Как найти коэффициент корреляции по дисперсии

Все курсы > Оптимизация > Занятие 3

Как мы уже говорили, исследуя изменения случайных величин, мы зачастую обнаруживаем, что между этими изменениями существует взаимосвязь (bivariate relationship, association).

Откроем ноутбук к этому занятию⧉

Возьмем вот такой простой набор данных.

toy_df = pd.DataFrame({

    ‘a’:[1, 4, 5, 6, 9],

    ‘b’:[2, 3, 5, 6, 8],

    ‘c’:[6, 5, 4, 3, 2],

    ‘d’:[7, 4, 3, 4, 6]

})

toy_df

датасет для демонстрации взаимосвязи переменных

Посмотрим на распределения величин с помощью boxplot.

plt.figure(figsize = (8, 6))

sns.boxplot(data = toy_df)

plt.show()

распределения переменных искусственного датасета

Очевидно, распределения отличаются друг от друга, однако пока что мы мало можем сказать об этих распределениях или их взаимосвязи.

Начнем с расчета дисперсии.

Дисперсия

Дисперсия (variance) показывает изменение переменной относительно среднего значения. Приведем формулу для расчета дисперсии генеральной совокупности.

$$ sigma^2 = frac{sum (x_i-mu)^2}{N} $$

где $mu$ — среднее генеральной совокупности из $ x_i $ элементов, а $N$ — ее размер. Дисперсию выборки мы рассчитываем немного иначе.

$$ s^2 = frac{sum (x_i-bar{x})^2}{n-1} $$

В данном случае деление на $n-1$, а не на $n$ называется поправкой Бесселя (Bessel’s correction). Зачем нужна такая поправка? Оказывается, можно показать, что сумма квадратов расстояний, то есть числитель формулы, до среднего генсовокупности (population mean) будет всегда больше, чем сумма квадратов расстояний до выборочного среднего (sample mean).

Как следствие, если при расчете выборочной дисперсии делить на $n$, то мы будем постоянно недооценивать дисперсию генсовокупности. Поправка с делением на $ n-1 $ увеличит дисперсию выборки и сделает ее несмещенной оценкой (unbiased estimation) дисперсии генеральной совокупности.

Приведем основные выводы для показателя дисперсии.

  • Большая дисперсия показывает, что значения далеки от среднего и далеки друг от друга
  • Дисперсия не может быть отрицательной
  • Нулевая дисперсия означает, что все элементы выборки или генеральной совокупности идентичны

Замечу, что далее мы в большинстве случаев будем приводить формулы и вычислять именно выборочные показатели.

Найдем дисперсию для переменной a.

# применим формулу дисперсии к первому столбцу

(np.square(toy_df[‘a’] toy_df[‘a’].mean())).sum() / (toy_df.shape[0] 1)

Дисперсию для каждой переменной можно измерить с помощью функции np.var() библиотеки Numpy.

# рассчитаем дисперсию по столбцам с делением на n — 1

np.var(toy_df, ddof = 1)

a    8.5

b    5.7

c    2.5

d    2.7

dtype: float64

Точно такой же результат можно получить с помощью метода .var() библиотеки Pandas.

# ddof = 1 можно не указывать, это параметр по умолчанию

toy_df.var()

a    8.5

b    5.7

c    2.5

d    2.7

dtype: float64

Параметр ddof означает Delta Degrees of Freedom (дельта степеней свободы) и указывает на размер поправки при расчете дисперсии выборки. Соответственно ddof = 1 как раз использует деление на $n-ddof = n-1$. Как мы видим, дисперсия переменной a существенно больше, чем, например, переменной d.

Показатель дисперсии представляет собой квадрат измеряемых нами величин. Для понимания величины отклонения это не очень удобно. В этом смысле лучше подойдет среднее квадратическое отклонение.

Среднее квадратическое отклонение

Среднее квадратическое отклонение (СКО, standard deviation) как раз вычисляется как корень из дисперсии.

$$ sigma = sqrt{sigma^2} $$

$$ s = sqrt{s^2} $$

Рассчитаем СКО для первого столбца.

np.sqrt((np.square(toy_df[‘a’] toy_df[‘a’].mean())).sum() / (toy_df.shape[0] 1))

Мы также можем использовать функцию np.std() библиотеки Numpy и метод .std() библиотеки Pandas.

# для расчета СКО будем также делить на n — 1

np.std(toy_df, ddof = 1)

a    2.915476

b    2.387467

c    1.581139

d    1.643168

dtype: float64

# опять же, этот параметр установлен по умолчанию, и его можно не указывать

toy_df.std()

a    2.915476

b    2.387467

c    1.581139

d    1.643168

dtype: float64

Теперь перейдем к изучению взаимосвязи между переменными. Одним из способов измерения взаимосвязи является ковариация.

Ковариация

Ковариация (covariance) измеряет направление изменения двух переменных. Другими словами она позволяет понять как изменится одна из двух переменных при изменении второй.

Построим три точечные диаграммы (scatter plots) для переменных a и b, b и c, и c и d соответственно.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

# создадим сетку 1 х 3 с подграфиками для каждой из пар переменных

f, (pair1, pair2, pair3) = plt.subplots(nrows = 1,

                                        ncols = 3,

                                        figsize = (12, 4),

                                        constrained_layout = True)

# в первый подграфик поместим точечную диаграмму переменных a и b

pair1.scatter(toy_df[‘a’], toy_df[‘b’])

pair1.set_title(‘a vs. b’, fontsize = 14)

pair1.set(xlabel = ‘a’)

pair1.set(ylabel = ‘b’)

# во второй — b и c

pair2.scatter(toy_df[‘b’], toy_df[‘c’])

pair2.set_title(‘b vs. c’, fontsize = 14)

pair2.set(xlabel = ‘b’)

pair2.set(ylabel = ‘c’)

# в третий — c и d

pair3.scatter(toy_df[‘c’], toy_df[‘d’])

pair3.set_title(‘c vs. d’, fontsize = 14)

pair3.set(xlabel = ‘c’)

pair3.set(ylabel = ‘d’)

plt.show()

ковариация: три точечные диаграммы

На первом и втором графике мы видим линейную взаимосвязь. Приведем формулу для ее измерения.

$$ Cov_{x, y} = frac{sum (x_i-bar{x})(y_i-bar{y})}{n-1} $$

Как вы видите, ковариация представляет собой сумму произведений отклонений переменных от своего среднего значения, усредненную на количество наблюдений ($n-1$).

Рассчитаем ковариацию a и b с помощью Питона.

((toy_df[‘a’]   toy_df[‘a’].mean()) * (toy_df[‘b’] toy_df[‘b’].mean())).sum() / (toy_df.shape[0] 1)

Если использовать функцию np.cov() библиотеки Numpy или метод .cov() библиотеки Pandas, то мы получим так называемую ковариационную матрицу (covariance matrix).

# для расчета по столбцам нужно использовать параметр rowvar = False

np.cov(toy_df, ddof = 1, rowvar = False)

array([[ 8.5 ,  6.75, -4.5 , -1.  ],

       [ 6.75,  5.7 , -3.75, -0.55],

       [-4.5 , -3.75,  2.5 ,  0.5 ],

       [-1.  , -0.55,  0.5 ,  2.7 ]])

ковариационная матрица

По диагонали указана дисперсия, вне диагонали — ковариация любых двух переменных.

Переменные a и b имеют положительную ковариацию, с увеличением a увеличивается и b. Переменные b и c — отрицательную, переменные c и d демонстрируют нулевую или близкую к нулевой ковариацию.

Интересно, что если переменные независимы (между ними нет взаимосвязи) — ковариация будет равна нулю, при этом обратное не обязательно верно. Если ковариация равна нулю, взаимосвязь может быть, просто она нелинейна (возможно именно такая взаимосвязь существует между c и d).

Недостатком ковариации является то, что она измеряет только направление, но не силу взаимосвязи. Если мы умножим значения обеих переменных, например, на три, то ковариация, исходя из формулы выше, увеличится в девять раз (поскольку как x, так и y каждой пары переменных умножаются на три), при этом очевидно сила взаимосвязи никак не изменится.

# умножим данные на три, рассчитаем ковариацию

# и разделим на ковариационную матрицу исходного датасета,

# чтобы посмотреть масштаб изменения

(toy_df * 3).cov() / toy_df.cov()

воздействие умножения данных на число на ковариационную матрицу

Этот недостаток исправляет коэффициент корреляции.

Корреляция

Корреляция (correlation) между двумя переменными (случайными величинами) измеряет не только направление, но и силу взаимосвязи.

Параметрические и непараметрические тесты

Прежде чем перейти к различным коэффициентам корреляции несколько слов про разделение статистических тестов или методов на параметрические и непараметрические.

Параметрические методы (parametric methods) основываются на допущении (assumption) или предпосылке о том, как распределена генеральная совокупность, из которой взята изучаемая выборка. Например, статистический тест может предполагать, что данные имеют нормальное распределение.

Непараметрические методы (non-parametric) таких допущений соответственно не предполагают.

На практике это означает, что если допущения параметрического теста не выполняются, его результат нельзя считать достоверным. Для непараметрического теста такое ограничение отсутствует.

Коэффициент корреляции Пирсона

Коэффициент корреляции Пирсона (Pearson correlation coefficient) — это параметрический тест, который строится на основе расчета ковариации двух переменных, разделенного на произведение СКО каждой из них.

$$ r_{pearson} = frac{Cov_{x, y}}{s_x s_y} $$

Деление на произведение СКО $(s_x s_y)$ выражает любой коэффициент ковариации в единицах этого произведения (нормализует его). Как следствие, мы получаем возможность сравнения коэффициентов корреляции, а значит измерения не только направления, но и силы взаимосвязи.

Коэффициент корреляции всегда находится в диапазоне от $-1$ до $1$.

Значения, приближающиеся к 1 указывают на сильную положительную линейную корреляцию. Близкие к −1 — на сильную отрицательную линейную корреляцию. Околонулевые значения означают отсутствие линейной корреляции.

Посмотрим на график возможных вариантов корреляции данных, приведенный на занятии вводного курса.

пример различных коэффициентов корреляции Пирсона

Библиотека Numpy предлагает нам функцию np.corrcoef() для создания корреляционной матрицы (correlation matrix) коэффициента Пирсона.

# для расчета корреляции по столбцам используем параметр rowvar = False

np.corrcoef(toy_df, rowvar = False).round(2)

array([[ 1.  ,  0.97, -0.98, -0.21],

       [ 0.97,  1.  , -0.99, -0.14],

       [-0.98, -0.99,  1.  ,  0.19],

       [-0.21, -0.14,  0.19,  1.  ]])

В Pandas мы можем воспользоваться методом .corr().

# параметр method = ‘pearson’ используется по умолчанию,

# его можно не указывать

toy_df.corr(method = ‘pearson’).round(2)

корреляционная матрица

Корреляция переменной с самой собой равна единице, что и отражают значения на главной диагонали матрицы. Кроме того, очевидно, что величина X также коррелирует с Y, как Y c X.

Продемонстрируем также, что изменение масштаба данных не отразится на коэффициенте корреляции.

# умножим значения датасета на два и снова рассчитаем коэффициент Пирсона

(toy_df * 2).corr().round(2)

корреляция не зависит от масштаба данных

Особенности коэффициента Пирсона

Несколько важных замечаний.

Замечание 1. Ни ковариация, ни корреляция не устанавливают причинно-следственной связи (correlation does not imply causation). Например, мы можем наблюдать существенную корреляцию между потреблением мороженого и продажами кондиционеров, при этом изменения в обеих переменных могут быть вызваны третьей, на рассматриваемой нами переменной, в частности, температурой воздуха.

корреляция не устанавливает причинно-следственной связи: потребление мороженого и продажи кондиционеров

Кроме того в некоторых случаях корреляция может быть чистой случайностью.

Замечание 2. Коэффициент корреляции Пирсона измеряет взаимосвязь (1) количественных переменных и (2) предполагает, что обе переменные имеют нормальное распределение (это и есть упомянутое выше допущение (assumption) параметрического теста).

Замечание 3. Как и в случае с ковариацией, отсутствие линейной корреляции не означает отсутствие взаимосвязи. Возможно взаимосвязь есть, но она нелинейна.

Замечание 4. Более того, на коэффициент корреляции существенное влияние оказывают выбросы (outliers).

Последние два замечения хорошо иллюстрируются квартетом Энскомба (Anscombe’s quartet), набором небольших датасетов (кстати, встроенных в сессионное хранилище Google Colab) с совершенно разными распределениями x и y, но одинаковым средним арифметическим и СКО переменной y, а также одинаковым коэффициентом корреляции Пирсона.

Вначале получим необходимые данные.

# загрузим данные в формате json из сессионного хранилища,

# преобразуем в датафрейм и посмотрим на первые три строки

anscombe = pd.read_json(‘/content/sample_data/anscombe.json’)

anscombe.head(3)

квартет Энскомба в Google Colab

# разобьем данные на четыре части по столбцу Series

series_by_group = [x for _, x in anscombe.groupby(‘Series’)]

# отдельно получим названия каждой из четырех частей

labels = anscombe.Series.unique()

labels

array([‘I’, ‘II’, ‘III’, ‘IV’], dtype=object)

# создадим пустой словарь

datasets = {}

# в цикле пройдемся по названиям и значениям переменных x и y каждой из частей

for label, series in zip(labels, series_by_group):

  # каждое название части станет ключом словаря, а переменные x и y — значениями

  datasets[label] = (list(series.X.round(2)), list(series.Y.round(2)))

# выведем содержимое словаря с помощью функции pprint()

from pprint import pprint

pprint(datasets)

{‘I’: ([10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5],

       [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.81, 5.68]),

‘II’: ([10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5],

        [9.14, 8.14, 8.74, 8.77, 9.26, 8.1, 6.13, 3.1, 9.13, 7.26, 4.74]),

‘III’: ([10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5],

         [7.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.08, 5.39, 8.15, 6.42, 5.73]),

‘IV’: ([8, 8, 8, 8, 8, 8, 8, 19, 8, 8, 8],

        [6.58, 5.76, 7.71, 8.84, 8.47, 7.04, 5.25, 12.5, 5.56, 7.91, 6.89])}

Теперь выведем каждый из четырех датасетов на графиках.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

# создадим сетку подграфиков 2 х 2

fig, axs = plt.subplots(2, 2,

                        sharex = True,

                        sharey = True,

                        figsize = (10, 10),

                        gridspec_kw = {‘wspace’: 0.08, ‘hspace’: 0.08})

# определим границы осей и отметки на осях x и y

axs[0, 0].set(xlim = (0, 20), ylim = (2, 14))

axs[0, 0].set(xticks = (0, 10, 20), yticks = (4, 8, 12))

# пройдемся по подграфикам, а также ключам и значениям словаря datasets

for ax, (label, (x, y)) in zip(axs.flat, datasets.items()):

    # выведем название (номер) группы

    ax.text(0.1, 0.9, label, fontsize = 20, transform = ax.transAxes, va = ‘top’)

    ax.tick_params(direction = ‘in’, top = True, right = True)

    # построим точечные диаграммы

    ax.scatter(x, y)

    # обучим модель линейной регрессии

    slope, intercept = np.polyfit(x, y, deg = 1)

    # выведем график линейной регрессии

    x_vals = np.linspace(0, 20, num = 1000)

    y_vals = intercept + slope * x_vals

    ax.plot(x_vals, y_vals, ‘r’)

    # рассчитаем среднее арифметическое, СКО и корреляцию Пирсона

    stats = (f‘$\mu$ = {np.mean(y):.2f}n’

             f‘$\sigma$ = {np.std(y):.2f}n’

             f‘$r$ = {np.corrcoef(x, y)[0][1]:.2f}’)

    # создадим отформатированное пространство на графике

    bbox = dict(boxstyle = ‘square’, pad = 0.5,

                fc = ‘#c5d4e6’,

                ec = ‘#89a8cc’,

                alpha = 0.5)

    # и выведем в нем рассчитанные выше статистические показатели

    ax.text(0.95, 0.07, stats, fontsize = 15,

            bbox = bbox, transform = ax.transAxes,

            horizontalalignment = ‘right’)

plt.show()

квартет Энскомба на графиках

  • Как мы видим, на первом графике прослеживается линейная корреляция без каких-либо сюрпризов;
  • Во втором наборе данных у нас нелинейная зависимость, силу которой мы не смогли отразить с помощью коэффициента Пирсона;
  • В третьем наборе коэффициент корреляции находится под сильным влиянием выброса;
  • В четвертом, корреляция по сути отсутствует и тем не менее одного наблюдения оказывается достаточно для появления достаточно сильной корреляции.

Помимо ограничений коэффициента корреляции, эти наборы данных демонстрируют в целом важность визуальной оценки данных.

Коэффициент Пирсона как скалярное произведение векторов

Распишем формулу корреляции более подробно (см. формулы ковариации, дисперсии и СКО).

$$ r_{pearson} = frac{ frac{sum (x_i-bar{x})(y_i-bar{y})}{n-1} }{ sqrt {frac{sum (x_i-bar{x})^2}{n-1} frac{sum (y_i-bar{y})^2}{n-1} } } $$

Упростим выражение.

$$ r_{pearson} = frac{ sum (x_i-bar{x})(y_i-bar{y}) } { sqrt {sum (x_i-bar{x})^2} sqrt{ sum (y_i-bar{y})^2 } } $$

Теперь давайте представим случайные величины X и Y в форме векторов

$$ textbf{x} = [x_1, x_2, x_3,…, x_n] $$

$$ textbf{y} = [y_1, y_2, y_3,…, y_n] $$

со средними значениями $ bar{x} $ и $ bar{y} $. Затем определим новые векторы $ textbf{x}^c $ и $ textbf{y}^c $, в которых из значений $x_i$ и $y_i$ вычтем соответствующие средние значения.

$$ textbf{x}^c = [x_1-bar{x}, x_2-bar{x}, x_3-bar{x},…, x_n-bar{x}] $$

$$ textbf{y}^c = [y_1-bar{x}, y_2-bar{x}, y_3-bar{y},…, y_n-bar{y}] $$

Обратим внимание, что (1) числитель (1) в формуле коэффициента корреляции представляет собой покомпонентное умножение векторов с последующим сложением произведений (то есть скалярное произведение).

Знаменатель (2) же представляет собой покомпонентное умножение и сложение произведений векторов самих на себя. Как мы узнаем на курсе линейной алгебры, корень из скалярного произведение вектора на самого себя есть длина этого вектора. Приведем пример для вектора $ textbf{x} $

$$ sqrt { textbf{x}^2 } = sqrt { textbf{x} cdot textbf{x} } = || textbf{x} || $$

Исходя из этих двух соображений, перепишем формулу расчета коэффициента Пирсона.

$$ r_{pearson} = frac { textbf{x}^c cdot textbf{y}^c }{|| textbf{x}^c || cdot || textbf{y}^c || } $$

Это формула косинусного сходства двух векторов. Другими словами, коэффициент корреляции равен косинусу угла между двумя векторами данных. Рассчитаем корреляцию через косинусное сходство с помощью Питона.

# возьмем данные первой группы квартета Энскомба

x = np.array([10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5])

y = np.array([8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.81, 5.68])

# вычтем из каждого значения x и y соответствующее среднее арифметическое

xc = x np.mean(x)

yc = y np.mean(y)

# используем формулу косинусного сходства и округлим результат

np.round(np.dot(xc, yc)/(np.linalg.norm(xc) * np.linalg.norm(yc)), 2)

Как уже было сказано, у коэффициента Пирсона есть ряд ограничений, в частности, он выявляет только линейную взаимосвязь количественных переменных. В этой связи рассмотрим коэффициент Спирмена.

Коэффициент ранговой корреляции Спирмена

Коэффициент ранговой корреляции Спирмена (Spearman’s Rank Correlation Coefficient) хорошо измеряет постоянно возрастающую или постоянно убывающую (монотонную) зависимость двух переменных, а также подходит для работы с категориальными порядковыми данными.

Это непараметрический тест, который не предполагает каких-либо допущений о распределении генеральной совокупности.

Монотонная зависимость

Напомню, что функция или зависимость называется монотонной (monotonic), если на заданном интервале ее производная (градиент) не меняет знака (то есть всегда имеет неотрицательное или неположительное значение). Приведем пример.

монотонно возрастающая, монотонно убывающая и немонотонная функции

Рассмотрим взаимосвязь площади (area) и цены (price) квартиры.

# поместим данные площади и цены квартиры в датафрейм

flats = pd.DataFrame({

    ‘area’    :[78, 90, 74, 69, 63, 57, 72, 67, 83],

    ‘price’   :[9.1, 9.0, 8.9, 8.2, 6.0, 5.8, 8.7, 7.5, 9.2]

})

flats

количественные данные для расчета коэффициента ранговой корреляции Спирмена

Выведем эти данные с помощью точечной диаграммы (scatter plot).

plt.figure(figsize = (8, 6))

plt.scatter(flats.area, flats.price)

plt.xlabel(‘Площадь, кв. м.’, fontsize = 15)

plt.ylabel(‘Цена, млн. руб.’, fontsize = 15)

plt.grid()

plt.show()

точечная диаграмма данных о самочувствии пациентов до и после лечения

Рассчитаем коэффициент корреляции Пирсона.

# применим метод .corr() с параметром method = ‘pearson’

# выведем одно из значений корреляционной матрицы с помощью .iloc[0, 1] и округлим результат

flats.corr(method = ‘pearson’).iloc[0, 1].round(2)

Достаточно высокий уровень корреляции. При этом, как мы видим, зависимость нелинейна и возможно коэффициент Пирсона не до конца уловил силу взаимосвязи. Как нам преодолеть ограничение линейности?

Обратите внимание, прежде чем построить график, Питон упорядочил значения площади (ось x). Упорядочил, то есть присвоил им ранг (порядковый номер) от первого до, в данном примере, девятого. В каком случае значения цены (ось y) будут также возрастать? Только в случае если их ранги мало отличаются от рангов значений площади квартиры.

Коэффициент корреляции Спирмена как раз считает степень отличия рангов двух переменных.

Приведем формулу.

$$ r_{spearman} = frac{6 sum d_i^2 }{n(n^{2}-1)} $$

Вычислим коэффициент Спирмена с помощью Питона. Вначале присвоим каждому значению в обоих столбцах ранг (порядковый номер), предварительно упорядочив значения по убыванию.

# для этого используем метод .rank() с параметром ascending = False

flats[‘area_rank’] = flats.area.rank(ascending = False)

flats[‘price_rank’] = flats.price.rank(ascending = False)

flats

расчет рангов коэффициента корреляции Спирмена

Таким образом площади дома в 90 квадратных метров и цене в 9,2 миллона рублей будет присвоен ранг 1. Теперь мы можем вычислить разницу рангов для каждого из наблюдений и возвести ее в квадрат.

# вычтем из рангов площади ранги цены

flats[‘diff’] = flats[‘area_rank’] flats[‘price_rank’]

# возведем разницу в квадрат

flats[‘diff_sq’] = np.square(flats[‘diff’])

flats

квадрат разницы рангов коэффициента корреляции Спирмена

Выполним оставшиеся вычисления в соответствии с приведенной выше формулой.

# поместим количество наблюдений в переменную n

n = flats.shape[0]

# применим формулу для расчета коэффициента Спирмена

1 ((6 * flats[‘diff_sq’].sum()) / (n * (n**2 1)))

Рассчитаем корреляцию Спирмена с помощью метода .corr() библиотеки Pandas с параметром method = ‘spearman’.

flats[[‘area’, ‘price’]].corr(method = ‘spearman’).iloc[0, 1].round(2)

Как мы видим, этот коэффициент гораздо лучше уловил монотонную нелинейную зависимость двух переменных.

Также замечу, что коэффициент корреляции Спирмена менее чувствителен к выбросам, находящимся на «краях» обеих выборок, потому что опять же учитывает не само значение, а присвоенный ему ранг.

Категориальные порядковые данные

Как уже было сказано, помимо количественных значений коэффициент Спирмена способен измерить направление и силу взаимосвязи категориальных порядковых значений (categorical ordinal data).

Это могут быть оценки уровня удовлетворености клиента (очень понравилось, понравилось, не понравилось), размеры, выраженные категорией (S, M, L, …) и так далее.

В качестве примера рассмотрим оценку собственного самочувствия по шкале от 1 до 10, которую пациенты поставили себе до и после нового метода лечения.

# создадим датафрейм с данными о самочувствии

treatment = pd.DataFrame(

    [

        [3, 2],

        [4, 3],

        [2, 1],

        [1, 5],

        [6, 7],

        [7, 6],

        [5, 4]

    ],

    columns = [‘Before’, ‘After’])

treatment

коэффициент корреляции Спирмена: данные о самочувствии

# выведем данные на графике

plt.figure(figsize = (8, 6))

plt.scatter(treatment.Before, treatment.After)

plt.xlabel(‘Before’, fontsize = 15)

plt.ylabel(‘After’, fontsize = 15)

plt.grid()

plt.show()

коэффициент корреляции Спирмена: точечная диаграмма данных

По всей видимости корреляция должна быть меньше, чем в предыдущем примере. Приступим к измерениям. Сделать это на самом деле очень просто, потому что порядковые значения уже сами по себе представляют собой ранги. Остается только найти квадрат их разности и применить формулу коэффициента корреляции.

# найдем квардрат разницы рангов

treatment[‘diff’] = treatment[‘Before’] treatment[‘After’]

treatment[‘diff_sq’] = np.square(treatment[‘diff’])

treatment

коэффициент корреляции Спирмена: разница рангов и квадрат этой разницы

# применим формулу коэффициента корреляции Спирмена

n = treatment.shape[0]

round(1 ((6 * treatment[‘diff_sq’].sum()) / (n * (n**2 1))), 2)

Остается сравнить с методом .corr() библиотеки Pandas.

treatment[[‘Before’, ‘After’]].corr(method = ‘spearman’).iloc[0, 1].round(2)

Обратите внимание, ни в количественных данных, ни в порядковых у нас не было повторяющихся или совпадающих наблюдений. В случае совпадающих наблюдений (tied ranks), то есть когда значения x или y повторяются, расчет коэффициента корреляции Спирмена также возможен, но немного усложняется.

Коэффициент ранговой корреляции Кендалла

Коэффициент ранговой корреляции Кендалла (еще говорят тау Кендалла или тау-коэффициент, Kendall’s $tau$ rank correlation coefficient), как и метод Спирмена, может применяться для измерения силы взаимосвязи количественных и порядковых категориальных переменных и подходит для анализа нелинейных зависимостей. Это также непараметрический тест.

Смысл и методику расчета коэффициента Кендалла легко понять на примере. Вновь возьмем данные о самочувствии до и после лечения.

# вернем датафрейм к исходному виду

treatment = treatment[[‘Before’, ‘After’]]

treatment

коэффициент корреляции Кендалла: данные о самочувствии

Теперь рассмотрим две пары наблюдений, например, под индексом 0 и 1.

пары наблюдений 0 и 1

Мы видим, что в столбце Before значения наблюдения 0 меньше, чем значение наблюдения 1 (потому что 3 < 4). То же самое можно наблюдать в столбце After (2 < 3). Такая пара наблюдений называется конкордантной (concordant). Конкордантной будет и пара наблюдений, где оба значения в первом наблюдении больше обоих значений во втором. К ним относятся, например, пары 1 и 2 (где 4 > 2, а 3 > 1).

пары наблюдений 1 и 2

Если же описанные выше условия не выполняются, то такая пара наблюдений будет называться дискордантной (discordant). К таким наблюдениям относятся, например, наблюдения 4 и 5 (6 > 7, но 7 < 6).

пары наблюдений 4 и 5

Отнесем каждую из пар нашего датасета к одному из этих классов.

# 0

# 1 C

# 2 C  C

# 3 D  D  D

# 4 C  C  C  C

# 5 C  C  C  C  D

# 6 C  C  C  D  C  C

#   0  1  2  3  4  5  6

Получилось 16 конкордантных (C) и 5 дискордантных (D) пар. Их общее количество очевидно равно 21. Это значение удобно посчитать по формуле сочетаний.

$$ C(n, r) = frac{n!}{(n-r)! r!} rightarrow C(7, 2) = frac{7!}{(7-2)! 2!} = 21 $$

где n — количество наблюдений, а r равно двум, потому что мы ищем сочетания пар элементов. Можно воспользоваться и упрощенной формулой.

$$ C(r) = frac{(n cdot (n-1))}{2} rightarrow C(7) = frac{7 cdot (7-1)}{2} = 21 $$

# найдем количество парных сочетаний с помощью Питона

n = 7

pairs = (7 * (7 1)) // 2

pairs

Так вот, коэффициент корреляции Кендалла показывает соотношение конкордантных и дискордантных пар по следующей формуле.

$$ tau = frac{text{concordant pairs}-text{discordant pairs}}{text{total pairs}}$$

Применим ее к нашему датасету.

concordant = 16

discordant = pairs concordant

np.round((concordant discordant) / pairs, 2)

Точно такого же результата можно добиться с помощью метода .corr() библиотеки Pandas.

treatment.corr(method = ‘kendall’).iloc[0, 1].round(2)

Смысл этого коэффициента в следующем.

Чем больше доля конкордантных пар, тем больше схожих рангов, а значит сильнее взаимосвязь между переменными.

Коэффициент неопределенности

Определение и понятие симметричности теста

Коэффициент неопределенности (uncertainty coefficient) или U Тиля (Theil’s U) позволяет оценить взаимосвязь между двумя категориальными признаками, например, X и Y. Формально он определяется как значение X при условии данного Y.

$$U(x|y)$$

Более того, в отличие от некоторых других тестов, он несимметричен (asymmetric), что позволяет узнать зависит ли Y от X, так же как X от Y.

$$U(y|x) neq U(x|y)$$

Понятие симметричности теста легко представить на следующем простом примере.

симметричность статистического теста

Очевидно, что мы легко можем предсказать Y зная X, а вот зная Y мы можем меньше сказать про X (обратите внимание, что категории в X не совпадают для двух категорий в Y).

Используем этот несложный датасет для дальнейших расчетов.

# возьмем две категориальные переменные со следующими значениями

x = np.array([‘q’, ‘t’, ‘q’, ‘n’, ‘n’, ‘c’])

y = np.array([‘A’, ‘A’, ‘A’, ‘B’, ‘B’, ‘B’])

Как рассчитывается

Условная энтропия

U Тиля основывается на понятии условной энтропии (condition entropy), которая позволяет измерить объем информации, необходимый для описания значений переменной X с помощью переменной Y.

$$ S(X|Y) = -sum p(x,y) logfrac{p(x,y)}{p(y)} $$

Теоретическое обоснование формул условной энтропии и энтропии выходит за рамки сегодняшнего занятия. Мы сосредоточимся на расчете и практическом применении каждой из них.

Рассчитаем условную энтропию с помощью Питона. Вначале нам необходимо рассчитать частоту классов категориальных переменных. Для этого прекрасно подойдет класс Counter модуля collections.

# импортируем класс Counter модуля collections

from collections import Counter

Посмотрим, сколько раз встречаются классы переменной Y.

# найдем частоту классов переменной y

y_counts = Counter(y)

y_counts

Counter({‘A’: 3, ‘B’: 3})

Далее возьмем каждую пару значений X и Y и рассчитаем, сколько раз встречается каждая из них.

# возьмем каждую пару значений X и Y с помощью функций zip() и list()

list(zip(x, y))

[(‘q’, ‘A’), (‘t’, ‘A’), (‘q’, ‘A’), (‘n’, ‘B’), (‘n’, ‘B’), (‘c’, ‘B’)]

# рассчитаем их частоту

xy_counts = Counter(list(zip(x, y)))

xy_counts

Counter({(‘A’, ‘q’): 2, (‘A’, ‘t’): 1, (‘B’, ‘n’): 2, (‘B’, ‘c’): 1})

Теперь найдем общее количество значений.

total_counts = len(x)

total_counts

В соответствии с формулой выше нам нужно найти вероятность Y ($p(y)$) и вероятность X при условии Y ($p(x,y)$). Для расчета $p(y)$ мы пройдемся по ключам словаря xy_counts и посмотрим в словаре y_counts сколько раз встречается второй элемент каждого ключа.

# пройдемся по ключам xy_counts

for xy in xy_counts.keys():

  # (выведем ключ для наглядности)

  print(xy)

  # и посмотрим в y_counts сколько раз встречается второй элемент каждого кортежа

  print(y_counts[xy[1]])

(‘q’, ‘A’)

3

(‘t’, ‘A’)

3

(‘n’, ‘B’)

3

(‘c’, ‘B’)

3

Мы видим, что категория A и категория B в нашем случае встречаются по три раза. Остается разделить частоту каждой категории на общее количество элементов.

# найдем p(y) разделив каждую частоту на общее количество элементов

for xy in xy_counts.keys():

  print(y_counts[xy[1]] / total_counts)

Выполним похожее упражнение для того, чтобы найти $p(x,y)$.

# снова пройдемся по парам значений

for xy in xy_counts.keys():

  # (выведем эти пары для наглядности)

  print(xy)

  # выведем частоту каждой пары (на этот раз именно пары, а нее ее второго элемента)

  print(xy_counts[xy])

  # и рассчитаем вероятность

  print(xy_counts[xy] / total_counts)

(‘q’, ‘A’)

2

0.3333333333333333

(‘t’, ‘A’)

1

0.16666666666666666

(‘n’, ‘B’)

2

0.3333333333333333

(‘c’, ‘B’)

1

0.16666666666666666

# для дальнейшей работы нам понадобится модуль math

import math

Теперь остается подставить $p(y)$ и $p(x,y)$ в формулу.

# объявим переменную для условной энтропии

cond_entropy = 0.0

# в цикле снова пройдемся по парам значений

for xy in xy_counts.keys():

  # найдем p(y)

  p_y = y_counts[xy[1]] / total_counts

  # и p(x,y)

  p_xy = xy_counts[xy] / total_counts

  # подставим их в формулу и просуммируем результат

  # (мы использовали логарифм с основанием два, но можно использовать, например, и натуральный логарифм)

  cond_entropy += p_xy * math.log(p_y / p_xy, 2)

cond_entropy

Поместим этот код в функцию.

# поместим код в функцию

def conditional_entropy(x, y, log_base: float = 2):

  y_counts = Counter(y)

  xy_counts = Counter(list(zip(x, y)))

  total_counts = len(x)

  cond_entropy = 0.0

  for xy in xy_counts.keys():

      p_xy = xy_counts[xy] / total_counts

      p_y = y_counts[xy[1]] / total_counts

      cond_entropy += p_xy * math.log(p_y / p_xy, log_base)

  return cond_entropy

# вновь рассчитаем условную энтропию

conditional_entropy(x, y)

Убедимся в несимметричности объема информации, содержащегося в X относительно Y и в Y относительно X, поменяв переменные местами.

conditional_entropy(y, x)

Здесь становится очевидным важный факт.

Если условная энтропия равна нулю, это значит, что с помощью переменной Y мы можем полностью описать переменную X (в нашем примере наоборот). При этом, чем выше условная энтропия, тем меньше информации об X содержится в переменной Y.

Теперь рассмотрим второй компонент формулы коэффициента неопределенности.

Энтропия

Энтропия (entropy) случайной величины рассчитывается по следующей формуле.

$$ S(X) = -sum p(x)log{p(x)} $$

Это значение тем выше, чем менее вероятным является каждый из исходов испытания. Например, энтропия бросания игральной кости будет выше, чем подбрасывания монеты. В первом случае вероятность каждого исхода равна 1/6, во втором 1/2.

Убедимся в этом с помощью функции entropy() модуля stats библиотеки scipy.

# импортируем модуль stats библиотеки scipy

import scipy.stats as st

# рассчитаем энтропию бросания кости и подбрасывания монеты

st.entropy([1/6, 1/6, 1/6, 1/6, 1/6, 1/6], base = 2), st.entropy([1/2, 1/2], base = 2)

Выполним расчет вручную. Вначале найдем вероятность каждого из значений случайной величины $p(x)$.

# найдем частоту каждого элемента в X

x_counts = Counter(x)

# их общее количество

total_counts = len(x)

# разделим каждую частоту на общее количество элементов

p_x = list(map(lambda n: n / total_counts, x_counts.values()))

# выведем результат

print(p_x)

[0.3333333333333333, 0.16666666666666666, 0.3333333333333333, 0.16666666666666666]

Теперь подставим это значение в формулу и найдем энтропию.

# объявим переменную для условной энтропии

entropy = 0.0

# подставим каждую вероятность в формулу и просуммируем

for p in p_x:

  entropy += p * math.log(p, 2)

# выведем результат

entropy

Проверим правильность результата с помощью функции библиотеки scipy().

st.entropy(p_x, base = 2)

Также объявим соответствующую функцию.

# объявим функцию

def entropy(x, log_base: float = 2):

  x_counts = Counter(x)

  total_counts = len(x)

  p_x = list(map(lambda n: n / total_counts, x_counts.values()))

  entropy = 0.0

  for p in p_x:

    entropy += p * math.log(p, 2)

  return entropy

# проверим результат

entropy(x)

Замечу, что условная энтропия S(X|Y) равна энтропии случайной величины S(X), если величины X и Y независимы.

$$ S(X|Y) = S (X) iff X ⫫ Y $$

Из этого следует, что самое большее условная энтропия может быть равна энтропии этой переменной (в случае, если Y никак не объясняет X).

$$ S(X) leq S(X|Y) $$

Все это важно для расчета коэффициента неопределенности.

U Тиля

Приведем и обсудим формулу.

$$ U(X|Y) = frac{S(X)-S(X|Y)}{S(X)} $$

Зачем рассчитывать не только условную энтропию, но и энтропию случайной величины? Дело в том, что так мы можем не просто измерять «объяснимость» переменной X с помощью Y, но и сравнивать между собой условную энтропию любых категориальных переменных.

Арифметически, чем ниже условная энтропия, тем ближе значение показателя к единице. Чем она выше, тем коэффициент неопределенности ближе к нулю.

Таким образом, U Тиля всегда находится в диапазоне от 0 до 1. При этом, ноль означает, что переменная Y не несет никакой информации относительно переменной X, единица — что переменная Y содержит всю необходимую информацию.

Рассчитаем U Тиля с помощью Питона.

# сразу объявим функцию

def ucoef(x, y, log_base = 2):

  # найдем условную энтропию S(X,Y)

  s_xy = conditional_entropy(x, y, log_base)

  # энтропию S(X)

  s_x = entropy(x, log_base)

  # подставим эти значения в формулу

  u = (s_x s_xy) / s_x

  # выведем результат

  return u

Найдем коэффициент неопределенности для X и Y.

Кроме того, убедимся, что X полностью объясняет Y.

Обратите внимание, что коэффициент не может принимать отрицательных значений. Это логично, потому что строго говоря в случае категориальных переменных мы измеряем не корреляцию (направление и силу взаимного изменения, correlation), а степень взаимосвязи (association) между двумя переменными, которая либо есть (и может доходить до единицы), либо ее нет (равна нулю).

Точечно-бисериальная корреляция

Точечно-бисериальная корреляция (point-biserial correlation) позволяет оценить взаимосвязь между количественной переменной и дихотомической (выраженной двумя значениями) качественной переменной. Например, нам может быть важно оценить связь возраста (X) и выживаемости пассажиров «Титаника» (Y, классы 0 и 1). Приведем формулу.

Формула

$$ r_{pb} = frac{M_1-M_0}{s_n} sqrt{frac{n_1 n_0}{n^2}} $$

В данном случае мы делим наблюдения на две группы, в первую группу попадут наблюдения, относящиеся к классу 0, во вторую — к классу 1. Для каждой группы мы считаем средние значения ($M_0$ и $M_1$) и делим их разность на среднее квадратическое отклонение всех значений в переменной X ($s_n$).

Под корнем находится произведение относительного размера двух групп ($n_0$ и $n_1$ — это размеры групп, $n$ — общее число наблюдений).

Коэффициент точечно-бисериальной корреляции находится в диапазоне от $-1$ до $1$ и интерпретируется так же, как и коэффициент корреляции Пирсона.

Выше приведена формула для генеральной совокупности. Если нам доступна лишь выборка, формула выглядит следующим образом.

$$ r_{pb} = frac{M_1-M_0}{s_{n-1}} sqrt{frac{n_1 n_0}{n(n-1)}} $$

СКО ($s_{n-1}$) в этом случае также рассчитывается по формуле для выборки. Приведем пример.

Пример расчета на Питоне

Подгрузим датасет о вине из библиотеки sklearn. На основе свойств вин нам предлагается спрогнозировать один из трех классов вина (классы 0, 1 и 2). Так как нам нужна дихотомическая переменная, удалим наблюдения, относящиеся к классу 2.

# из модуля datasets библиотеки sklearn импортируем датасет о вине

from sklearn import datasets

data = datasets.load_wine()

# превратим его в датафрейм

wine = pd.DataFrame(data.data, columns = data.feature_names)

# добавим целевую переменную

wine[‘target’] = data.target

# оставим только классы 0 и 1

wine = wine[wine.target != 2]

# убедимся, что в целевой переменной осталось только два класса

np.unique(wine.target)

Найдем корреляцию между целевой переменной и содержанием пролина (proline).

# оставим только интересующие нас столбцы

wine = wine[[‘proline’, ‘target’]]

wine.head(3)

точечно-бисериальная корреляция

Теперь напишем функцию для расчета точечно-бисериальной корреляции (будем использовать формулу для выборки).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

# объявим функцию для расчета точечно-бисериальной корреляции

# функция будет принимать два параметра: количественную и качественную переменные

def pbc(continuous, binary):

  # преобразуем количественную переменную в массив Numpy

  continuous_values = np.array(continuous)

  # классы качественной переменной превратим в нули и единицы

  binary_values = np.unique(binary, return_inverse = True)[1]

  # создадим две подгруппы количественных наблюдений

  # в зависимости от класса дихотомической переменной

  group0 = continuous_values[np.argwhere(binary_values == 0).flatten()]

  group1 = continuous_values[np.argwhere(binary_values == 1).flatten()]

  # найдем средние групп,

  mean0, mean1 = np.mean(group0), np.mean(group1)

  # а также длины групп и всего датасета

  n0, n1, n = len(group0), len(group1), len(continuous_values)

  # рассчитаем СКО количественной переменной

  std = continuous_values.std()

  # подставим значения в формулу

  return (mean1 mean0) / std * np.sqrt( (n1 * n0) / (n * (n1)) )

Применим эту функцию для нахождения корреляции между пролином и классом вина.

pbc(wine[‘proline’], wine[‘target’])

Для расчета корреляции мы также можем воспользоваться функцией из библиотеки Scipy.

# импортируем модуль stats из библиотеки scipy

from scipy import stats

# передадим данные в функцию и выведем первый результат[0]

stats.pointbiserialr(wine[‘proline’], wine[‘target’])[0]

Небольшие различия связаны с тем, что функция библиотеки Scipy использует формулу для генеральной совокупности.

Что интересно, математически коэффициент точечно-бисериальной корреляции дает тот же результат, что и коэффициент корреляции Пирсона.

# сравним в корреляцией Пирсона

wine.corr().iloc[0,1]

Пояснения к коду

Сделаем пояснения к приведенному коду. Упростим пример и предположим, что нам нужно рассчитать, есть ли зависимость между количеством сна и результатом экзамена.

# количество сна в часах поместим в массив Numpy

sleep = np.array([6, 8, 9, 7])

# результат будет записан с помощью двух категорий pass и fail

exam = [‘pass’, ‘fail’, ‘pass’, ‘fail’]

Для расчета точечно-бисериальной корреляции нам нужно разделить данные о сне в зависимости от результата экзамена на две группы. В первую очередь, преобразуем строковые значения переменной exam в числа. Для этого, в частности, мы можем использовать функцию np.unique() с параметром return_inverse = True.

exam_encoded = np.unique(exam, return_inverse = True)

exam_encoded

(array([‘fail’, ‘pass’], dtype='<U4′), array([1, 0, 1, 0]))

Вторым результатом [1] будут числовые значения категорий. Теперь используем функцию np.argwhere(), чтобы найти индексы тех, кто сдал экзамены и тех, кто не сдал.

# функция выводит индексы элементов, соответствующих заданному условию

fail_index = np.argwhere(exam_encoded[1] == 0)

pass_index = np.argwhere(exam_encoded[1] == 1)

# студенты, провалившие тест, должны быть на втором и четвертом местах

fail_index

# сдавшие — на первом и третьем

pass_index

Остается убрать второе измерение массивов.

fail_index, pass_index = fail_index.flatten(), pass_index.flatten()

(array([1, 3]), array([0, 2]))

Теперь используем индексы для группировки часов сна в зависимости от результатов экзамена.

sleep[fail_index], sleep[pass_index]

(array([8, 7]), array([6, 9]))

Теперь мы можем легко посчитать нужные метрики и подставить их в формулу точечно-бисериальной корреляции.

Корреляционное отношение

Корреляционное отношение (correlation ratio) выявляет взаимосвязь между количественной переменной и категориальной переменной с любым количеством категорий. Смысл этой метрики лучше всего понять на простом примере из Википедии⧉.

Простой пример

Предположим, что у нас есть результаты экзаменов по трем предметам (алгебре, геометрии и статистике), и нам нужно понять, есть ли взаимосвязь между предметом и поставленными оценками. Взглянем на данные:

  • алгебра: 45, 70, 29, 15, 21 (5 оценок)
  • геометрия: 40, 20, 30, 42 (4 оценки)
  • статистика: 65, 95, 80, 70, 85, 73 (6 оценок)

Шаг 1. Найдем средние значения внутри каждой группы и общее среднее всех наблюдений.

  • алгебра: 36
  • геометрия: 33
  • статистика: 78
  • общее среднее: 52

Шаг 2. Теперь найдем, насколько наблюдения в каждой из групп отличаются от группового среднего. Возведем результаты в квадрат для того, чтобы положительные и отрицательные значения не взаимоудалялись, и сложим их. Например, для алгебры сумма квадратов отклонений от среднего будет равна

$$ (36-45)^2+(36-70)^2+(36-29)^2+(36-15)^2+(36-21)^2 = 1959 $$

Для геометрии — 308, для статистики — 600. Сложим внутригрупповые отклонения от среднего и получим $1959+308+600=2860$

Сумма квадратов отклонений всех наблюдений от общего среднего составит 9640.

Шаг 3. Теперь выясним, какую долю в общей дисперсии составляет внутригрупповая дисперсия. Для этого разделим 2860 на 9640.

$$ frac{2860}{9640} approx 0,29668 $$

Соответственно доля не объясненных внутригрупповой дисперсией отклонений (ее принято обозначать греческой буквой $eta$, «эта») составляет

$$ eta^2 = 1-frac{2860}{9640} approx 0,70332 $$

Логично предположить, что чем выше доля не объясненных внутригрупповыми отклонениями дисперсии (чем выше $eta^2$), тем большую важность имеет дисперсия между группами. Другими словами, тем важнее отклонения между предметами, а не между оценками внутри каждого предмета.

Значит, чем выше $eta^2$, тем теснее связь между категориями и количественными оценками.

Шаг 4. Извлечем корень из получившегося значения для того, чтобы вернуться к исходным единицам измерения.

$$ eta = sqrt{0,70332} approx 0,83864 $$

Подведем итог. Корреляционное отношение изменяется от 0 до 1. Если показатель равен нулю, общая дисперсия объясняется исключительно внутригрупповыми отклонениями и связи между качественной и количественной переменными нет. Если показатель равен единице, общая дисперсия полностью объясняется только дисперсией между группами и связь между переменными велика.

Можно также сказать, что если $eta$ равна нулю, то внутригрупповые средние одинаковы, если $eta$ равна единице, все значения в каждой из категорий должны быть одинаковы (например, все студенты по алгебре должны получить одинаковую оценку и т.д.).

Еще один способ расчета

Для расчета корреляционного отношения можно также найти взвешенные по количеству элементов квадраты отклонений общего среднего от внутригрупповых средних. Для примера выше арифметика выглядит следующим образом

$$ 5(36-52)^2+4(33-52)^2+6(78-52)^2 = 6780 $$

Обратите внимание, это то же самое, что и $9640-2860=6780$, то есть сумма отклонений, не объясняемых внутригрупповой дисперсией. Таким образом,

$$ eta^2 = frac{6780}{9640} approx 0,70332 $$

$$ eta = sqrt{0,70332} approx 0,83864 $$

Остается написать функцию для расчета корреляционного отношения на Питоне.

Код на Питоне

Используем те же данные, что и в примере выше.

# создадим датафрейм с результатами экзаменов по трем предметам

test = pd.DataFrame({

    # используем список с названиями предметов

    ‘subject’ : [‘algebra’] * 5 + [‘geometry’] * 4 + [‘stats’] * 6,

    # и соответствующими оценками

    ‘score’ : [45, 70, 29, 15, 21, 40, 20, 30, 42, 65, 95, 80, 70, 85, 73 ]

})

Вначале возьмем значения оценок, рассчитаем сумму квадратов отклонений от среднего значения, а также закодируем категориальные переменные числами. Для этого как и ранее в случае точечно-бисериальной корреляцией используем функцию np.unique() с параметров return_inverse = True.

# возьмем значения оценок

values = np.array(test.score)

# и рассчитаем сумму квадратов отклонений от среднего значения

ss_total = np.sum((values.mean() values) ** 2)

# закодируем категории предметов числами

cats = np.unique(test.subject, return_inverse = True)[1]

cats

array([0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2])

Теперь применим первый вариант расчета корреляционного отношения.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

# объявим переменную для внутригрупповой дисперсии

ss_ingroups = 0

# в цикле, состоящем из количества категорий

for c in np.unique(cats):

  # вычленим группу оценок по каждому предмету

  group = values[np.argwhere(cats == c).flatten()]

  # найдем суммы квадратов отклонений значений от групповых средних

  # и сложим эти результаты для каждой группы

  ss_ingroups += np.sum((group.mean() group) ** 2)

# найдем долю внутригрупповой дисперсии и вычтем ее из единицы

eta_squared = 1 ss_ingroups/ss_total

# найдем корень из предыщущего значения

eta = np.sqrt(eta_squared)

# это и будет корреляционное отношение

eta

Напомню, что использование функции np.argwhere() мы уже рассмотрели ранее на этом занятии. Рассчитаем по второму варианту.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

# объявим переменную для межгрупповой дисперсии

ss_betweengroups = 0

# в цикле, состоящем из количества категорий,

for c in np.unique(cats):

  # вычленим группу оценок по каждому предмету

  group = values[np.argwhere(cats == c).flatten()]

  # для каждой группы

  # найдем взвешенный по количеству элементов в группе

  # квадрат отклонения группового среднего от общего среднего

  # и сложим результаты

  ss_betweengroups += len(group) * (group.mean() values.mean()) ** 2

# найдем долю межгрупповой дисперсии

eta_squared = ss_betweengroups/ss_total

# найдем корень из предыщущего значения

eta = np.sqrt(eta_squared)

# это и будет корреляционное отношение

eta

Мы готовы написать функции.

# вариант 1

def correlation_ratio1(numerical, categorical):

  values = np.array(numerical)

  ss_total = np.sum((values.mean() values) ** 2)

  cats = np.unique(categorical, return_inverse = True)[1]

  ss_ingroups = 0

  for c in np.unique(cats):

    group = values[np.argwhere(cats == c).flatten()]

    ss_ingroups += np.sum((group.mean() group) ** 2)

  return np.sqrt(1 ss_ingroups/ss_total)

# проверим результат

correlation_ratio1(test.score, test.subject)

# вариант 2

def correlation_ratio2(numerical, categorical):

  values = np.array(numerical)

  ss_total = np.sum((values.mean() values) ** 2)

  cats = np.unique(categorical, return_inverse = True)[1]

  ss_betweengroups = 0

  for c in np.unique(cats):

    group = values[np.argwhere(cats == c).flatten()]

    ss_betweengroups += len(group) * (group.mean() values.mean()) ** 2

  return np.sqrt(ss_betweengroups/ss_total)

# проверим результат

correlation_ratio2(test.score, test.subject)

Подведем итог

Для удобства, давайте обобщим, какие методы и когда можно использовать.

  • Если речь идет о двух количественных переменных мы можем использовать:
    • коэффициент Пирсона, если речь идет о выявлении линейной зависимости
    • коэффициенты Спирмена и Кендалла, если требуется оценить нелинейную взаимосвязь
  • В случае двух категориальных переменных, подойдут:
    • уже упомянутые коэффициенты Спирмена и Кендалла для порядковых категорий, а также
    • коэффициент неопределенности Тиля
  • Когда перед нами одна количественная и одна категориальная переменные, мы можем рассчитать:
    • точечно-бисериальный коэффициент корреляции, в случае, если категориальная переменная имеет дихотомическую шкалу; или
    • корреляционное отношение в случае множества категорий

Вопросы для закрепления

Вопрос. Чем параметрические тесты отличаются от непараметрических?

Посмотреть правильный ответ

Ответ: параметрический тест показывает корректный результат, если данные, на которых он основывается соответствуют определенным критериям или допущениям, для непараметрического теста такие критерии отсутствуют.

При этом обратите внимание, отсутствие допущений не отменяет ограничения на применение тестов только к определенным типам данных. Например, метод Спирмена, как уже было сказано, не подойдет для выявления немонотонной зависимости.

Вопрос. При расчете коэффициента корреляции Пирсона, что дает деление ковариации на произведение СКО двух переменных $s_x s_y$?

Посмотреть правильный ответ

Ответ: таким образом мы выражаем любую ковариацию как долю от произведения двух СКО и, как следствие, можем измерять силу взаимосвязи двух переменных и сравнивать коэффициенты корреляции между собой.

Вопрос. Что такое симметричность и несимметричность корреляционного метода?

Посмотреть правильный ответ

Ответ: симметричный метод покажет одинаковую силу взаимосвязи переменной X с переменной Y, и переменной Y с переменной X даже если в действительности взаимосвязь не одинаковая; несимметричный метод покажет разную корреляцию X с Y и Y с X, если такое различие действительно существует.

Полезные ссылки

  • Библиотека dython⧉. Прямые ссылки на документацию⧉ и исходный код⧉ функций.

Корреляция показывает степень совместного изменения двух признаков. При этом, как уже было сказано, в корреляционном анализе нет зависимых и независимых переменных. Они эквивалентны.

Количественным предсказанием одной переменной (зависимой) на основании другой (независимой) занимается регрессионный анализ.

2.1. Выборочная
ковариация

Выборочная
ковариация

является мерой взаимосвязи между двумя
переменными. При наличии
наблюдений двух переменных (и)
выборочная ковариация междуизадается формулой:

.

(2.1)

В
разделе 2.4 мы определим также ковариацию
генеральной совокупности. Для различения
этих ковариаций мы используем обозначение
с прописной буквыприменительно к выборочной ковариации
и
для ковариации междуив генеральной совокупности. Иногда
последнюю выгодно будет обозначить как.
Аналогичные обозначения мы используем
и для дисперсии:
применительно к выборочной дисперсии
ик дисперсии для генеральной совокупности
(теоретической).

Сформулируем
основные
правила расчета ковариации
.

Правило
1
. Если
,
то.

Доказательство:

.

Правило
2
. Если
,
где
константа, то.

Доказательство:

.

Правило
3
. Если
,
где
константа, то.

Доказательство:
.

2.2. Альтернативное
выражение для выборочной ковариации

Другим
эквивалентным выражением для выборочной
ковариации между
иявляется

(2.2)

Формула
(2.2) оказывается более удобной при ручном
расчете ковариации.

Приведем
доказательство эквивалентности выражений
(2.1) и (2.2).

.

В
результате сложения по столбцам, а также
воспользовавшись тем, что
и,
получим

.

2.3. Теоретическая
ковариация

Если
и– случайные величины, то теоретическая
ковариацияопределяется как математическое ожидание
произведения отклонений этих величин
от их средних значений:

,
(2.3)

где
и– теоретические средние значенияисоответственно.

Если теоретическая
ковариация неизвестна, то для ее оценки
может быть использована выборочная
ковариация, вычисленная по ряду
наблюдений. К сожалению, оценка будет
иметь отрицательное смещение, т.к.

.
(2.4)

Причина
заключается в том, выборочные отклонения
измеряются по отношению к выборочным
средним значениям величин
ии имеют тенденцию к занижению отклонений
от истинных средних значений. Очевидно,
мы можем рассчитать несмещенную оценку
путем умножения выборочной оценки на.
Доказательство соотношения (2.4) можно
провести аналогично тому, как это сделано
в разделе 1.7. Правила для теоретической
ковариации такие же, как и для выборочной
ковариации.

Если
инезависимы, то их теоретическая ковариация
равна нулю, поскольку

,
(2.5)

благодаря
свойству независимости и факту, что
иравняется соответственнои.

2.4.
Выборочная дисперсия

Для
выборки из
наблюденийвыборочная дисперсия определяется как
среднеквадратичное отклонение в выборке:


(2.6)

Определенная
таким образом выборочная дисперсия
представляет собой смещенную оценку
теоретической дисперсии. В разделе 1.7
показано, что
,
определенная как

,

является
несмещенной оценкой
.
Отсюда следует, что ожидаемое значение
величиныравнои
что, следовательно, она имеет отрицательное
смещение. Отметим, что если размер
выборкистановится большим, тостремится к единице и, таким образом,
математическое ожидание величиныстремится к.
Можно легко показать, что ее предел по
вероятностиравени, следовательно, она является примером
состоятельной оценки, которая смещена
для небольших выборок.

Условимся
по аналогии с ковариацией обозначать
теоретическую (или генеральную) дисперсию
переменной
какили, если это удобно,.
Выборочная дисперсия всегда будет
обозначаться, какс прописной буквы.

Почему
выборочная дисперсия в среднем занижает
значение теоретической дисперсии?
Причина заключается в том, что она
вычисляется как среднеквадратичное
отклонение от выборочного среднего, а
не от истинного значения. Т.к. выборочное
среднее автоматически находится в
центре выборки, то отклонения от него
в среднем меньше отклонений от
теоретического среднего значения.

2.5. Правила расчета
дисперсии

Прежде,
чем сформулируем и докажем основные
правила расчета дисперсии, заметим, что
дисперсия переменнойможет
рассматриваться, как ковариация между
двумя величинами:

.

Учитывая
это равенство, мы можем воспользоваться
правилами расчета выборочной ковариации,
чтобы вывести правила расчета дисперсии.
Кроме того, мы можем получить другую
формулу для представления
,
используя соотношение (2.2) для выборочной
ковариации.

.

(2.7)

Правило
1
. Если
,
то.

Доказательство:

.

Правило
2
. Если
,
где
константа, то.

Доказательство:

.

Правило
3
.Если
,
где– константа, то.

Доказательство:

.

Правило
4
. Если
,
где
– константа,
то
.

Доказательство:

.

Теоретическая
дисперсия подчиняется тем же самым
правилам, но доказательства здесь
опускаются, поскольку они требуют
применения интегрального исчисления.

2.6. Теоретическая
дисперсия выборочного среднего

Если две переменные
независимы (а, следовательно, их совокупная
ковариация равняется нулю), то теоретическая
дисперсия суммы этих переменных будет
равна сумме этих теоретических дисперсий:

.
(2.8)

Из
данного результата можно получить более
общее правило о том, что теоретическая
дисперсия суммы любого числа переменных
равняется сумме их дисперсий при условии,
что если случайная переменная
имеет дисперсию,
то дисперсия выборочного среднегобудет равна,
где– число наблюдений в выборке:

.
(2.9)

Как
было показано в обзоре, выборочное
среднее является наиболее эффективной
несмещенной оценкой теоретического
среднего при условии, что наблюдения
проводятся независимо друг от друга на
основе одного и того же распределения.

2.7. Коэффициент корреляции

По
сравнению с ковариацией более точной
мерой зависимости является тесно
связанный с ней коэффициент корреляции.
Подобно дисперсии и ковариации,
коэффициент корреляции имеет две формы:
теоретическую и выборочную. Теоретический
коэффициент корреляции традиционно
обозначается греческой буквой
.
Для переменныхиэтот коэффициент обозначается следующим
образом:

.
(2.10)

Если
инезависимы, торавен нулю, т.к. равна нулю теоретическая
ковариация. Если между переменными
существует положительная зависимость,
то,
а следовательно, ибудут
положительными. Если существует строгая
положительная линейная зависимость,
топримет максимальное значение, равное
1. Аналогичным образом при отрицательной
зависимостибудет отрицательным с минимальным
значением –1.

Выборочный
коэффициент корреляции
определяется путем замены теоретических
значений дисперсии и ковариации в
выражении (2.10) на их несмещенные оценки.
Мы показали, что такие оценки могут быть
получены умножением выборочных дисперсии
и ковариации на.
Следовательно,

,
(2.11)

или

.
(2.12)

Подобно
величине
,имеет максимальное значение, равное
единице, которое получается при строгой
линейной положительной зависимости
между выборочными значениямии(когда на диаграмме рассеяния все точки
находятся точно на восходящей прямой
линии). Аналогичным образомпринимает значение –1, когда существует
линейная отрицательная зависимость
(точки лежат точно на нисходящей прямой
линии). Величинапоказывает, что зависимость между
наблюдениямиив выборке отсутствует. Разумеется, тот
факт, что,
необязательно означает, что,
и наоборот.

Коэффициент
корреляции является более подходящим
измерителем зависимости, чем ковариация.
Основная причина этого заключается в
том, что ковариация зависит от единиц,
в которых измеряются переменные
и,
в то время, как коэффициент корреляции
есть величина безразмерная.

2.8. Коэффициент частной корреляции

Анализ
критериев значимости для коэффициента
корреляции будет дан в главе 4, где эти
показатели рассматриваются вместе с
критериями значимости коэффициентов
регрессии. Будет выяснено, что в примере
со спросом на такой, например товар,
как бензин, коэффициент корреляции
незначимо отличается от нуля, что кажется
неправдоподобным с точки зрения здравого
смысла.

Одна
из причин получения такого результата
заключается в очень небольшом размере
выборки ().
Возможно, что при большом размере выборки
оказалось бы, что коэффициент корреляции
значимо отличается от нуля. Здесь,
однако, есть и еще одна причина для
получения отрицательного результата:
мы не учитывали влияние увеличения
дохода на потребительский спрос в целом
и на спрос на бензин в частности.
Положительный эффект увеличения дохода
в основном компенсировал отрицательный
эффект роста цен, и, таким образом, спрос
на бензин оставался стабильным. Следующий
этап исследования состоит в выделении
влияния этих двух факторов. Мы можем
сделать это, используя так называемый
коэффициент частной корреляции, который
определяется следующим образом:

,
(2.13)

где

коэффициент частной корреляции междуив случае постоянства воздействия
величины,
аи– обычные коэффициенты корреляции
междуи,и,исоответственно.

Двумерной называют случайную величину

, возможные значения
которой есть пары чисел

. Составляющие

 и

, рассматриваемые
одновременно, образуют систему двух случайных величин. Двумерную величину
геометрически можно истолковать как случайную точку

 на плоскости

 либо как случайный вектор

.

Дискретной называют двумерную величину, составляющие которой дискретны.

Закон распределения дискретной двумерной СВ.
Безусловные и условные законы распределения составляющих

Законом распределения вероятностей двумерной случайной величины называют соответствие
между возможными значениями и их вероятностями.

Закон
распределения дискретной двумерной случайной величины может быть задан:

а) в
виде таблицы с двойными входом, содержащей возможные значения и их вероятности;

б) аналитически, например в виде функции распределения.

Зная
закон распределения двумерной дискретной случайной величины, можно найти законы
каждой из составляющих. В общем случае, для того чтобы найти вероятность

, надо просуммировать
вероятности столбца

. Аналогично сложив
вероятности строки

 получим вероятность

.

Пусть
составляющие

 и

 дискретны и имеют соответственно следующие
возможные значения:

.

Условным распределением составляющей

 при

 (j сохраняет одно и то же
значение при всех возможных значениях

) называют совокупность
условных вероятностей:

Аналогично
определяется условное распределение

.

Условные
вероятности составляющих

 и

 вычисляют соответственно по формулам:

Для
контроля вычислений целесообразно убедиться, что сумма вероятностей условного
распределения равна единице.

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Ковариация (корреляционный момент)

Ковариация двух случайных величин характеризует степень зависимости случайных величин, так
и их рассеяние вокруг точки

.

Ковариацию
(корреляционный момент) можно найти по формуле:

Свойства ковариации

Свойство 1.

Ковариация двух независимых случайных величин равна нулю.

Свойство 2.

Ковариация двух случайных величин равна математическому ожиданию их
произведение математических ожиданий.

Свойство 3.

Ковариация двухмерной случайной величины по абсолютной случайной величине не
превосходит среднеквадратических отклонений своих компонентов.

Коэффициент корреляции

Коэффициент корреляции – отношение ковариации двухмерной случайной
величины к произведению среднеквадратических отклонений.

Формула коэффициента корреляции:

Две
случайные величины

 и

 называют коррелированными, если их коэффициент
корреляции отличен от нуля.

 и

 называют некоррелированными величинами, если
их коэффициент корреляции равен нулю

Свойства коэффициента корреляции

Свойство 1.

Коэффициент корреляции двух независимых случайных величин равен нулю. Отметим,
что обратное утверждение неверно.

Свойство 2.

Коэффициент корреляции двух случайных величин не превосходит по абсолютной
величине единицы.

Свойство 3.

Коэффициент корреляции двух случайных величин равен по модулю единице тогда и
только тогда, когда между величинами существует линейная функциональная
зависимость.

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Линейная регрессия

Рассмотрим
двумерную случайную величину

, где

 и

 – зависимые случайные величины. Представим
одну из величины как функцию другой. Ограничимся приближенным представлением
величины

 в виде линейной функции величины

:

где

 и

 – параметры, подлежащие определению. Это можно
сделать различными способами и наиболее употребительный из них – метод
наименьших квадратов.

Линейная
средняя квадратическая регрессия

 на

 имеет вид:

Коэффициент

называют
коэффициентом регрессии

 на

, а прямую

называют
прямой среднеквадратической регрессии

 на

.

Аналогично
можно получить прямую среднеквадратической регрессии

 на

:

Смежные темы решебника:

  • Двумерная непрерывная случайная величина
  • Линейный выборочный коэффициент корреляции
  • Парная линейная регрессия и метод наименьших квадратов

Задача 1

Закон
распределения дискретной двумерной случайной величины (X,Y) задан таблицей.

Требуется:


определить одномерные законы распределения случайных величин X и Y;

— найти
условные плотности распределения вероятностей величин;


вычислить математические ожидания mx и my;


вычислить дисперсии σx и σy;


вычислить ковариацию μxy;


вычислить коэффициент корреляции rxy.

xy 3 5 8 10 12
-1 0.04 0.04 0.03 0.03 0.01
1 0.04 0.07 0.06 0.05 0.03
3 0.05 0.08 0.09 0.08 0.05
6 0.03 0.04 0.04 0.06 0.08

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 2

Задана
дискретная двумерная случайная величина (X,Y).

а) найти
безусловные законы распределения составляющих; б) построить регрессию случайной
величины Y на X;  в) построить регрессию случайной величины X на Y;  г) найти коэффициент ковариации; д) найти
коэффициент корреляции.

Y X
1 2 3 4 5
30 0.05 0.03 0.02 0.01 0.01
40 0.03 0.02 0.02 0.04 0.01
50 0.05 0.03 0.02 0.02 0.01
70 0.1 0.03 0.04 0.03 0.01
90 0.1 0.04 0.01 0.07 0.2

Задача 3

Двумерная случайная величина (X,Y) задана
таблицей распределения. Найти законы распределения X и Y, условные
законы, регрессию и линейную регрессию Y на X.

                             x
y
1 2 3
1.5 0.03 0.02 0.02
2.9 0.06 0.13 0.03
4.1 0.4 0.07 0.02
5.6 0.15 0.06 0.01

Задача 4

Двумерная
случайная величина (X,Y) распределена по закону

XY 1 2
-3 0,1 0,2
0 0,2 0,3
-3 0 0,2

Найти
законы распределения случайных величины X и Y, условный закон
распределения Y при X=0 и вычислить ковариацию.
Исследовать зависимость случайной величины X и Y.


Задача 5

Случайные
величины ξ и η имеют следующий совместный закон распределения:

P(ξ=1,η=1)=0.14

P(ξ=1,η=2)=0.18

P(ξ=1,η=3)=0.16

P(ξ=2,η=1)=0.11

P(ξ=2,η=2)=0.2

P(ξ=2,η=3)=0.21

1)
Выписать одномерные законы распределения случайных величин ξ и η, вычислить
математические ожидания Mξ, Mη и дисперсии Dξ, Dη.

2) Найти
ковариацию cov(ξ,η) и коэффициент корреляции ρ(ξ,η).

3)
Выяснить, зависимы или нет события {η=1} и {ξ≥η}

4)
Составить условный закон распределения случайной величины γ=(ξ|η≥2) и найти Mγ и
Dγ.


Задача 6

Дан закон
распределения двумерной случайной величины (ξ,η):

  ξ=-1 ξ=0 ξ=2
η=1 0,1 0,1 0,1
η=2 0,1 0,2 0,1
η=3 0,1 0,1 0,1

1) Выписать одномерные законы
распределения случайных величин ξ и η, вычислить математические ожидания Mξ,
Mη и дисперсии Dξ, Dη

2) Найти ковариацию cov(ξ,η) и
коэффициент корреляции ρ(ξ,η).

3) Являются ли случайные события |ξ>0|
и |η> ξ | зависимыми?

4) Составить условный закон
распределения случайной величины γ=(ξ|η>0) и найти Mγ  и Dγ.


Задача 7

Дано
распределение случайного вектора (X,Y). Найти ковариацию X и Y.

XY 1 2 4
-2 0,25 0 0,25
1 0 0,25 0
3 0 0,25 0

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 8

Случайные
приращения цен акций двух компаний за день имеют совместное распределение,
заданное таблицей. Найти ковариацию этих случайных величин.

YX -1 1
-1 0,4 0,1
1 0,2 0,3

Задача 9

Найдите
ковариацию Cov(X,Y) для случайного дискретного вектора (X,Y),
распределенного по закону:

  X=-3 X=0 X=1
Y=-2 0,3 ? 0,1
Y=1 0,1 0,1 0,2

Задача 10

Совместный
закон распределения пары

 задан таблицей:

xh -1 0 1
-1 1/12 1/4 1/6
1 1/4 1/12 1/6

Найти
закон распределения вероятностей случайной величины xh и вычислить cov(2x-3h,x+2h).
Исследовать вопрос о зависимости случайных величин x и h.


Задача 11

Составить двумерный закон распределения случайной
величины (X,Y), если известны законы независимых составляющих. Чему равен коэффициент
корреляции rxy?

X 20 25 30 35
P 0.1 0.1 0.4 0.4

и


Задача 12

Задано
распределение вероятностей дискретной двумерной случайной величины (X,Y):

XY 0 1 2
-1 ? 0,1 0,2
1 0,1 0,2 0,3

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 13

Совместное
распределение двух дискретных случайных величин ξ и η задано таблицей:

ξη -1 1 2
0 1/7 2/7 1/7
1 1/7 1/7 1/7

Вычислить
ковариацию cov(ξ-η,η+5ξ). Зависимы ли ξ и η?


Задача 14

Рассчитать
коэффициенты ковариации и корреляции на основе заданного закона распределения
двумерной случайной величины и сделать выводы о тесноте связи между X и Y.

XY 2,3 2,9 3,1 3,4
0,2 0,15 0,15 0 0
2,8 0 0,25 0,05 0,01
3,3 0 0,09 0,2 0,1

Задача 15

Задан
закон распределения случайного вектора (ξ,η). Найдите ковариацию (ξ,η)
и коэффициент корреляции случайных величин.

xy 1 4
-10 0,1 0,2
0 0,3 0,1
20 0,2 0,1

Задача 16

Для
случайных величин, совместное распределение которых задано таблицей
распределения. Найти:

а) законы
распределения ее компонент и их числовые характеристики;

b) условные законы распределения СВ X при условии Y=b и СВ Y при
условии X=a, где a и b – наименьшие значения X и Y.

с)
ковариацию и коэффициент корреляции случайных величин X и Y;

d) составить матрицу ковариаций и матрицу корреляций;

e) вероятность попадания в область, ограниченную линиями y=16-x2 и y=0.

f) установить, являются ли случайные величины X и Y зависимыми;
коррелированными.

XY -1 0 1 2
-1 0 1/6 0 1/12
0 1/18 1/9 1/12 1/9
2 1/6 0 1/9 1/9

Задача 17

Совместный
закон распределения случайных величин X и Y задан таблицей:

XY

0

1

3

0

0,15

0,05

0,3

-1

0

0,15

0,1

-2

0,15

0

0,1

Найдите:

а) закон
распределения случайной величины X и закон распределения
случайной величины Y;

б) EX, EY, DX, DY, cov(2X+3Y, X-Y), а
также математическое ожидание и дисперсию случайной величины V=6X-8Y+3.


Задача 18

Известен
закон распределения двумерной случайной величины (X,Y).

а) найти
законы распределения составляющих и их числовые характеристики (M[X],D[X],M[Y],D[Y]);

б)
составить условные законы распределения составляющих и вычислить
соответствующие мат. ожидания;

в)
построить поле распределения и линию регрессии Y по X и X по Y;

г)
вычислить корреляционный момент (коэффициент ковариации) μxy и
коэффициент корреляции rxy.

5 20 35
100 0.05
115 0.2 0.15
130 0.15 0.35
145 0.1 —-


Download Article

Calculate correlation by hand, online, or with a graphing calculator


Download Article

  • By Hand
  • |

  • Online Calculators
  • |

  • Graphing Calculators
  • |

  • Reviewing the Fundamentals
  • |

  • Q&A

The correlation coefficient, denoted as r or ρ, is the measure of linear correlation (the relationship, in terms of both strength and direction) between two variables. It ranges from -1 to +1, with plus and minus signs used to represent positive and negative correlation. If the correlation coefficient is exactly -1, then the relationship between the two variables is a perfect negative fit; if the correlation coefficient is exactly +1, then the relationship is a perfect positive fit. Otherwise, two variables may have a positive correlation, a negative correlation, or no correlation at all. You can calculate correlation by hand, by using some free correlation calculators available online, or by using the statistical functions of a good graphing calculator.

  1. Image titled Find the Correlation Coefficient Step 1

    1

    Assemble your data. To begin calculating a correlation efficient, first examine your data pairs. It is helpful to put them in a table, either vertically or horizontally. Label each row or column x and y.[1]

    • For example, suppose you have four data pairs for x and y. Your table may look like this:
      • x || y
      • 1 || 1
      • 2 || 3
      • 4 || 5
      • 5 || 7
  2. Image titled Find the Correlation Coefficient Step 2

    2

    Calculate the mean of x. In order to calculate the mean, you must add all the values of x, then divide by the number of values.[2]

    Advertisement

  3. Image titled Find the Correlation Coefficient Step 3

    3

    Find the mean of y. To find the mean of y, follow the same steps, adding all the values of y together, then dividing by the number of values.[3]

  4. Image titled Find the Correlation Coefficient Step 4

    4

    Determine the standard deviation of x. Once you have your means, you can calculate standard deviation. To do so, use the formula:[4]

  5. Image titled Find the Correlation Coefficient Step 5

    5

    Calculate the standard deviation of y. Using the same basic steps, find the standard deviation of y. You will use the same formula, using the y data points.[5]

  6. Image titled Find the Correlation Coefficient Step 6

    6

    Review the basic formula for finding a correlation coefficient. The formula for calculating a correlation coefficient uses means, standard deviations, and the number of pairs in your data set (represented by n). The correlation coefficient itself is represented by the lower-case letter r or the lower-case Greek letter rho, ρ. For this article, you will use the formula known as the Pearson correlation coefficient, shown below:[6]

    • rho =left({frac  {1}{n-1}}right)Sigma left({frac  {x-mu _{x}}{sigma _{x}}}right)*left({frac  {y-mu _{y}}{sigma _{y}}}right)
    • You may notice slight variations in the formula, here or in other texts. For example, some will use the Greek notation with rho and sigma, while others will use r and s. Some texts may show slightly different formulas; but they will be mathematically equivalent to this one.
  7. Image titled Find the Correlation Coefficient Step 7

    7

    Find the correlation coefficient. You now have the means and standard deviations for your variables, so you can proceed to use the correlation coefficient formula. Remember that n represents the number of values you have. You have already worked out the other relevant information in the steps above.[7]

  8. Image titled Find the Correlation Coefficient Step 8

    8

    Interpret your result. For this data set, the correlation coefficient is 0.988. This number tells you two things about the data. Look at the sign of the number and the size of the number.[8]

    • Because the correlation coefficient is positive, you can say there is a positive correlation between the x-data and the y-data. This means that as the x values increase, you expect the y values to increase also.
    • Because the correlation coefficient is very close to +1, the x-data and y-data are very closely connected. If you were to graph these points, you would see that they form a very good approximation of a straight line.
  9. Advertisement

  1. Image titled Find the Correlation Coefficient Step 9

    1

    Search the Internet for correlation calculators. Measuring correlation is a fairly standard calculation for statisticians. The calculation can become very tedious if done by hand for large data sets. As a result, many sources have made correlation calculators available online. Use any search engine and enter the search term “correlation calculator.”

  2. Image titled Find the Correlation Coefficient Step 10

    2

    Enter your data. Carefully review the instructions on the website so you will enter your data properly. It is important that your data pairs are kept in order, or you will generate an incorrect correlation result. Different websites use different formats to enter data.

    • For example, at the website http://ncalculators.com/statistics/correlation-coefficient-calculator.htm, you will find one horizontal box for entering x-values and a second horizontal box for entering y-values. You enter your terms, separated only by commas. Thus, the x-data set that was calculated earlier in this article should be entered as 1,2,4,5. The y-data set should be 1,3,5,7.
    • At another site, http://www.alcula.com/calculators/statistics/correlation-coefficient/, you can enter data either horizontally or vertically, as long as you keep the data points in order.
  3. Image titled Find the Correlation Coefficient Step 11

    3

    Calculate your results. These calculation sites are popular because, after you enter your data, you generally need only to click on the button that says “Calculate,” and the result will appear automatically.

  4. Advertisement

  1. Image titled Find the Correlation Coefficient Step 12

    1

    Enter your data. Using a handheld graphing calculator, enter your calculator’s statistics function and then select the “Edit” command.[9]

    • Each calculator will have slightly different key commands. This article will give the specific instructions for the Texas Instruments TI-86.
    • Enter the Stat function by pressing [2nd]-Stat (above the + key), then hit F2-Edit.
  2. Image titled Find the Correlation Coefficient Step 13

    2

    Clear any old stored data. Most calculators will keep statistical data until cleared. To make sure that you do not confuse old data with new data, you should first clear any previously stored information.[10]

    • Use the arrow keys to move the cursor to highlight the heading “xStat.” Then press Clear and Enter. This should clear all values in the xStat column.
    • Use the arrow keys to highlight the yStat heading. Press Clear and Enter to empty the data from that column as well.
  3. Image titled Find the Correlation Coefficient Step 14

    3

    Enter your data values. Using the arrow keys, move the cursor to the first space under the xStat heading. Type in your first data value and then hit Enter. You should see the space at the bottom of the screen display “xStat(1)=__,” with your value filling the blank space. When you hit Enter, the data will fill the table, the cursor will move to the next line, and the line at the bottom of the screen should now read “xStat(2)=__.”[11]

    • Continue entering all the x-data values.
    • When you complete the x-data, use the arrow keys to move to the yStat column and enter the y-data values.
    • After all the data has been entered, hit Exit to clear the screen and leave the Stat menu.
  4. Image titled Find the Correlation Coefficient Step 15

    4

    Calculate the linear regression statistics. The correlation coefficient is a measure of how well the data approximates a straight line. A statistical graphing calculator can very quickly calculate the best-fit line and the correlation coefficient.[12]

    • Enter the Stat function and then hit the Calc button. On the TI-86, this is [2nd][Stat][F1].
    • Choose the Linear Regression calculations. On the TI-86, this is [F3], which is labeled “LinR.” The graphic screen should then display the line “LinR _,” with a blinking cursor.
    • You now need to enter the names of the two variables that you want to calculate. These are xStat and yStat.
      • On the TI-86, select the Names list by hitting [2nd][List][F3].
      • The bottom line of your screen should now show the available variables. Choose [xStat] (this is probably button F1 or F2), then enter a comma, then [yStat].
      • Hit Enter to calculate the data.
  5. Image titled Find the Correlation Coefficient Step 16

    5

    Interpret your results. When you hit Enter, the calculator will instantly calculate the following information for the data that you entered:[13]

  6. Advertisement

  1. Image titled Find the Correlation Coefficient Step 17

    1

    Understand the concept of correlation. Correlation refers to the statistical relationship between two quantities. The correlation coefficient is a single number that you can calculate for any two sets of data points. The number will always be something between -1 and +1, and it indicates how closely connected the two data sets tend to be.[14]

    • For example, if you were to measure the heights and ages of children up to the age of about 12, you would expect to find a strong positive correlation. As children get older, they tend to get taller.
    • An example of negative correlation would be data comparing a person’s time spent practicing golf shots and that person’s golf score. As the practice increases, the score should decrease.
    • Finally, you would expect very little correlation, either positive or negative, between a person’s shoe size, for example, and SAT scores.
  2. Image titled Find the Correlation Coefficient Step 18

    2

    Know how to find a mean. The arithmetic mean, or “average,” of a set of data is calculated by adding all of the values of the data together, then dividing by the number of values in the set. When you find the correlation coefficient for your data, you will need to calculate the mean of each set of data.[15]

    • The mean of a variable is denoted by the variable with a horizontal line above it. This is often referred to as “x-bar” or “y-bar” for the x and y data sets. Alternatively, the mean may be signified by the lower-case Greek letter mu, μ. To indicate the mean of x-data points, for example, you could write μx or μ(x).
    • As an example, if you have a set of x-data points (1,2,5,6,9,10), then the mean of this data is calculated as follows:
  3. Image titled Find the Correlation Coefficient Step 19

    3

    Note the importance of standard deviation. In statistics, standard deviation measures variation, showing how numbers are spread out in relationship to the mean. A group of numbers with a low standard deviation are fairly tightly collected. A group of numbers with a high standard deviation are widely scattered.[16]

    • Symbolically, standard deviation is expressed with either the lower-case letter s or the lower-case Greek letter sigma, σ. Thus, the standard deviation of the x-data is written as either sx or σx.
  4. Image titled Find the Correlation Coefficient Step 20

    4

    Recognize summation notation. The summation operator is one of the most common operators in mathematics, indicating a sum of values. It is represented by the upper-case Greek letter, sigma, or ∑.[17]

    • As an example, if you have a set of x-data points (1,2,5,6,9,10), then ∑x means:
      • 1+2+5+6+9+10 = 33.
  5. Advertisement

Add New Question

  • Question

    You are given the following information about two variables x and y: Mean(x)= 315 and Mean(y)=1,103. Variance(x)=59 and Variance(y)=156. Covariance(x,y)= -54. Calculate the coefficient of correlation between X and Y. Calculate your answer to two decimal places.

    Community Answer

    This question raises a higher level of statistics than is addressed in this article. It is possible to calculate the correlation coefficient from the means, variance and covariance, without actually having the original data points to begin with. The relationship is Correlation Coefficient = Covariance / ((Std. Dev. (x) * (Std. Dev. (y)). The standard deviation is the square root of the variance. So, with your data, this simplifies to Corr.Coeff.=-54/sqrt(59)sqrt(156) = -0.56.

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • In general, a correlation coefficient higher than 0.8 (either positive or negative) represents a strong correlation; a correlation coefficient lower than 0.5 (again, either positive or negative) represents a weak one.

  • The correlation coefficient is sometimes called the “Pearson product-moment correlation coefficient” in honor of its developer, Karl Pearson.

Thanks for submitting a tip for review!

Advertisement

  • Correlation shows that the two sets of data are connected in some way. However, be careful not to interpret this as causation. For example, if you compare people’s shoe sizes and their height, you will probably find a strong positive correlation. Taller people generally have larger feet. However, this does not mean that growing tall causes your feet to grow, or that large feet cause you to grow tall. They just happen together.

Advertisement

References

About This Article

Article SummaryX

To find the correlation coefficient by hand, first put your data pairs into a table with one row labeled “X” and the other “Y.” Then calculate the mean of X by adding all the X values and dividing by the number of values. Calculate the mean for Y in the same way. Next, use the formula for standard deviation to calculate it for both X and Y. Finally, use the means and standard deviations and the number of pairs in your data set as inputs to the correlation coefficient formula, and solve the resulting equation. To learn how to find the correlation coefficient with an online calculator or your own graphing calculator, read on!

Did this summary help you?

Thanks to all authors for creating a page that has been read 204,495 times.

Did this article help you?

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как составить коммерческое предложение по продуктам питания
  • Как найти организации по оквэд в регионе
  • Не держит бензонасос на ваз 2106 как исправить
  • Как составить базу гардероба
  • Как найти омут на реке зимой

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии