Энергия.
-
Работа.
-
Мощность.
-
Механическая энергия.
-
Кинетическая энергия.
-
Потенциальная энергия тела вблизи поверхности Земли.
-
Потенциальна яэнергия деформированной пружины.
-
Закон сохранения механической энергии.
-
Закон изменения механической энергии.
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: работа силы, мощность, кинетическая энергия, потенциальная энергия, закон сохранения механической энергии.
Мы приступаем к изучению энергии — фундаментального физического понятия. Но предварительно нужно разобраться с другой физической величиной — работой силы.
к оглавлению ▴
Работа.
Пусть на тело действует постоянная сила и тело, двигаясь прямолинейно по горизонтальной поерхности, совершило перемещение
. Сила
не обязательно является непосредственной причиной перемещения (так, сила тяжести не является непосредственной причиной перемещения шкафа, который передвигают по комнате).
Предположим сначала, что векторы силы и перемещения сонаправлены (рис. 1; остальные силы, действующие на тело, не указаны)
![]() |
| Рис. 1.A=Fs |
В этом простейшем случае работа определяется как произведение модуля силы на модуль перемещения:
. (1)
Единицей измерения работы служит джоуль (Дж): Дж=Н м. Таким образом, если под действием силы 1 Н тело перемещается на 1 м, то сила совершает работу 1 Дж.
Работа силы, перпендикулярной перемещению, по определению считается равной нулю. Так, в данном случае сила тяжести и сила реакции опоры не совершают работы.
Пусть теперь вектор силы образует с вектором перемещения острый угол (рис. 2).
Разложим силу на две составляющие:
(параллельную перемещению) и
(перпендикулярную перемещению). Работу совершает только
. Поэтому для работы силы
получаем:
. Итак,
. (2)
Если вектор силы образует с вектором перемещения тупой угол , то работа по-прежнему определяется формулой (2). В этом случае работа оказывается отрицательной.
Например, работа силы трения скольжения, действующей на тело в рассмотренных ситуациях, будет отрицательной, так как сила трения направлена противоположно перемещению. В этом случае имеем:
, и для работы силы трения получаем:
,
где — масса тела,
— коэффициент трения между телом и опорой.
Соотношение (2) означает, что работа является скалярным произведением векторов силы и перемещения:
.
Это позволяет вычислять работу через координаты данных векторов:
.
Пусть на тело действуют несколько сил и
— равнодействующая этих сил. Для работы силы
имеем:
,
или
,
где — работы сил
. Итак, работа равнодействующей приложенных к телу сил равна сумме работ каждой силы в отдельности.
к оглавлению ▴
Мощность.
Часто имеет значение быстрота, с которой совершается работа. Скажем, на практике важно знать, какую работу сможет выполнить данное устройство за фиксированное время.
Мощность — это величина, характеризующая скорость совершения работы. Мощность есть отношение работы
ко времени
, за которое эта работа совершена:
.
Мощность измеряется в ваттах (Вт). 1 Вт = 1 Дж/с, то есть 1 Вт — это такая мощность, при которой работа в 1 Дж совершается за 1 с.
Предположим, что силы, действующие на тело, уравновешены, и тело движется равномерно и прямолинейно со скоростью . В этом случае существует полезная формула для мощности, развиваемой одной из действующих сил
.
За время тело совершит перемещение
. Работа силы
будет равна:
.
Отсюда получаем мощность:
,
или
,
где -угол между векторами силы и скорости.
Наиболее часто эта формула используется в ситуации, когда — сила «тяги» двигателя автомобиля (которая на самом деле есть сила трения ведущих колёс о дорогу). В этом случае
, и мы получаем просто:
.
к оглавлению ▴
Механическая энергия.
Энергия является мерой движения и взаимодействия любых объектов в природе. Имеются различные формы энергии: механическая, тепловая, электромагнитная, ядерная. . .
Опыт показывает, что энергия не появляется ниоткуда и не исчезает бесследно, она лишь переходит из одной формы в другую. Это самая общая формулировка закона сохранения энергии.
Каждый вид энергии представляет собой некоторое математическое выражение. Закон сохранения энергии означает, что в каждом явлении природы определённая сумма таких выражений остаётся постоянной с течением времени.
Измеряется энергия в джоулях, как и работа.
Механическая энергия является мерой движения и взаимодействия механических объектов (материальных точек, твёрдых тел).
Мерой движения тела является кинетическая энергия. Она зависит от скорости тела. Мерой взаимодействия тел является потенциальная энергия. Она зависит от взаимного расположения тел.
Механическая энергия системы тел равна сумме кинетической энергии тел и потенциальной энергии их взаимодействия друг с другом.
к оглавлению ▴
Кинетическая энергия.
Кинетической энергией тела (принимаемого за материальную точку) называется величина
,
где — масса тела,
— его скорость.
Кинетической энергией системы из тел называется сумма кинетических энергий каждого тела:
.
Если тело движется под действием силы , то кинетическая энергия тела, вообще говоря, меняется со временем. Оказывается, именение кинетической энергии тела за некоторый промежуток времени равно работе силы
. Покажем это для случая прямолинейного равноускоренного движения.
Пусть — начальная скорость,
— конечная скорость тела. Выберем ось
вдоль траектории тела (и, соответственно, вдоль вектора силы
). Для работы силы
получаем:
.
(мы воспользовались формулой для , выведенной в статье «Равноускоренное движение»). Заметим теперь, что в данном случае проекция скорости отличается от модуля скорости разве что знаком; поэтому
и
. В результате имеем:
,
что и требовалось.
На самом деле соотношение справедливо и в самом общем случае криволинейного движения под действием переменной силы.
Теорема о кинетической энергии. Изменение кинетической энергии тела равно работе, совершённой приложенными к телу внешними силами за рассматриваемый промежуток времени.
Если работа внешних сил положительна, то кинетическая энергия увеличивается (, тело разгоняется).
Если работа внешних сил отрицательна, то кинетическая энергия уменьшается (, тело замедляет движение). Пример — торможение под действием силы трения, работа которой отрицательна.
Если же работа внешних сил равна нулю, то кинетическая энергия тела за это время не меняется. Нетривиальный пример — равномерное движение по окружности, совершаемое грузом на нити в горизонтальной плоскости. Сила тяжести, сила реакции опоры и сила натяжения нити всегда перпендикулярны скорости, и работа каждой из этих сил равна нулю в течение любого промежутка времени. Соответственно, кинетическая энергия груза (а значит, и его скорость) остаётся постоянной в процессе движения.
Задача. Автомобиль едет по горизонтальной дороге со скоростью и начинает резко тормозить. Найти путь
, пройденный автомобилем до полной остановки, если коэффициент трения шин о дорогу равен
.
Решение. Начальная кинетическая энергия автомобиля , конечная кинетическая энергия
. Изменение кинетической энергии
.
На автомобиль действуют сила тяжести , реакция опоры
и сила трения
. Сила тяжести и реакция опоры, будучи перпендикулярны перемещению автомобиля, работы не совершают. Работа силы трения:
.
Из теоремы о кинетической энергии теперь получаем:
.
к оглавлению ▴
Потенциальная энергия тела вблизи поверхности Земли.
Рассмотрим тело массы , находящееся на некоторой высоте над поверхностью Земли. Высоту считаем много меньше земного радиуса. Изменением силы тяжести в процессе перемещения тела пренебрегаем.
Если тело находится на высоте , то потенциальная энергия тела по определению равна:
где — ускорение свободного падения вблизи поверхности Земли.
Высоту не обязательно отсчитывать от поверхности Земли. Как мы увидим ниже (формулы (3), (4)), физическим смыслом обладает не сама по себе потенциальная энергия, но её изменение. А изменение потенциальной энергии не зависит от уровня отсчёта. Выбор нулевого уровня потенциальной энергии в конкретной задаче диктуется исключительно соображениями удобства.
Найдём работу, совершаемую силой тяжести при перемещении тела. Предположим, что тело перемещается по прямой из точки , находящейся на высоте
, в точку
, находящуюся на высоте
(рис. 3).
![]() |
| Рис. 3.A=mg(h1-h2)[/math] |
Угол между силой тяжести и перемещением тела
обозначим
. Для работы силы тяжести получим:
.
Но, как видно из рис. 3, . Поэтому
,
или
. (3)
Учитывая, что , имеем также:
. (4)
Можно доказать, что формулы (3) и (4) справедливы для любой траектории, по которой тело перемещается из точки в точку
, а не только для прямолинейного отрезка.
Работа силы тяжести не зависит от формы траектории, по которой перемещается тело, и равна разности значений потенциальной энергии в начальной и конечной точках траектории. Иными словами, работа силы тяжести всегда равна изменению потенциальной энергии с противоположным знаком. В частности, работа силы тяжести по любому замкнутому пути равна нулю.
Сила называется консервативной, если при перемещении тела работа этой силы не зависит от формы траектории, а определяется только начальным и конечным положением тела. Сила тяжести, таким образом, является консервативной. Работа консервативной силы по любому замкнутому пути равна нулю. Только в случае консервативной силы возможно ввести такую величину, как потенциальная энергия.
к оглавлению ▴
Потенциальна яэнергия деформированной пружины.
Рассмотрим пружину жёсткости . Начальная деформация пружины равна
. Предположим,
что пружина деформируется до некоторой конечной величины деформации . Чему равна при этом работа силы упругости пружины?
В данном случае силу на перемещение не умножишь, так как сила упругости меняется в процессе деформации пружины. Для нахождения работы переменной силы требуется интегрирование. Мы не будем приводить здесь вывод, а сразу выпишем конечный результат.
Оказывается, сила упругости пружины также является консервативной. Её работа зависит лишь от величин и
и определяется формулой:
.
Величина
называется потенциальной энергией деформированной пружины (x — величина деформации).
Следовательно,
,
что полностью аналогично формулам (3) и (4).
к оглавлению ▴
Закон сохранения механической энергии.
Консервативные силы называются так потому, что сохраняют механическую энергию замкнутой системы тел.
Механическая энергия тела равна сумме его кинетической и потенциальной энергий:
.
Механическая энергия системы тел равна сумме их кинетических энергий и потенциальной энергии их взаимодействия друг с другом.
Предположим, что тело совершает движение под действием силы тяжести и/или силы упругости пружины. Будем считать, что трения нет. Пусть в начальном положении кинетическая и потенциальная энергии тела равны и
, в конечном положении —
и
. Работу внешних сил при перемещении тела из начального положения в конечное обозначим
.
По теореме о кинетической энергии
.
Но работа консервативных сил равна разности потенциальных энергий:
.
Отсюда получаем:
,
или
.
Левая и правая части данного равенства представляют собой механическую энергию тела в начальном и конечном положении:
.
Следовательно, при движении тела в поле силы тяжести и/или на пружине механическая энергия тела остаётся неизменной при отсутствии трения. Справедливо и более общее утверждение.
Закон сохранения механической энергии. Если в замкнутой системе действуют только консервативные силы, то механическая энергия системы сохраняется.
При этих условиях могут происходить лишь превращения энергии: из кинетической в потенциальную и наоборот. Общий запас механической энергии системы остаётся постоянным.
к оглавлению ▴
Закон изменения механической энергии.
Если между телами замкнутой системы имеются силы сопротивления (сухое или вязкое трение), то механическая энергия системы будет уменьшаться. Так, автомобиль останавливается в результате торможения, колебания маятника постепенно затухают и т. д. Силы трения неконсервативны: работа силы трения очевидным образом зависит от пути, по которому перемещается тело между данными точками. В частности, работа силы трения по замкнутому пути не равна нулю.
Снова рассмотрим движение тела в поле силы тяжести и/или на пружине. Вдобавок на тело действует сила трения, которая за рассматриваемый промежуток времени совершает отрицательную работу . Работу консервативных сил (тяжести и упругости) по-прежнему обозначаем
.
Изменение кинетической энергии тела равно работе всех внешних сил:
.
Но , следовательно
.
Отсюда
,
или
.
В левой части стоит величина — изменение механической энергии тела:
.
Итак,при движении тела в поле силы тяжести и/или на пружине изменение механической энергии тела равно работе силы трения. Так как работа силы трения отрицательна,изменение механической энергии также отрицательно: механическая энергия убывает.
Справедливо и более общее утверждение.
Закон изменения механической энергии. Изменение механической энергии замкнутой системы равно работе сил трения, действующих внутри системы.
Ясно, что закон сохранения механической энергии является частным случаем данного утверждения.
Конечно, убыль механической энергии не противоречит общефизическому закону сохранения энергии. В данном случае механическая энергия превращается в энергию теплового движения частиц вещества и их потенциальную энергию взаимодействия друг с другом, т. е. переходит во внутреннюю энергию тел системы.
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Энергия.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
08.05.2023
Содержание:
Теорема об изменении кинетической энергии:
Для рассмотрения теоремы об изменении кинетической энергии необходимо ввести новое понятие «работа силы» и рассмотреть некоторые простейшие способы ее вычисления.
Работа силы
Работа силы на каком-либо перемещении является одной из основных характеристик, оценивающих действие силы на этом перемещении. Рассмотрим элементарную работу, полную работу и мощность.
Элементарная работа силы
Элементарная работа
где 

Элементарная работа является скалярной величиной. Ее знак определяется знаком проекции силы 









В этой формуле величины 







Рис. 60
Итак, элементарная работа силы равна произведению элементарного перемещения на проекцию силы на это перемещение. Отметим частные случаи, которые можно получить из (41):
Таким образом, если сила перпендикулярна элементарному перемещению, то ее элементарная работа равна нулю. В частности, работа нормальной составляющей к скорости силы 
Приведем другие формулы для вычисления элементарной работы силы. Из кинематики точки известно, что 


После этого, согласно (41), элементарная работа
Элементарная работа силы равна скалярному произведению силы на дифференциал радиуса-вектора точки приложения силы.
Так как 
Элементарная работа равна скалярному произведению элементарного импульса силы на скорость точки.
Если силу 

Из последней формулы имеем
Подставляя в (42) значения 

Формулу (44) называют обычно аналитическим выражением элементарной работы. Хотя выражение для элементарной работы (44) по форме и напоминает полный дифференциал функции координат точки, в действительности в общем случае элементарная работа не является полным дифференциалом. Элементарная работа является полным дифференциалом функции координат точки только для специального класса сил — так называемых стационарных потенциальных сил, которые рассмотрены ниже.
Полная работа силы
Для определения полной работы силы 




где 

Так как сумма в определении работы является интегральной суммой определения криволинейного интеграла на участке кривой 
Используя другие выражения для элементарной работы, полную работу силы можно представить также в виде
где момент времени 



Формула (47) особенно удобная для вычисления работы силы, когда сила известна как функция времени. Отметим, что из определения элементарной и полной работы следует:
- работа равнодействующей силы на каком-либо перемещении равна алгебраической сумме работ составляющих сил на том же перемещении;
- работа силы на полном перемещении равна сумме работ этой же силы на составляющих перемещениях, на которые любым образом разбито все перемещение.
Первое свойство, очевидно, достаточно доказать только для элементарной работы равнодействующей силы.
Если сила 

Первое свойство доказано.
Второе из отмеченных свойств непосредственно следует из возможности разбиения любым образом полного промежутка интегрирования на составляющие, причем определенный интеграл по полному промежутку интегрирования равен сумме интегралов по составляющим. Единицей полной работы, так же как и элементарной, в СИ является джоуль: 
Если проекция силы на направление скорости 
где 
Так как 
Следует отметить, что в этой формуле как 






причем эта формула применима как для прямолинейного, так и для криволинейного движения. Для этого необходимо, чтобы сила 

Мощность
Мощность силы или работоспособность какого-либо источника силы часто оценивают той работой, которую он может совершить за единицу времени.
Итак, по определению, мощность
Учитывая (43) для элементарной работы, мощность 
Таким образом, мощность равна скалярному произведению силы на скорость точки. Из формулы (48) получаем, что чем больше скорость, тем меньше сила при одной и той же мощности. Следовательно, если от источника силы с заданной мощностью нужно получить большую силу, то ее можно получить только при малой скорости. Так, например, когда железнодорожному локомотиву надо увеличить силу тяги, то для этого надо уменьшить скорость поезда.
В СИ единицей мощности является ватт: 
Примеры вычисления работы силы
Работа силы в общем случае зависит от характера движения точки приложения силы. Следовательно, для вычисления работы надо знать движение этой точки. Но в природе имеются силы и примеры движения, для которых работу можно вычислить сравнительно просто, зная начальное и конечное положение точки.
Рассмотрим работу силы тяжести и линейной силы упругости, изменяющейся по закону Гука, и вычисление работы силы, приложенной к какой-либо точке твердого тела в различных случаях его движения. В качестве простейших примеров движения укажем случаи, когда работа равна нулю. Так, работа любой силы равна нулю, если она приложена все время в неподвижной точке или в точках, скорость которых равна нулю, как, например, в случае, когда сила все время приложена в мгновенном центре скоростей при плоском движении тела или все время в точках, лежащих на мгновенной оси вращения, в случае вращения тела вокруг неподвижной точки. Эти случаи возможны в задачах, когда рассматривают работу силы трения в точке соприкосновения двух тел при отсутствии скольжения одного тела по другому. При этом работа силы трения равна нулю.
Рис. 61
Работа силы тяжести
Силу тяжести 




Вычисляя работу 



или
где 
При подъеме точки высота 

Работа силы тяжести равна произведению этой силы на высоту опускания (работа положительна) или высоту подъема (работа отрицательна). Из формулы (50) следует, что работа силы тяжести не зависит от формы траектории между точками 



Рис. 62
Если имеем систему 

где 

Работа всех сил тяжести системы материальных точек
так как
где 



Из (50′) следует, что для перемещений точек системы, при которых 

Работа линейной силы упругости
Линейной силой упругости (или линейной восстанавливающей силой) называют силу, действующую по закону Гука (рис. 62):
где 


Выберем начало координат в точке равновесия 
После этого работу на перемещении от точки 

так как
где 
Выполняя интегрирование, получаем
По этой формуле вычисляют работу линейной силы упругости пружины при перемещении по любому пути из точки 



При перемещении из положения равновесия (пружина не деформирована), где 

Работа линейной силы упругости на перемещении из состояния равновесия всегда отрицательна и равна половине произведения коэффициента жесткости на квадрат деформации. Из формулы (51) или (52) следует, что работа линейной силы упругости не зависит от формы перемещения и работа по любому замкнутому перемещению равна нулю. Она также равна нулю, если точки 

Работа силы, приложенной к твердому телу
Получим формулы для вычисления элементарной и полной работы силы, приложенной в какой-либо точке твердого тела, которое совершает то или иное движение. Сначала рассмотрим поступательное и вращательное движения тела, а затем общий случай движения твердого тела.
При поступательном движении твердого тела все точки тела имеют одинаковые по модулю и направлению скорости (рис. 63). Следовательно, если сила 


где 
На каком-либо перемещении полная работа
При вращении твердого тела вокруг неподвижной оси скорость точки 
Рис. 63
Рис. 64
тогда элементарную работу силы 
В смешанном векторном произведении, которое выражается в виде определителя, можно переставлять сомножители в круговом порядке:
и
так как
является моментом силы относительно точки 
Учитывая, что 


Таким образом, элементарная работа силы, приложенной к какой-либо точке тела, вращающегося вокруг неподвижной оси, равна произведению момента силы относительно оси вращения на дифференциал угла поворота тела.
Полная работа
В частном случае, если момент силы относительно оси вращения является постоянным, т. е. 
где 
Так как 
Мощность силы, приложенной к вращающемуся вокруг неподвижной оси твердому телу, равна произведению угловой скорости тела на момент силы относительно оси вращения . тела.
Рис. 65
Для свободного тела в общем случае движения скорость точки 

следовательно,
Учитывая, что
имеем
Но так как 


Таким образом, элементарная работа силы, приложенной в какой-либо точке твердого тела, в общем случае движения складывается из элементарной работы на элементарном поступательном перемещении вместе с какой-либо точкой тела и на элементарном вращательном перемещении вокруг этой точки.
В случае вращения твердого тела вокруг неподвижной точки, выбрав эту точку за полюс 
Поворот на угол 
Формулу (59) применяют и для плоского движения твердого тела, только в этом случае мгновенная ось относительного вращения перпендикулярна плоскости движения и проходит через произвольную точку тела.
При действии на твердое тело системы сил 

Элементарная работа системы сил
где
соответственно являются главным вектором и главными моментами системы сил относительно точки 
т. е. элементарная работа системы сил, приложенных к свободному твердому телу в общем случае его движения, складывается из элементарной работы главного вектора системы сил на элементарном поступательном перемещении вместе с какой-либо точкой тела и элементарной работы главного момента этих сил относительно выбранной точки на элементарном вращательном перемещении вокруг этой точки.
Работа внутренних сил твердого тела
Докажем, что для твердого тела сумма работ внутренних сил равна нулю при любом его перемещении. Очевидно, достаточно доказать, что сумма элементарных работ всех внутренних сил равна нулю. Рассмотрим две любые точки твердого тела: 

Введем единичный вектор 

Сумма элементарных работ сил 
Рис. 66
Раскрывая скалярные произведения векторов в скобках, получаем
так как в кинематике твердого тела доказано, что проекции скоростей любых двух точек твердого тела на направление прямой линии, соединяющей эти точки, равны друг другу при любом движении твердого тела. В полученном выражении в скобках стоит разность этих проекций скоростей двух точек, т. е. величина, равная нулю.
Твердое тело можно считать состоящим из пар взаимодействующих точек, для каждой из которых сумма элементарных работ внутренних сил равна нулю.
Суммируя элементарные работы для всех пар точек, получаем 
Как уже известно, главный вектор и главный момент всех внутренних сил для любой механической системы равны нулю. Сумма работ внутренних сил равна нулю только в случае твердого тела, а для любой механической системы в общем случае она не равна нулю.
В задачах в качестве механической системы часто рассматривают систему сочлененных твердых тел. При вычислении работы всех сил, приложенных к такой системе тел, очевидно, достаточно учесть работу внутренних сил в местах сочленения твердых тел. Если твердые тела сочленяются с помощью шарниров без трения, сумма работ таких двух внутренних сил равна нулю, так как внутренние силы в точке сочленения, как действие и противодействие, равны по модулю, но противоположны по направлению, а перемещение у точек приложения сил общее.
Таким образом, сочленение твердых тел с помощью шарниров без трения при вычислении работы внутренних сил не нарушает жесткости системы тел, так как сумма работ внутренних сил в этих шарнирах равна нулю при любых перемещениях системы сочлененных твердых тел. Систему сочлененных с помощью таких шарниров твердых тел при вычислении работы всех внутренних сил можно считать одним твердым телом. Это характерно и для случая сочленения системы твердых тел с помощью нерастяжимых нитей, канатов и т. п. В этом случае работа внутренних сил натяжений также равна нулю.
Кинетическая энергия
Кинетическая энергия точки и системы: Кинетической энергией материальной точки называют половину произведения массы точки на квадрат ее скорости, т.е. 


Кинетической энергией системы 
Кинетическая энергия как точки, так и системы не зависит от направления скоростей точек. Кинетическая энергия может быть равна нулю для системы только при условии, если все точки системы находятся в покое.
Вычисление кинетической энергии системы (теорема Кёнига)
Разложим движение механической системы на переносное поступательное вместе с центром масс системы и относительное по отношению к системе координат, движущейся поступательно вместе с центром масс. Аналогично тому, как это производилось при выводе формулы для кинетического момента при таком разложении абсолютного движения, для каждой точки системы 
и соответственно
где 


Подставляя значение скорости 

Но
так как
Учитывая, что 

где
Величина 
Формула (63) выражает так называемую теорему Кёнига: кинетическая энергия системы в абсолютном движении складывается из кинетической энергии центра масс, если в нем сосредоточить всю массу системы, и кинетической энергии системы относительно центра масс.
Кинетическая энергия твердого тела
При поступательном движении твердого тела кинетическая энергия
так как при поступательном движении твердого тела скорости всех точек тела одинаковы, т. е. 

Таким образом, кинетическая энергия твердого тела при поступательном движении вычисляется так же, как и для одной точки, у которой масса равна массе всего тела.
При вращении тела вокруг неподвижной оси кинетическую энергию можно вычислить, если учесть, что скорость какой-либо точки тела 
где 


Тогда
или
где 

Следовательно, кинетическая энергия тела при вращательном движении вокруг неподвижной оси равна половине произведения момента инерции тела относительно оси вращения на квадрат угловой скорости тела.
Из сравнения (64) и (65) следует, что эти формулы подобны, только при вращательном движении аналогом массы является момент инерции тела относительно оси вращения, а скорости— угловая скорость тела. Такая аналогия между поступательным и вращательным движениями твердого тела может наблюдаться во многих формулах, относящихся к этим двум движениям.
При плоском движении твердого тела кинетическую энергию можно вычислить по теореме Кёнига. Так как в этом случае относительное движение относительно центра масс (точнее, относительно системы координат, движущейся поступательно вместе с центром масс) является вращением вокруг центра масс с угловой скоростью 
где 

Таким образом, при плоском движении тела кинетическая энергия складывается из кинетической энергии поступательного движения тела вместе с центром масс и кинетической энергии от вращения вокруг оси, проходящей через центр масс и перпендикулярной плоскости движения.
Учитывая, что 

где 

Если механическая система состоит из нескольких твердых тел, то следует вычислить кинетическую энергию каждого тела, а затем полученные кинетические энергии сложить. Так определяется кинетическая энергия системы тел.
Теорема об изменении кинетической энергии точки
Для материальной точки массой 

Умножая обе части этого соотношения скалярно на дифференциал радиуса-вектора точки 
или
где 
Учитывая, что 
Так как
то окончательно
Формула (67) выражает теорему об изменении кинетической энергии для точки в дифференциальной форме: дифференциал кинетической энергии точки равен элементарной работе силы, действующей на точку.
Если обе части (67) разделить на 

Производная по времени от кинетической энергии точки равна мощности, подводимой к этой точке.
Интегрируя обе части (67) от точки 

т. е. изменение кинетической энергии точки на каком-либо перемещении равно работе силы, действующей на точку на том же перемещении.
- Заказать решение задач по теоретической механике
Пример 1. Тело, имеющее силу тяжести 



Решение. Применим к движению тела теорему об изменении кинетической энергии точки
приняв за начальное положение тела начало его падения с высоты 







Рис. 67
Но так как в положении статического равновесия 


Решая это квадратное уравнение, имеем
Знак плюс перед корнем выбран потому, что 


Рис. 68
Пример 2. Грузу с силой тяжести 





Определить скорость груза в положении 



Решение. Применим к движению груза теорему об изменении кинетической энергии, приняв за начальное положение груза 

Работу совершают сила тяжести груза и сила упругости пружины. Нормальная реакция кольца 
В рассматриваемом случае
поэтому
По теореме об изменении кинетической энергии имеем
и
Теорема об изменении кинетической энергии системы
Приложив к точкам системы все внешние и внутренние силы, для каждой точки системы можно выразить теорему об изменении кинетической энергии (67) в форме
Суммируя правые и левые части этих соотношений по всем точкам системы и вынося знак дифференциала за знак суммы, получаем
или
где кинетическая энергия системы
элементарная работа внешних и внутренних сил соответственно будет
Формула (69) и выражает теорему об изменении кинетической энергии системы в дифференциальной форме: дифференциал от кинетической энергии системы равен сумме элементарных работ всех внешних и внутренних сил, действующих на систему.
Если обе части (69) проинтегрировать между двумя положениями системы — начальным и конечным, в которых соответственно кинетическая энергия 

или
где 




Формула (70) выражает теорему об изменении кинетической энергии системы в конечной или интегральной форме: изменение кинетической энергии системы при ее перемещении из одного положения в другое равно сумме работ всех внешних и внутренних сил, действующих на систему, на соответствующих перемещениях точек системы при том же перемещении системы.
Частный случай: Для абсолютно твердого тела сумма работ всех внутренних сил системы равна нулю:
Следовательно, теорему об изменении кинетической энергии, например, в конечной форме можно представить в виде
Изменение кинетической энергии твердого тела при каком-либо перемещении равно сумме работ всех внешних сил, действующих на тело, на соответствующих перемещениях точек тела при том же перемещении твердого тела.
Рис. 69
Таким образом, в отличие от рассмотренных других общих теорем динамики системы в теорему об изменении кинетической энергии могут входить внутренние силы. Они не входят в эту теорему в случае абсолютно твердого тела.
Пример 1. В маятнике Максвелла однородный цилиндр силой тяжести 

Определить скорость оси цилиндра в зависимости от высоты ее опускания 
Решение. По теореме об изменении кинетической энергии цилиндра как твердого тела имеем
Так как в начальный момент времени цилиндр покоится, то 
Поэтому
Внешними силами являются сила тяжести 


Подставляя вычисленные величины в теорему об изменении кинетической энергии, получаем
Пример 2. Груз 








Определить скорость груза 
В начальный момент система покоится.
Рис. 70
Решение. По теореме об изменении кинетической энергии системы, состоящей из груза, нити, блока и катка, имеем
где 




Но
Следовательно,
Так как работа внутренних сил натяжений нити равна нулю, то вообще 







где 



Так как
то
Подставляя значения полученных величин в теорему об изменении кинетической энергии, получаем
Заметим, что груз имеет не только силу тяжести 

Теорема об изменении кинетической энергии в относительном движении
Теорема об изменении кинетической энергии материальной точки. Пусть точка 






где 

Рис. 71
Вывод теоремы об изменении кинетической энергии для точки в относительном движении произведем так же, как и вывод аналогичной теоремы в абсолютном движении, умножив обе части (72) скалярно на вектор элементарного относительного перемещения 



В правую часть входят элементарные работы сил 






Итак, теорема об изменении кинетической энергии точки в дифференциальной форме имеет вид
Теорема об изменении кинетической энергии в относительном движении точки выражается так же, как и в абсолютном движении, только к элементарной работе приложенной силы добавляют элементарную работу силы инерции переносного движения на относительном перемещении.
Теорема об изменении кинетической энергии системы
Для системы рассмотрим наиболее важный случай, когда в качестве переносного движения берется поступательное движение системы вместе с центром масс и, следовательно, кинетическую энергию системы в абсолютном движении можно вычислить на основании теоремы Кёнига (63): 
Теорему об изменении кинетической энергии системы для абсолютного движения (см. рис. 56) можно представить в виде
Так как
и, следовательно,
то, заменяя в (74) 

По свойству внутренних сил, 
Если теорему об изменении кинетической энергии для центра масс выразить так же, как и для точки, у которой масса равна массе всей системы, и эта точка находится под действием всех внешних сил, действующих на систему, то
Отбросив в (75) эти члены, получим следующую теорему об изменении кинетической энергии системы в относительном движении по отношению к системе координат, движущейся поступательно вместе с центром масс:
Сравнивая (76) с (74), видим, что теорема об изменении кинетической энергии в относительном движении системы по отношению к системе координат, движущейся поступательно вместе с центром масс системы, формулируется так же, как и для абсолютного движения системы.
- Потенциальное силовое поле
- Закон сохранения механической энергии
- Принцип Даламбера
- Динамические реакции при вращении твердого тела вокруг неподвижной оси
- Свойства внутренних сил системы
- Дифференциальное уравнение движения системы
- Теоремы об изменении количества движения и о движении центра масс
- Теорема об изменении кинетического момента
1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
Закон об изменении кинетической энергии
Если тело движется под действием силы (displaystyle vec{F}), то его кинетическая энергия, вообще говоря, меняется со временем. Оказывается, изменение кинетической энергии тела за некоторый промежуток времени равно работе силы (displaystyle vec{F}). Покажем это для случая прямолинейного равноускоренного движения.
Пусть (displaystyle vec{v_1}) — начальная скорость, (displaystyle vec{v_2}) — конечная скорость тела. Выберем ось X вдоль траектории тела (и, соответственно, вдоль вектора силы (displaystyle vec{F})).
В результате имеем
[A=dfrac{mv_{2x}^2}{2}-dfrac{mv_{1x}^2}{2}=E_text{к2}-E_text{к1}=Delta{E_text{к}}]
Теорема о кинетической энергии
Изменение кинетической энергии тела равно работе, совершённой приложенными к телу внешними силами за рассматриваемый промежуток времени.
Шарик массой 100 г падает с высоты h с начальной скоростью, равной нулю. Скорость шарика в момент перед падением на землю равна 8 м/с. Чему равна его потенциальная энергия в момент начала падения, если потеря энергии за счет сопротивления воздуха составила 1 Дж.
По закону сохранения энергии с учетом потерь: [E_text{к}+E_text{потерь} = E_text{п}] А значит: [E_text{п} = frac{mV^2}{2} + E_text{потерь} = frac{0,1cdot64}{2}+1 = 4,2text{ Дж }]
Ответ: 4,2
Шарик массой 400 г падает с высоты 12,25 м. Начальная скорость шарика равна нулю. Потеря энергии за счёт сопротивления воздуха составила 4 Дж. Какая скорость была у шарика в момент падения на землю?
По закону сохранения энергии с учетом потерь: [E_text{к} = E_text{п} — E_text{потерь}] Отсюда: [frac{mV^2}{2} = mgh-E_text{потерь}] [V=sqrt{frac{2(mgh — E_text{потерь})}{m}} = sqrt{frac{2(0,4cdot10cdot12,25 — 4)}{0,4}} = 15text{ м/с }]
Ответ: 15
Мячик падает на землю с высоты (h=18) м с нулевой начальной скоростью. Найдите скорость мячика в момент удара о поверхность земли, если засчёт силы сопротивления воздуха он потерял (10%) первоначальной энергии.
Запишем закон сохранения энергии: [E_1 = E_2 + Q] где (E_1) — полная механическая энергия до броска, (E_2) — полная механичсесская энергия в момент удара о поверхность земли, (Q) — потерянная энергия засчёт силы сопротивления воздуха.
Допустим, что ноль потенциальной энергии находится на поверхности земли.
Так как полная механическая энергия равна сумме потенциальной и кинетической энергий, то: [E_1 = E_{text{п1}}+E_{text{к1}} = mgh + 0 = mgh] [E_2 = E_{text{п2}}+E_{text{к2}} = 0 + frac{mupsilon^2}{2} =frac{mupsilon^2}{2}] По условию: [Q = 0,1E_1 = 0,1mgh] Значит: [mgh = frac{mupsilon^2}{2} + 0,1cdot mgh] [0,9cdot mgh = frac{mupsilon^2}{2} Rightarrow 0,9cdot gh = frac{upsilon^2}{2}] [upsilon = sqrt{2cdot0,9cdot gh} = sqrt{2cdot0,9 cdot 10text{ м/с$^2$} cdot 18text{ м}} = 18text{ м/c }]
Ответ: 18
Шарик массой 100 г падает с высоты 100 м с начальной скоростью, равной нулю. Чему равна его кинетическая энергия в момент перед падением на землю, если потеря энергии за счёт сопротивления воздуха составила 20 Дж?
“Демоверсия 2019”
Из закона о сохранении энергии: [mgh=Q+E Rightarrow E=mgh-Q=0,1text{ кг}cdot 10text{ Н/кг}cdot 100text{ м}-20text{ Дж}=80text{ Дж}] где (m) – масса шарика, (h) – начальная высота, (Q) – потери за счет сопротивления воздуха.
Ответ: 80
Шарик массой (m)=1 кг, находящийся на высоте (h_1)=10 м, из состояния покоя падает на поверхность, при этом выделяется количество теплоты (Q=10) Дж, отскакивает вверх на высоту (h_2). Найдите высоту подъема (h_2).
Так как тело падает из состояния покоя, то начальная скорость при падении равна 0. При движении вниз выполняется закон сохранения энергии. [E_text{п1}=E_text{к} quad (1)] После соударение шарика об землю будет выполнено равенство (часть энергии переходит в тепло): [E_text{к}=E_text{п2}+Q quad (2)] Подставим (1) в (2) [E_text{п1}=E_text{п2}+Q quad E_text{п1}=mgh_1quad E_text{п2}=mgh_2 quad Rightarrow quad mgh_1=mgh_2+Q] Выразим (h_2): [h_2=frac{mgh_1-Q}{mg}=frac{1 cdot10 cdot 10-10}{1 cdot 10}=9text{ м}]
Ответ: 9

Как готовиться к сочинению за 2 дня до ЕГЭ? Четко и без воды
Как готовиться к сочинению за 2 дня до ЕГЭ? Четко и без воды
|
Энергия. Виды механической энергии. Работа и энергия. |
|
|
Энергия — физическая величина, характеризующая состояние тела или системы тел по их движению и взаимодействию. В механике энергия тела или системы тел определяется взаимным положением тел или системы тел и их скоростями. При изменении состояния тела (изменении энергии) совершается механическая работа. Т.о. изменение энергии при переходе системы из одного состояния в другое равно работе внешних сил. Механическая работа — мера изменения энергии тела. |
|
|
В механике выделяют два вида энергии: кинетическую энергию и потенциальную энергию. |
|
|
Кинетическая энергия. Кинетическая энергия — энергия движущегося тела.(От греческого слова kinema — движение). По определению кинетическая энергия покоящегося в данной системе отсчета тела обращается в ноль. |
|
|
Пусть тело движется под действием постоянной силы Тогда: Т.к. Т.к. движение равноускоренное, то: |
|
|
Следовательно: |
|
|
|
[Ek]=Дж. |
|
Кинетическая энергия — величина относительная, зависящая от выбора СО, т.к. скорость тела зависит от выбора СО. |
|
|
Т.о. |
|
|
Эта теорема справедлива для любого движения и для сил любой природы. Если тело разгоняется из состояния покоя, то Ek1=0. Тогда A = Ek2. Следовательно, кинетическая энергия численно равна работе, которую необходимо совершить, чтобы разогнать тело из состояния покоя до данной скорости. |
|
|
Вывод: Работа силы равна изменению кинетической энергии тела, т.е. A = ΔEk. Причем, A>0, если Ekувеличивается, и А<0, если Ek<0. |
A = ΔEk |











































































































































.
.