользовавшись следующей формулой
AB = {Bx — Ax ; By — Ay}
Формула определения координат вектора для пространственных задач
В случае пространственной задачи вектор AB заданный координатами точек A(Ax ; Ay ; Az) и B(Bx ; By ; Bz) можно найти воспользовавшись следующей формулой
AB = {Bx — Ax ; By — Ay ; Bz — Az}
Формула определения координат вектора для n -мерного пространства
В случае n-мерного пространства вектор AB заданный координатами точек A(A1 ; A2 ; … ; An) и B(B1 ; B2 ; … ; Bn) можно найти воспользовавшись следующей формулой
AB = {B1 — A1 ; B2 — A2 ; … ; Bn — An}
Примеры задач связанных с определением координат вектора по двум точкам
Примеры для плоских задач
Пример 1. Найти координаты вектора AB, если A(1; 4), B(3; 1).
Решение: AB = {3 — 1; 1 — 4} = {2; -3}.
Пример 2. Найти координаты точки B вектора AB = {5; 1}, если координаты точки A(3; -4).
Решение:
ABx = Bx — Ax => Bx = ABx + Ax => Bx = 5 + 3 = 8
ABy = By — Ay => By = ABy + Ay => By = 1 + (-4) = -3
Ответ: B(8; -3).
Пример 3. Найти координаты точки A вектора AB = {5; 1}, если координаты точки B(3; -4).
Решение:
ABx = Bx — Ax => Ax = Bx — ABx => Ax = 3 — 5 = -2
ABy = By — Ay => Ay = By — ABy => Ay = -4 — 1 = -5
Ответ: A(-2; -5).
Примеры для пространственных задач
Пример 4. Найти координаты вектора AB, если A(1; 4; 5), B(3; 1; 1).
Решение: AB = {3 — 1; 1 — 4; 1 — 5} = {2; -3; -4}.
Пример 5. Найти координаты точки B вектора AB = {5; 1; 2}, если координаты точки A(3; -4; 3).
Решение:
ABx = Bx — Ax => Bx = ABx + Ax => Bx = 5 + 3 = 8
ABy = By — Ay => By = ABy + Ay => By = 1 + (-4) = -3
ABz = Bz — Az => Bz = ABz + Az => Bz = 2 + 3 = 5
Ответ: B(8; -3; 5).
Пример 6. Найти координаты точки A вектора AB = {5; 1; 4}, если координаты точки B(3; -4; 1).
Решение:
ABx = Bx — Ax => Ax = Bx — ABx => Ax = 3 — 5 = -2
ABy = By — Ay => Ay = By — ABy => Ay = -4 — 1 = -5
ABz = Bz — Az => Az = Bz — ABz => Az = 1 — 4 = -3
Ответ: A(-2; -5; -3).
Примеры для n -мерного пространства
Пример 7. Найти координаты вектора AB, если A(1; 4; 5; 5; -3), B(3; 0; 1; -2; 5).
Решение: AB = {3 — 1; 0 — 4; 1 — 5; -2 — 5; 5 — (-3)} = {2; -4; -4; -7; 8}.
Пример 8. Найти координаты точки B вектора AB = {5; 1; 2; 1}, если координаты точки A(3; -4; 3; 2).
Решение:
AB1 = B1 — A1 => B1 = AB1 + A1 => B1 = 5 + 3 = 8
AB2 = B2 — A2 => B2 = AB2 + A2 => B2 = 1 + (-4) = -3
AB3 = B3 — A3 => B3 = AB3 + A3 => B3 = 2 + 3 = 5
AB4 = B4 — A4 => B4 = AB4 + A4 => B4 = 1 + 2 = 3
Ответ: B(8; -3; 5; 3).
Пример 9. Найти координаты точки A вектора AB = {5; 1; 4; 5}, если координаты точки B(3; -4; 1; 8).
Решение:
AB1 = B1 — A1 => A1 = B1 — AB1 => A1 = 3 — 5 = -2
AB2 = B2 — A2 => A2 = B2 — AB2 => A2 = -4 — 1 = -5
AB3 = B3 — A3 => A3 = B3 — AB3 => A3 = 1 — 4 = -3
AB4 = B4 — A4 => A4 = B4 — AB4 => A4 = 8 — 5 = 3
Ответ: A(-2; -5; -3; 3).






