И снова здравствуйте, друзья!
Как я и обещал, с этого урока мы начнём бороздить бескрайние просторы поэтического мира интегралов и приступим к решению самых разнообразных (порой, очень красивых) примеров. 
Чтобы грамотно ориентироваться во всём интегральном многообразии и не заблудиться, нам потребуется всего четыре вещи:
1) Таблица интегралов. Все подробности о ней — в предыдущем материале. Как именно с ней работать — в этом.
2) Свойства линейности неопределённого интеграла (интеграл суммы/разности и произведения на константу).
3) Таблица производных и правила дифференцирования.
Да-да, не удивляйтесь! Без умения считать производные, в интегрировании ловить совершенно нечего. Согласитесь, бессмысленно, например, учиться делению, не умея умножать. 
4) Методы интегрирования.
Их очень и очень много. Для конкретного класса функций — свой. Но среди всего их богатого разнообразия выделяется три базовых:
– метод подведения функции под знак дифференциала,
– метод замены переменной,
– метод интегрирования по частям.
О каждом из них — в отдельных уроках.
А теперь, наконец, приступим к решению долгожданных примеров. Чтобы не скакать из раздела в раздел, я продублирую ещё разок весь джентльменский набор, который пригодится для нашей дальнейшей работы. Пусть весь инструментарий будет под рукой.)
Прежде всего, это таблица интегралов:
Кроме того, нам понадобятся базовые свойства неопределённого интеграла (свойства линейности):
Что ж, необходимая снаряга подготовлена. Пора в путь! 
Прямое применение таблицы
В данном параграфе будут рассматриваться самые простые и безобидные примеры. Алгоритм здесь прост до ужаса:
1) Смотрим в таблицу и ищем нужную формулу (формулы);
2) Применяем свойства линейности (где требуется);
3) Осуществляем превращение по табличным формулам и прибавляем в конце константу С (не забываем!);
4) Записываем ответ.
Итак, поехали.)
Пример 1
Такой функции в нашей таблице нет. Зато есть интеграл от степенной функции в общем виде (вторая группа). В нашем случае n = 5. Вот и подставляем пятёрку вместо n и аккуратно считаем результат:
Готово. 
Разумеется, этот пример совсем примитивный. Чисто для знакомства.) Зато умение интегрировать степени позволяет легко считать интегралы от любых многочленов и прочих степенных конструкций.
Пример 2
Под интегралом сумма. Ну и ладно. У нас на этот случай есть свойства линейности. 
Прошу обратить внимание: константа С появляется именно в тот момент, когда исчезают ВСЕ знаки интеграла! Конечно, после этого приходится её постоянно таскать за собой. А что делать…
Разумеется, так подробно расписывать обычно не требуется. Это чисто для понимания сделано. Чтобы суть уловить.)
Например, очень скоро, особо не раздумывая, вы в уме будете давать ответ к монстрам типа:
Многочлены — самые халявные функции в интегралах.) А уж в диффурах, в физике, в сопромате и прочих серьёзных дисциплинах интегрировать многочлены придётся постоянно. Привыкайте.)
Следующий примерчик будет чуть покруче.
Пример 3
Надеюсь, всем понятно, что наше подынтегральное выражение можно расписать вот так:
Подынтегральная функция отдельно, а множитель dx (значок дифференциала) — отдельно.
Замечание: в этом уроке множитель dx в процессе интегрирования пока никак не участвует, и мы на него пока что мысленно «забиваем». 
А пока наш взор обращён на подынтегральную функцию
Не очень похоже на степенную функцию, но это она. 
А икс в степени минус две трети — это уже табличная функция! Вторая группа, n=-2/3. А константа 1/2 нам не помеха. Выносим её наружу, за знак интеграла, и прямо по формуле считаем:
В этом примере нам помогли элементарные свойства степеней. И так надо делать в большинстве случаев, когда под интегралом стоят одинокие корни или дроби. Посему пара практических советов при интегрировании степенных конструкций:
Заменяем дроби степенями с отрицательными показателями;
Заменяем корни степенями с дробными показателями.
А вот в окончательном ответе переход от степеней обратно к дробям и корням — дело вкуса. Лично я перехожу обратно — так эстетичнее, что ли.
И, пожалуйста, аккуратно считаем все дроби! Внимательно следим за знаками и за тем, что куда идёт — что в числитель, а что знаменатель.
Что? Надоели уже скучные степенные функции? Ну ладно! Берём быка за рога!
Пример 4
Если сейчас привести всё под интегралом к общему знаменателю, то можно застрять на этом примере всерьёз и надолго.) Но, присмотревшись повнимательнее к подынтегральной функции, можно заметить, что наша разность состоит из двух табличных функций. Так что не будем извращаться, а вместо этого разложим наш интеграл на два:
Первый интеграл — обычная степенная функция, (2-я группа, n = -1): 1/x = x-1.
Традиционная наша формула для первообразной степенной функции
здесь не работает, но зато у нас для n = -1 есть достойная альтернатива — формула с натуральным логарифмом. Вот эта:
Тогда, согласно этой формуле, первая дробь проинтегрируется так:
А вторая дробь — тоже табличная функция! Узнали? Да! Это седьмая формула с «высоким» логарифмом:
Константа «а» в этой формуле равна двойке: a=2.
Важное замечание: Обратите внимание, константу С при промежуточном интегрировании я нигде не приписываю! Почему? Потому что она пойдёт в окончательный ответ всего примера. Этого вполне достаточно.) Строго говоря, константу надо писать после каждого отдельного интегрирования — хоть промежуточного, хоть окончательного: так уж неопределённый интеграл требует…)
Например, после первого интегрирования я должен был бы написать:
После второго интегрирования:
Но вся фишка в том, что сумма/разность произвольных констант — это тоже некоторая константа! В нашем случае для окончательного ответа нам надо из первого интеграла вычесть второй. Тогда у нас получится разность двух промежуточных констант:
С1-С2
И мы имеем полное право эту самую разность констант заменить одной константой! И просто переобозначить её привычной нам буквой «С». Вот так:
С1-С2 = С
Вот и приписываем эту самую константу С к окончательному результату и получаем ответ:
Да-да, дроби они такие! Многоэтажные логарифмы при их интегрировании — самое обычное дело. Тоже привыкаем.)
Запоминаем:
При промежуточном интегрировании нескольких слагаемых константу С после каждого из них можно не писать. Достаточно включить её в окончательный ответ всего примера. В самом конце.
Следующий пример тоже с дробью. Для разминки.)
Пример 5
В таблице, понятное дело, такой функции нет. Но зато есть похожая функция:
Это самая последняя, восьмая формула. С арктангенсом. 
Вот эта:
И нам сам бог велел подстроить наш интеграл под эту формулу! Но есть одна проблемка: в табличной формуле перед х2 никакого коэффициента нету, а у нас — девятка. Не можем пока что напрямую воспользоваться формулой. Но в нашем случае проблема вполне решаема. Вынесем эту девятку сначала за скобки, а потом вообще уведём за пределы нашей дроби.)
А новая дробь — уже нужная нам табличная функция под номером 8! Здесь а2=4/9. Или а=2/3.
Всё. Выносим 1/9 за знак интеграла и пользуемся восьмой формулой:
Вот такой ответ. Этот пример, с коэффициентом перед х2, я специально так подобрал. Чтобы ясно было, что делать в таких случаях. 
Например:
Здесь а2 = 5, поэтому само «а» будет «корень из пяти». В общем, вы поняли.)
А теперь немного видоизменим нашу функцию: напишем знаменатель под корнем.) Вот такой интеграл теперь будем брать:
Пример 6
В знаменателе появился корень. Естественно, изменилась и соответствующая формула для интегрирования, да.) Опять лезем в таблицу и ищем подходящую. Корни у нас есть в формулах 5-й и 6-й групп. Но в шестой группе под корнями только разность. А у нас — сумма. Значит, работаем по пятой формуле, с «длинным» логарифмом:
Число А у нас — пятёрка. Подставляем в формулу и получаем:
И все дела. Это ответ. Да-да, так просто!)
Если закрадываются сомнения, то всегда можно (и нужно) проверить результат обратным дифференцированием. Проверим? А то вдруг, лажа какая-нибудь?
Дифференцируем (на модуль внимания не обращаем и воспринимаем его как обычные скобки):
Всё честно. 
Кстати, если в подынтегральной функции под корнем поменять знак с плюса на минус, то формула для интегрирования останется той же самой. Не случайно в таблице под корнем стоит плюс/минус. 
Например:
Важно! В случае минуса, на первом месте под корнем должно стоять именно х2, а на втором — число. Если же под корнем всё наоборот, то и соответствующая табличная формула будет уже другая!
Пример 7
Под корнем снова минус, но х2 с пятёркой поменялись местами. Похоже, но не одно и то же… На этот случай в нашей таблице тоже есть формулка.) Формула номер шесть, с ней мы ещё не работали:
А вот теперь — аккуратно. В предыдущем примере у нас пятёрка выступала в роли числа A. Здесь же пятёрка будет выступать уже в роли числа а2!
Поэтому для правильного применения формулы не забываем извлечь корень из пятёрки:
И теперь пример решается в одно действие. 
Вот так вот! Всего лишь поменялись местами слагаемые под корнем, а результат интегрирования изменился существенно! Логарифм и арксинус… Так что, пожалуйста, не путайте эти две формулы! Хотя подынтегральные функции и очень похожи…
Бонус:
В табличных формулах 7-8 перед логарифмом и арктангенсом присутствуют коэффициенты 1/(2а) и 1/а соответственно. И в тревожной боевой обстановке при записи этих формул даже закалённые учёбой ботаны частенько путаются, где просто 1/а, а где 1/(2а). Вот вам простой приёмчик для запоминания.
В формуле №7
в знаменателе подынтегральной функции стоит разность квадратов х2 — а2. Которая, согласно боянной школьной формуле, раскладывается как (х-а)(х+а). На два множителя. Ключевое слово — два. И эти две скобки при интегрировании идут в логарифм: с минусом вверх, с плюсом — вниз.) И коэффициент перед логарифмом тоже 1/(2а).
А вот в формуле №8
в знаменателе дроби стоит сумма квадратов. Но сумма квадратов x2+a2 неразложима на более простые множители. Поэтому, как ни крути, в знаменателе так и останется один множитель. И коэффициент перед арктангенсом тоже будет 1/а.
А теперь для разнообразия проинтегрируем что-нибудь из тригонометрии.)
Пример 8
Пример простой. Настолько простой, что народ, даже не глядя в таблицу, тут же радостно ответ пишет и… приехали. 
Следим за знаками! Это самая распространённая ошибка при интегрировании синусов/косинусов. Не путаем с производными!
Да, (sin x)’ = cos x и (cos x)’ = —sin x.
Но!
Поскольку производные народ обычно худо-бедно помнит, то, чтобы не путаться в знаках, приём для запоминания интегралов тут очень простой:
Интеграл от синуса/косинуса = минус производная от тех же синуса/косинуса.
Например, мы ещё со школы знаем, что производная синуса равна косинусу:
(sin x)’ = cos x.
Тогда для интеграла от того же синуса будет справедливо:
И всё.) С косинусом то же самое.
Исправляем теперь наш пример:
Предварительные элементарные преобразования подынтегральной функции
До этого момента были самые простенькие примеры. Чтобы прочувствовать, как работает таблица и не ошибаться в выборе формулы.)
Конечно, мы делали кое-какие простенькие преобразования — множители выносили, на слагаемые разбивали. Но ответ всё равно так или иначе лежал на поверхности.) Однако… Если бы вычисление интегралов ограничивалось только прямым применением таблицы, то вокруг была бы сплошная халява и жить стало бы скучно.)
А теперь разберём примеры посолиднее. Такие, где впрямую, вроде бы, ничего и не решается. Но стоит вспомнить буквально пару-тройку элементарных школьных формул или преобразований, как дорога к ответу становится простой и понятной. 
Применение формул тригонометрии
Продолжим развлекаться с тригонометрией.
Пример 9
Такой функции в таблице и близко нет. Зато в школьной тригонометрии есть такое малоизвестное тождество:
Выражаем теперь из него нужный нам квадрат тангенса и вставляем под интеграл:
Зачем это сделано? А затем, что после такого преобразования наш интеграл сведётся к двум табличным и будет браться в уме!
Смотрите:
А теперь проанализируем наши действия. На первый взгляд, вроде бы, всё проще простого. Но давайте задумаемся вот над чем. Если бы перед нами стояла задача продифференцировать ту же самую функцию, то мы бы точно знали, что именно надо делать — применять формулу производной сложной функции:
И всё. Простая и безотказная технология. Работает всегда и гарантированно приводит к успеху.
А что же с интегралом? А вот тут нам пришлось порыться в тригонометрии, откопать какую-то малопонятную формулу в надежде, что она нам как-то поможет выкрутиться и свести интеграл к табличному. И не факт, что помогла бы она нам, совсем не факт… Именно поэтому интегрирование — более творческий процесс, нежели дифференцирование. Искусство, я бы даже сказал. 
Пример 10
Что, внушает? Таблица интегралов пока бессильна, да. Но, если снова заглянуть в нашу сокровищницу тригонометрических формул, то можно откопать весьма и весьма полезную формулу косинуса двойного угла:
Вот и применяем эту формулу к нашей подынтегральной функции. В роли «альфа» у нас х/2.
Получаем:
Эффект потрясающий, правда?
Эти два примера наглядно показывают, что предварительное преобразование функции перед интегрированием вполне допускается и порой колоссально облегчает жизнь! И в интегрировании эта процедура (преобразование подынтегральной функции) на порядок более оправдана, чем при дифференцировании. В дальнейшем всё увидите.)
Разберём ещё парочку типовых преобразований.
Формулы сокращённого умножения, раскрытие скобок, приведение подобных и метод почленного деления.
Обычные банальные школьные преобразования. Но порой только они и спасают, да.)
Пример 11
Если бы мы считали производную, то никаких проблем: формула производной произведения и — вперёд. Но стандартной формулы для интеграла от произведения не существует. И единственный выход здесь — раскрыть все скобки, чтобы под интегралом получился многочлен. А уж многочлен мы как-нибудь проинтегрируем.) Но скобки раскрывать тоже будем с умом: формулы сокращённого умножения — штука мощная!
(x2 — 1)2(x2 + 1)2 = ((x2 — 1)(x2 + 1))2 = ((x2)2 — 12)2 = (x4 — 1)2 = x8 — 2x4 + 1
А теперь считаем:
И все дела.)
Пример 12
Опять же, стандартной формулы для интеграла от дроби не существует. Однако в знаменателе подынтегральной дроби стоит одинокий икс. Это в корне меняет ситуацию.) Поделим почленно числитель на знаменатель, сведя нашу жуткую дробь к безобидной сумме табличных степенных функций:
Особо комментировать процедуру интегрирования степеней не буду: не маленькие уже.)
Интегрируем сумму степенных функций. По табличке.)
Вот и все дела.) Кстати, если бы в знаменателе сидел не икс, а, скажем, х+1, вот так:
то этот фокус с почленным делением уже так просто не прошёл бы. Именно из-за наличия корня в числителе и единицы в знаменателе. Пришлось бы замену вводить и избавляться от корня. Но такие интегралы гораздо сложнее. О них — в других уроках.
Видите! Стоит только чуть-чуть видоизменить функцию — тут же меняется и подход к её интегрированию. Порой кардинально!) Нету чёткой стандартной схемы. К каждой функции — свой подход. Иногда даже уникальный.)
В некоторых случаях преобразования в дробях ещё более хитрые.
Пример 13
А здесь как можно свести интеграл к набору табличных? Здесь можно ловко извернуться добавлением и вычитанием выражения x2 в числителе дроби с последующим почленным делением. Очень искусный приём в интегралах! Смотрите мастер-класс! 
И теперь, если заменить исходную дробь на разность двух дробей, то наш интеграл распадается на два табличных — уже знакомую нам степенную функцию и арктангенс (формула 8):
Ну, что тут можно сказать? Вау!
Этот трюк с добавлением/вычитанием слагаемых в числителе — очень популярен в интегрировании рациональных дробей. Очень! Рекомендую взять на заметку.
Пример 14
Здесь тоже рулит эта же технология. Только добавлять/вычитать надо единичку, чтобы из числителя выделить выражение, стоящее в знаменателе:
Вообще говоря, рациональные дроби (с многочленами в числителе и знаменателе) — отдельная очень обширная тема. Дело всё в том, что рациональные дроби — один из очень немногих классов функций, для которых универсальный способ интегрирования существует. Метод разложения на простейшие дроби вкупе с методом неопределённых коэффициентов. Но способ этот очень трудоёмкий и обычно применяется как тяжёлая артиллерия. Ему будет посвящён не один урок. А пока что тренируемся и набиваем руку на простых функциях.
Подытожим сегодняшний урок.
Сегодня мы подробно рассмотрели, как именно пользоваться таблицей, со всеми нюансами, разобрали множество примеров (и не самых тривиальных) и познакомились с простейшими приёмами сведения интегралов к табличным. И так мы теперь будем поступать всегда. Какая бы страшная функция ни стояла под интегралом, с помощью самых разнообразных преобразований мы будем добиваться того, чтобы, рано или поздно, наш интеграл, так или иначе, свёлся к набору табличных.
Несколько практических советов.
1) Если под интегралом дробь, в числителе которой сумма степеней (корней), а в знаменателе — одинокая степень икса, то используем почленное деление числителя на знаменатель. Заменяем корни степенями с дробными показателями и работаем по формулам 1-2.
2) В тригонометрических конструкциях в первую очередь пробуем базовые формулы тригонометрии — двойного/тройного угла, основные тригонометрические тождества:
Может очень крупно повезти. А может и нет…
3) Где нужно (особенно в многочленах и дробях), применяем формулы сокращённого умножения:
(a+b)2 = a2+2ab+b2
(a-b)2 = a2-2ab+b2
(a-b)(a+b) = a2-b2
и так далее…
4) При интегрировании дробей с многочленами пробуем искусственно выделить в числителе выражение(я), стоящее(щие) в знаменателе. Очень часто дробь упрощается и интеграл сводится к комбинации табличных.
Ну что, друзья? Я вижу, интегралы вам начинают нравиться. 
Что? Не знаете, как интегрировать арксинус/арккосинус? Да! Мы этого ещё не проходили.) Но здесь их напрямую интегрировать и не нужно. И да поможет вам школьный курс!)
Ответы (в беспорядке):
Для лучших результатов настоятельно рекомендую приобрести сборник задач по матану Г.Н. Бермана. Классная штука!
А у меня на сегодня всё. Успехов!
Содержание:
Интегрирование — операция, обратная дифференцированию, которая позволяет определять функцию F(x), для которой заданная функция f(x) является ее производной:
Другими словами, если операция дифференцирования состоит в нахождении производной, то интегрирование — это операция отыскания первообразной.
Функция F(x) называется первообразной для функции f(x), на промежутке X, если для каждой точки этого промежутка F(x) = f(x).
Теорема. Если 

Доказательcmво:
Таким образом, все семейство первообразных для данной функции f(x) имеет вид F(x) + C, где F(x) одна из первообразных, а С — произвольная постоянная.
Совокупность всех первообразных для функции f(x) ни промежутке X называется неопределенным интегралом функции f(x).
Неопределенный интеграл обозначается следующим образом:
где 
f(x) — подынтегральная функция;
f(x)dx = F'(x)dx = dF(x) — подынтегральное выражение.
В определении неопределенного интеграла не исключается возможность того, что подынтегральная функция является сложной, однако при проверке правильности нахождения первообразной это несущественно, поскольку дифференцировать следует лишь по переменной, стоящей под знаком дифференциала.
Можно показать, что достаточным условием интегрируемости функции f(x) на промежутке X является ее непрерывность, в то время как для ее дифференцируемости непрерывность является лишь необходимым условием, но не достаточным.
Свойства неопределенного интеграла
1. Производная неопределенного интеграла равна подынтегральной функцией:
Эти свойства означают, что интегрирование и дифференцирование — взаимно обратные операции.
3. Если f(x) и — интегрируемые функции, т.е. на промежутке X они имеют первообразные, то сумма функций f(x) + g(x) также интегрируема и
4. Если f(x) — интегрируемая функция, а К — постоянная величина, то 
Таким образом, свойства 3 и 4 указывают на линейность операции интегрирования:

5. 

Простым обращением известных формул дифференцирования элементарных функций получается таблица простейших неопределенных интегралов.
Чтобы найти неопределенный интеграл от какой-либо функции, достаточно свести его к одному или нескольким табличным интегралам из вышеприведенной таблицы.
Замена переменных
Для упрощения подынтегральной функции и, тем самым, для нахождения интеграла 
Если обозначить 

Для некоторых типов подынтегральных функций известны такие подстановки, которые приводят к цели. Ниже будут рассматриваться многие из них.
Например:
1. 
2. 

3. 

4. 
Наряду с заменой переменных часто применяется метод разложения, который опирается на линейные свойства интегралов. Это можно проиллюстрировать следующим примером:
Интегрирование по частям
Если функции u(х) и v(x) дифференцируемы на множестве X и, кроме того, на этом множестве существует интеграл 

Действительно, если проинтегрировать формулу нахождения дифференциала произведения двух функций:

Такой способ нахождения интеграла называется интегрированием по частям. Этот способ целесообразно применять, если интеграл, стоящий в правой части проще исходного. При использовании метода интегрирования по частям задана левая часть равенства, т.е. функция и(х) и дифференциал dv(x). Таким образом, выбор функций u(х) и v(x) неоднозначен, причем не каждый способ выбора этих функций ведет к упрощению первоначального интеграла.
Функции, интегрируемые по частям, можно схематично разделить на три группы.
1. Интегралы, подынтегральная функция которых содержит в качестве множителя одну из следующих функций: 
В случае если подынтегральная функция содержит в качестве множителя одну из перечисленных выше функций в степени m, то операцию интегрирования по частям придется повторять m раз.
2. Интегралы, подынтегральная функция которых содержит в качестве множителя одну из следующих функций: 
Для вычисления интегралов второй группы нужно формулу интегрирования по частям применять п раз, причем в качестве функции u(х) нужно брать многочлен соответствующей степени. После каждого интегрирования степень полинома будет понижаться на единицу.
3. Интегралы вида:
Применение формулы интегрирования по частям может привести к ситуации, когда интеграл в правой части и интеграл в левой части равенства совпадают, т.е. получается равенство вида:
I = uv-aI, где I — исходный интеграл; а — постоянная (
В этом случае применение метода интегрирования по частям позволяет получить уравнение первого порядка для I, из решения которого находится исходный интеграл I:
Причем, метод интегрирования по частям может применяться многократно и любой из сомножителей можно всякий раз принимать за u(х).
Большое количество интегралов, не входящих в эти три группы, у которых невозможно выделить общий признак для группировки, также вычисляются методом интегрирования по частям. К таким интегралам можно отнести:

Интегрирование рациональных функций. Метод рационализации
Из курса линейной алгебры известно, что рациональной дробью называется выражение вида 

При интегрировании правильной рациональной дроби производится разложение этой дроби на простейшие, для чего предварительно разлагается на элементарные множители многочлен 
Интегралы вида 
Для вычисления интегралов вида 
Обозначим 



Если ввести обозначение 
Таким образом, происходит понижение порядка вычисляемого интеграла, и вычисление интеграла 
Зная с точностью до константы интеграл 
Используя полученный результат, можно вычислить
Таким образом, можно вычислить интеграл 

Если 



Сходная подстановка рационализирует подынтегральную функцию и в более общем случае интегрирования выражений типа: 

Вычисление
Интеграл 
Здесь t — новая переменная.
Интеграл 
Интеграл 
Пример:
Вычислить
Применим подстановку Эйлера 
Дифференцируя обе части полученного выражения, получим 



Вычисление
Интеграл 



В случае неопределенного интеграла вида 
Если 
Если 
Вычисление
Интеграл от дифференциального бинома, т.е. интеграл 
Как мы видим, не существует сколько-нибудь общих приемов нахождения неопределенных интегралов от любой элементарной функции. Более того, доказано, что многие, порой очень простые на первый взгляд, интегралы не выражаются через элементарные функции, или, как говорят, не берутся. Например, к таким интегралам относятся:
В различных справочниках приводятся таблицы, в которых содержится большое количество неопределенных интегралов, как выражающихся, так и не выражающихся через элементарные функции.
Определение и свойства неопределенного интеграла
Изучим интегрирование, которое является действием обратным по отношению к вычислению производных. Действительно, при вычислении производных решается задача вида:
При интегрировании же решается задача:
- — найти функцию, производная которой равняется данной функции.
Задачи определения закона движения материальной точки по заданному ее ускорению приводят к отысканию функции по заданной производной этой функции, т.е. к интегрированию.
Для функции 

Определение 18.1.1. Пусть функция




Очевидно, что если 




С другой стороны, если 


Значит
Откуда
Теорема 18.1.1. Если 





где С — произвольная постоянная.
Из теоремы 18.1.1. следует, что выражение 
Определение 18.1.2. Совокупность всех первообразных функции

Итак,

Значок называется знаком интеграла. Под знаком интеграла пишут не саму функцию 



Это для того чтобы указать, по какой переменной ищется первообразная. Отметим, что равенство (18.1.1) следует понимать как равенство двух множеств.
Из определения 18.1.2 неопределенного интеграла следует, что
В формуле

Пример:
Интеграл 



Рассмотрим основные свойства неопределенного интеграла:
Предположим, что все рассматриваемые функции определены на одном и том же промежутке.
1. Интеграл от дифференциала первообразной равен семейству первообразных:
Доказательство. Так как дифференциал функции равен произведению производной функции на дифференциал независимой переменной:
то из определения неопределенного интеграла вытекает, что:
2. Дифференциал от неопределенного интеграла равен подынтегральному выражению:
Доказательство. Воспользовавшись определением дифференциала функции и тем, что неопределенный интеграл 




3. Постоянный множитель можно выносить за знак неопределенного интеграла:
Доказательство. Пусть
где 
Тогда, согласно правила вычисления производных:
Поэтому
Ввиду произвольности постоянных 
откуда следует, что 
Доказательство. Вычислим производные от правой и левой частей равенства. Тогда из определения неопределенного интеграла следует, что 

Таблица основных интегралов с примерами решения
Из определения неопределенного интеграла, а также из формул дифференцирования вытекают следующие формулы:
С помощью интегралов 1-17, называемых обычно табличными интегралами, и доказанных свойств неопределенного интеграла в пункте 18.2, можно выразить интегралы от более сложных элементарных функций через элементарные функции.
Пример №1
Вычислить интеграл:
Решение:
Воспользовавшись последовательно свойствами 3 и 4 неопределенного интеграла и табличными интегралами, получим:
Заметим, что если первообразная некоторой функции 
Ранее мы установили, что производная любой элементарной функции представляет собой также элементарную функцию. Значит, операция дифференцирования не выводит нас из класса элементарных функций.
А интегралы от некоторых элементарных функций могут не быть элементарными функциями. Примерами таких интегралов являются следующие интегралы:
Каждый из указанных интегралов, называемых соответственно интегралом Пуассона, интегралами Френеля, интегральным логарифмом, интегральными косинусом и синусом, представляют собой функцию, не являющуюся элементарной. Для них составлены таблицы, построены графики и все они изучены с такой же полнотой, что и элементарные функции.
Неопределенный интеграл от логарифмической производной
Из раздела дифференцирования известно, что






и поэтому для любой функции
Полученная формула облегчает вычисление неопределенного интеграла во всех тех случаях, когда подынтегральная функция есть дробь, числитель которой равен производной знаменателя. Если же числитель не равен производной знаменателя, то преобразуют подынтегральную функцию к такому нужному виду, если это легко возможно.
Пример №2
Вычислить интеграл:
Решение:
Легко заметить, что в числителе можно выделить производную знаменателя, умножив и разделив подынтегральную функцию на а:
Интегрирование подстановкой
Нередко интеграл 
Теорема 18.5.1. Пусть функции 






Доказательство. Поскольку функция


Значит, функция

Доказанная формула часто применяется при вычислении интегралов. Для этого ее удобно записать в виде:


Приведем несколько примеров, иллюстрирующих изложенный метод.
Пример №3
Вычислить интеграл:
Решение:
Для вычисления этого интеграла сделаем простейшую подстановку:
В результате этой замены получим табличный интеграл:
Пример №4
Вычислить интеграл:
Решение:
Этот интеграл вычисляется посредством замены:
Все преобразования, связанные с подстановкой, удобно записывать между двумя вертикальными линиями:
Пример №5
Вычислить интеграл:
Решение:
Воспользуемся подстановкой
Пример №6
Вычислить интеграл:
Решение:
Для вычисления этого интеграла удобно воспользоваться заменой 
Пример №7
Вычислить интеграл:
Решение:
Прежде чем ввести нужную подстановку, преобразуем заданный интеграл, умножив числитель и знаменатель на
заменив 
Выполнив теперь подстановку 
Интегрирование по частям
К числу весьма эффективных методов интегрирования относится метод интегрирования по частям. Этот метод основывается на следующей теореме.
Теорема 18.6.1. Если функции 



Доказательство. Так как функции 

Интегрируя обе части последнего равенства, будем иметь:

Согласно свойства 1, пункта 18.2:
Подставляя это выражение в (18.6.2) и относя произвольную постоянную ко второму слагаемому, получим (18.6.1). Теорема доказана.
Формула (18.6.1) называется формулой интегрирования по частям.
Заметим, что при практическом использовании формулы (18.6.1) задана левая часть, функция 




Практика показывает, что большая часть интегралов (но не всех), которые вычисляются при помощи формулы (18.6.1), может быть разбита на три группы.
1. К первой группе относятся интегралы, подынтегральная функция которых содержит одну из следующих функций: 


2. Ко второй группе относятся интегралы вида:
где




3. К третьей группе относятся интегралы вида:



Пример №8
Вычислить интеграл:
Решение:
В заданном интеграле в качестве функции 




Пример №9
Вычислить интеграл:
Решение:
Заданный интеграл относится к первой группе. Согласно рекомендации, положим: 


Применив формулу (18.6.1), будем иметь:
Пример №10
Вычислить интеграл:
Решение:
Заданный интеграл вычислим двукратным интегрированием по частям, полагая вначале 
Пример №11
Вычислить интеграл:
Решение:
Заданный интеграл относится к третьей группе. Обозначим его через
Дважды применим формулу (18.6.1), полагая вначале 

Для заданного интеграла получили уравнение:
Из этого уравнения находим значение заданного интеграла:
Интегрирование рациональных функций
Известно, что всякая рациональная дробь представима в виде суммы многочлена и элементарных рациональных дробей: 










Слева записан многочлен 





Проиллюстрируем метод неопределенных коэффициентов на примере.
Пример №12
Разложить на сумму простейших правильную дробь:
Решение:
Находим корни многочлена записанного в знаменателе рациональной дроби и представляем заданную рациональную функцию в виде суммы элементарных рациональных дробей первого рода:
Приводим равенство к общему знаменателю:
Сравниваем числители:
Правую часть располагаем по убывающим степеням
Сравниваем коэффициенты при одинаковых степенях х и получаем систему:
решив которую, находим:
Тогда
Таким образом, для того чтобы проинтегрировать рациональную дробь нужно представить ее в виде суммы многочлена и правильной рациональной дроби, которую представляем в виде суммы элементарных рациональных дробей первого и второго рода. т.е. в виде равенства (18.7.1).
Так как интеграл от многочлена 
Сначала рассмотрим вычисление интегралов от дробей первого рода, т.е. вида:
Если 
а если 
Рассмотрим теперь интегралы от дробей второго рода:
где, 

и пологая
получим:
Если же
подобным образом получим:
Первый интеграл равен:
Второй интеграл вычислим по частям:
В результате получили рекуррентную формулу: 
Теперь пологая 




Итак, мы показали, что неопределенный интеграл от рациональной функции вычисляется в конечном виде, т. е. представляет собой сумму выражений
и произвольной постоянной.
Пример №13
Вычислить интеграл от рациональной дроби:
Решение:
Согласно общему правилу, выделим целую часть, разделив числитель на знаменатель:
Далее разложим правильную рациональную дробь 
Умножив левую и правую часть на 
Приравняв коэффициенты при одинаковых степенях 
решив которую находим значения коэффициентов А. В, С, D, Е:
Тогда:
Интегрирование простейших иррациональностей
При интегрировании иррациональных функций применяется метод рационализации. Применим метод рационализации для вычисления интеграла 





Положим 

Пример №14
Вычислить интеграл:
Решение:
Сделав подстановку
и учитывая, что 
Для вычисления оставшегося интеграла воспользуемся рекуррентной формулой (18.7.3) для 
Подставив значение интеграла, и приведя подобные, окончательно будем иметь:
Пример №15
Вычислить интеграл:
Решение:
Рационализирующей подстановкой, в данном случае, является подстановка
Тогда:
Интегралы вида:
рационализируются с помощью подстановок Эйлера:
1) если

2) если 




где 
Пример №16
Вычислить интеграл:
Решение:
Поскольку в квадратном трехчлене

Возведем обе части равенства в квадрат:

Выполнив подстановку , получим интеграл от рациональной функции:
Рациональную дробь представим в виде суммы простых рациональных дробей и вычислим неизвестные коэффициенты:
Составляем систему:
решив которую, находим значения коэффициентов:
Тогда
Интегрирование биномиальных дифференциалов
Биномиальным дифференциалом называют выражение
где степени 
Интеграл от биномиального дифференциала
рационализируется в трех случаях:
Если р -целое, то рационализирующей подстановкой является подстановка 

Заметим, что рационализация подынтегрального выражения интеграла (18.9.1) в первом случае является излишней, так как возведение выражения в скобках в степень
Произведем замену в интеграле (18.9.1):
где
Поэтому если q -целое, т. e. получаем второй случай, то подынтегральная функция содержит иррациональность от дробнолинейной функции (пункт 18.7). Тогда рационализирующей подстановкой является подстановка вида 
Наконец, в третьем случае, т. с. когда 


Заметим, что П.Л. Чебышев показал, что при показателях 
Рассмотрим примеры, иллюстрирующие применение рационализирующих подстановок биноминальных дифференциалов.
Пример №17
В заданном интеграле
Пример №18
В заданном интеграле
Пример №19
В заданном интеграле
Интегрирование некоторых рационально-тригонометрических функций
Функция
1. Рассмотрим сначала интеграл
Так как синус и косинус рационально выражаются через тангенс половинного угла, то подстановка


Пример №20
Вычислить интеграл:
Решение:
Воспользуемся универсальной григонометрической подстановкой
Во многих случаях для определения первообразной рационально-тригонометрической функции удобно применять специальные подстановки:
а) если подынтегральная функция 
б) если подынтегральная функция

в) если подынтегральная функция 
2. Интеграл вида 





3. Интегралы вида
непосредственно вычисляются, если подынтегральные функции в них преобразовать согласно формулам:
Пример №21
Вычислить интеграл:
Решение:
Заменив произведение тригонометрических функций через сумму, получим два табличных интеграла.
Вычисление неопределенного интеграла
Основной задачей дифференциального исчисления является нахождение производной или дифференциала данной функции. Интегральное исчисление решает обратную задачу — нахождение самой функции по ее производной или дифференциалу.
Первообразная функция и неопределенный интеграл
Определение. Функция 




Например, 

По геометрическому смыслу производной 





Следует отметить, что для заданной функции 










Геометрически это означает, что если найдена одна кривая 


Остается вопрос, описывает ли выражение вида 

Теорема. Если 







Из данной теоремы следует, что, если 




Определение. Совокупность всех первообразных для функции






где 


Например, поскольку 
Отметим, что в определении неопределенного интеграла не исключается, что 

Операция нахождения неопределенного интеграла от некоторой функции называется интегрированием этой функции.
В гл. 11 будет показано, что достаточным условием интегрируемости функции на промежутке 
Свойства неопределенного интеграла
Интегралы от основных элементарных функций
Рассмотрим основные свойства неопределенного интеграла.
1. Производная от неопределенного интеграла равна подынтегральной функции, т.е.

2.Дифференциал неопределенного интеграла равен подынтегральному выражению, т.е.

3. Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого, т.е.
где 



и на основании (10.2) дифференциал неопределенного интеграла 
Сравнивая между собой свойства 2 и 3, можно сказать, что операции нахождения неопределенного интеграла и дифференциала взаимно обратны (знаки 
4. Постоянный множитель можно выносить за знак интеграла, т.е.
где

(см. свойство 1). По следствию из теоремы Лагранжа найдется такое число 



5. Интеграл от алгебраической суммы двух функций равен такой же сумме интегралов от этих функций, т.е.
Доказательство аналогично свойству 4.
Нетрудно видеть, что свойство 5 остается справедливым для любого конечного числа слагаемых.
Перечислим интегралы от элементарных функций, которые в дальнейшем мы будем называть табличными:
для произвольного интервала, не содержащего точки 
Справедливость приведенных формул проверяется непосредственно дифференцированием (см. определение неопределенного интеграла). Например, формула (10.7) верна, так как производная правой части (10.7) 
Докажем равенство (10.8). Пусть 


Пример №22
Найти интегралы:
Решение:
Во всех трех случаях нам придется воспользоваться одним и тем же табличным интегралом (10.7) от степенной функции, но при разных значениях 
Пример №23
Найти интегралы:
Решение:
а) Учитывая, что 




в) Поскольку 

г) Так как 

Метод интегрирования, основанный на применении свойств 4 и 5, называется методом разложения.
Пример №24
Используя метод разложения, найти интегралы:
Решение:
Нахождение каждого из интегралов начинается с преобразования подынтегральной функции. В задачах а) и б) воспользуемся соответствующими формулами сокращенного умножения и последующим почленным делением числителя на знаменатель:
(см. табличные интегралы (10.7) и (10.8)). Обращаем внимание на то, что в конце решения записываем одну общую постоянную 
в) Преобразуя подынтегральную функцию, получим
(см. табличный интеграл (10.10)).
г) Выделяя из дроби целую часть, получим
(см. (10.13)). ►
Метод замены переменной
Одним из основных методов интегрирования является метод замены переменной (или метод подстановки), описываемый следующей формулой:
где 


(см. свойство 1 неопределенного интеграла).
Так как 
Формула (10.16) показывает, что переходя к новой переменной, достаточно выполнить замену переменной в подынтегральном выражении. Действительно, по определению дифференциала подынтегральные выражения левой и правой частей равенства (10.16) совпадают.
Удачная замена переменной позволяет упростить исходный интеграл, а в простейших случаях свести его к табличному (табличным).
Пример №25
Найти 
Решение:
Положим 

Следует отметить, что новую переменную можно не выписывать явно (в таких случаях говорят о преобразовании функции под знаком дифференциала или о введении постоянных и переменных под знак дифференциала).
Пример №26
Найти
Решение:
Используя свойства дифференциала (см. § 9.1), получаем
Тогда
(см. (10.4) и (10.11)). ►
В примерах 10.4 и 10.5 для нахождения интегралов была использована линейная подстановка 


Теорема. Пусть 

где 

Ho


Данная теорема утверждает, что если в (10.1) вместо аргумента 




Пример №27
Найти интегралы:
Решение:
Искомые интегралы однотипны: каждый из них может быть найден путем применения формулы (10.17) к одному из табличных интегралов.
а) Из (10.7) и (10.17) следует, что
Тогда, полагая 
б) Из (10.8) и (10.17) следует, что
Полагая 
в) Из (10.9′) и (10.17) следует, что
Полагая в (10.20) 
Рассмотрим примеры нахождения интегралов с помощью нелинейных подстановок.
Пример №28
Найти 
Решение:
Положим 



Найдем дифференциал от левой и правой частей формулы 


Пример №29
Найти интегралы:
Решение:
а) Положим 

б) Положим 

в) Используя введение переменной под знак дифференциала, получаем





д) Так как 
е) Так как 
Приведенные примеры являются простейшими. Однако даже в тех случаях, когда замена переменной не приводит искомый интеграл к табличному, она часто позволяет упростить подынтегральную функцию и тем облегчить вычисление интеграла.
Пример №30
Найти 
Решение:
Положим 
Так как 
где
Метод интегрирования по частям
Пусть 
или
Интегрируя левую и правую части последнего равенства и учитывая (10.5) и (10.2), получаем
Формула (10.21) называется формулой интегрирования по частям для неопределенного интеграла. При ее применении фиксируется разбиение подынтегрального выражения искомого интеграла на два сомножителя 


Пример №31
Найти интегралы:
Решение:
а) Так как 


Так как 


Теперь, применяя формулу интегрирования по частям (10.21), получаем
Используя метод разложения, убеждаемся, что полученный интеграл — сумма табличного и интеграла, который был определен при нахождении 
Замечание. Анализ полученного решения показывает, что постоянная 






б) Пусть 


Пример №32
Найти интегралы:
Решение:
а) «Препятствием» к нахождению данного интеграла является присутствие сомножителя 





б) Пусть 

Применяя формулу интегрирования по частям, получаем
В некоторых случаях для нахождения искомого интеграла формулу интегрирования по частям приходится применять более одного раза.
Пример №33
Найти
Решение:
Положим 


Возникший интеграл не является табличным, однако видно, что мы на правильном пути: по сравнению с исходным интегралом степень переменной 


Анализируя разобранные примеры, можно указать следующие типы интегралов, для нахождения которых используется формула интегрирования по частям:
где 

Для нахождения интегралов из первой группы формулу интегрирования по частям придется применить 









На практике метод интегрирования по частям часто комбинируется с другими методами интегрирования.
Пример №34
Найти
Решение:
Выполним сначала замену переменной: положим
Тогда 
Пусть 

Полагая в формуле интегрирования по частям 

Интегрирование простейших рациональных дробей
Напомним, что многочленом степени 






Нас интересуют интегралы от рациональных дробей. В случае, когда степень многочлена знаменателя дроби равна нулю
(т.е. в знаменателе стоит число), дробь является многочленом. Интеграл от многочлена находится с использованием метода разложения (см. § 10.2). Далее будем предполагать, что степень знаменателя дроби больше нуля. Примеры таких интегралов встречались нам выше (см., например, табличные интегралы (10.7) при целом отрицательном 
Прежде всего отметим, что достаточно рассмотреть лишь правильные дроби, т.е. такие, у которых степень числителя меньше степени знаменателя. В самом деле, если это не так, то, используя алгоритм деления многочленов «углом», известный из школьного курса, мы можем представить исходную дробь в виде суммы многочлена и правильной дроби. Например,
и т.д. Тогда интеграл от исходной дроби сведется (с помощью метода разложения, см. § 10.2) к сумме интегралов от многочлена и правильной дроби.
Если степень знаменателя равна 1, то искомый интеграл имеет вид 

Пусть степень знаменателя равна 2, т.е. искомым является интеграл вида
где 

а затем укажем, как общий случай свести к данному. Если


Интеграл (10.24) сводится (вынесением множителя) либо к табличному интегралу (10.13), если 

Для нахождения интеграла (10.25) используем замену переменной 

Окончательно имеем
где
Возвращаясь теперь к интегралу (10.22), заметим, что его можно привести к виду (10.23), если сначала выделить полный квадрат в знаменателе подынтегральной функции, а затем использовать соответствующую (линейную) замену переменной.
Пример №35
Найти интегралы:
Решение:
а) Поскольку 


б) Так как 
Тогда 
Для нахождения первого интеграла воспользуемся формулой (10.26) при 



Первый из интегралов — табличный (см. (10.13)), для нахождения второго воспользуемся формулой (10.26). Тогда получаем
Рассмотренный прием интегрирования правильных дробей, знаменатель которых имеет вторую степень (выделение полного квадрата в знаменателе с последующей заменой переменной) имеет существенный недостаток: он не обобщается на случаи, когда степень знаменателя больше двух. Наметим поэтому также другой возможный подход.
Пусть требуется найти 
Тогда, используя метод разложения и формулу (10.19), получаем:
Аналогично, в общем случае можно доказать, что если подынтегральная 




где 
Пример №36
Найти
Решение:
Так как 
Из последнего равенства найдем постоянные
Приводя дроби правой части к общему знаменателю, приходим к равенству
Если 




(Обратим внимание читателя, что прием нахождения постоянных 
(Рассмотренный метод интегрирования называется методом неопределенных коэффициентов.) ►
Интегрирование некоторых видов иррациональностей
Рассмотрим случаи, в которых замена переменной позволяет интегралы от иррациональных функций свести к интегралам от рациональных функций, рассматриваемых в § 10.5 (т.е. рационализировать интеграл).
Обозначим через 

Например, 
Рассмотрим интегралы вида 
Пример №37
Найти
Решение:
Подынтегральная функция искомого интеграла записана как функция от радикалов степеней 2 и 3. Так как наименьшее общее кратное чисел 2 и 3 равно 6, то данный интеграл является интегралом типа 


Положим 

где
Интегралы вида


Пример №38
Найти
Решение:
Положим 



В простейших случаях такие интервалы сводятся к табличным (см. (10.12), (10.15)). (Необходимая замена переменной усматривается после выделения полного квадрата в квадратном трехчлене 
Пример №39
Найти интервалы:
Решение:
Учитывая, что 



Тогда 
Первый из интервалов данной суммы — табличный (см. (10.12)), второй сводится к табличному интервалу (10.7) заменой 
В более сложных случаях для нахождения интегралов вида

Интегрирование тригонометрических функций
Рассмотрим интегралы вида 
Действительно,
Пример №40
Найти
Решение:
Положим 



Если функция 

Так, если 


Пример №41
Найти
Решение:
В данном случае 



Если 

Пример №42
Найти 
Решение:
В данном случае 


Рассмотрим интегралы вида 
где 
С помощью известных формул для преобразования произведения тригонометрических функций в сумму такие интегралы сводятся к сумме табличных.
Пример №43
Найти
Решение:
Так как 
Пример №44
Найти интегралы:
Решение:
а) Положим 


б) Используя замену переменной, сведем данный интеграл к интегралу, который может быть найден методом интегрирования по частям.
Положим 
Пусть теперь 

Пример №45
Найти интегралы:
Решение:
а) Воспользуемся формулой интегрирования по частям
Пусть 
Но второе слагаемое в последнем выражении совпадает с искомым интегралом 
откуда
где
Следует отметить, что данный интеграл принадлежит к семейству интефалов вида 
б) Воспользуемся методом интегрирования по частям. Пусть

Еще раз применим формулу интегрирования по частям, полагая 

т.е. 
Из последнего равенства (по аналогии с решением примера 10.24а) получаем


Аналогичный прием используется для нахождения интегралов вида 

Пример №46
Найти:
Решение:
Выполняя деление «углом», имеем
или 
Так как 

Пример №47
Найти
Решение:
Положим 

Первый и третий интегралы табличные. Для нахождения второго используем формулу (10.26). Тогда получаем
Пример №48
Найти
Решение:
Известно, что каждый интеграл семейства 
Положим 

Пример №49
Найти
Решение:
Положим 

Отметим, что с помощью подстановки 
Об интегралах, «неберущихся» в элементарных функциях
Из основных правил дифференцирования следует, что производная произвольной элементарной функции вновь является функцией элементарной. Существенно, что операция нахождения первообразной (неопределенного интеграла) таким свойством не обладает, т.е. существуют элементарные функции, первообразные которых элементарными функциями уже не являются. По этой причине соответствующие неопределенные интегралы называются «неберущимися» в элементарных функциях, а сами функции — неинтегрируемыми в конечном виде. Например,



Все методы интегрирования, рассмотренные в данной главе, применяемые для нахождения интегралов от элементарных функций, вновь приводят к элементарным функциям. Поэтому указанные «неберущиеся» интегралы, по крайней мере, не могут быть найдены с помощью методов данной главы. Однако это не означает, что указанные интегралы не существуют или их невозможно найти.
Неопределенный интеграл в высшей математике
Первообразная и неопределенный интеграл:
Определение: Первообразной от заданной функции 


Например, функция 




Пример:
Покажем, что функция 






Определение первообразной можно дать в другой, эквивалентной форме: первообразной от функции 












Определение: Совокупность всех первообразных от заданной функции называется неопределенным интегралом от этой функции.
Неопределенный интеграл обозначается так: 



где 
Из определения первообразной и неопределенного интеграла следует, что
В самом деле,
Выпишем формулы, справедливость которых проверяется дифференцированием.
Таблица интегралов в высшей математике
Проверим формулу 10. Возьмем дифференциал от левой части равенства, получим [в силу формулы (Б)]
Таким образом, мы убеждаемся в том, что левая часть есть первообразная от функции 
Убеждаемся в том, что правая часть равенства есть первообразная от функции 
Преобразования неопределенных интегралов
Подобно тому, как в алгебре даются правила, позволяющие преобразовывать алгебраические выражения с целью их упрощения, так и для неопределенного интеграла существуют правила, позволяющие производить его преобразования.
I. Интеграл от алгебраической суммы функций равен алгебраической сумме интегралов от каждого члена в отдельности, т. е.
II. Постоянный множитель можно вынести за знак интеграла, т. е.
III. Формула интегрирования по частям, а именно:
Докажем формулу (III).
Возьмем дифференциал от правой части равенства (III)
Применяя формулу получим
Член 
а член 
Собирая все вместе, будем иметь
т. е. мы получили то, что получается при дифференцировании левой части равенства (III).
Аналогично проверяются формулы (I) и (II).
Пример:

Пример:

Пример:

Положив

Но так как 


Пример:
Рассмотрим 




Пример:
Рассмотрим 




Таким образом, заданный интеграл выражен при помощи более простого интеграла 

Соединяя равенства 

где 

Замена переменного интегрирования (метод подстановки)
В этом параграфе будут рассмотрены некоторые преобразования интеграла к другому виду, который может оказаться более удобным.
Если дан интеграл 


которая называется формулой замены переменного интегрирования. Проверим ее при помощи дифференцирования. Применяя формулу (Б) из § 1, будем иметь
Поскольку 
Подставляя полученное выражение в равенство 
Если же найдем дифференциал правой части равенства (IV), то получим то же выражение. Следовательно, обе части равенства (IV) могут отличаться только на постоянное слагаемое, а это и значит, что формула (IV) верна.
Пример:





Пример:





Чтобы возвратиться к старому переменному 



Пример:

Применим формулу косинуса половинного угла 



Нетрудно сообразить, что 
Вернемся к интегралу 




Возвратимся теперь к переменному 




Пример:




Пример:

Теперь положим 


поэтому 
Приближенное вычисление площадей криволинейных трапеций
В было дано определение криволинейной трапеции. В этом параграфе мы займемся определением ее площади, хотя бы приближенно.
Рассмотрим криволинейную трапецию, ограниченную кривой 



Разобьем отрезок 






Таким образом, мы получим 
Сумму площадей этих прямоугольников обозначим 

а в общем случае
Если же в каждой полосе из конца большей ординаты (на рис. 80 правой) проведем прямую, параллельную оси 
то получим новые прямоугольники, выходящие за пределы криволинейной трапеции. Подсчитаем площадь каждого из них и результаты сведем снова в таблицу:
Обозначив сумму площадей этих прямоугольников через 
а в общем случае
Если обозначить площадь криволинейной трапеции буквой 
Поэтому, если примем приближенно 




Каждое из приближенных значений 


Пример №50
Найдем приближенное значение площади криволинейной трапеции, ограниченной параболой 



Решение:
Возьмем приближенное равенство (5). Вычисляя 
Для удобства вычислений разобьем отрезок 
Обозначим длину каждой из этих частей через 
При этом получим
Формулу (6) можно записать в следующем виде:
или, вынося за скобки 
Раскрывая малые скобки, получим
Произведя внутри фигурных скобок приведение подобных членов и вынося за скобки 

Придадим полученному выражению более простой вид. Для этого отметим, что
(как сумма членов арифметической прогрессии) и
(вывод этого тождества помещен в конце книги, в приложении). Подставляя (9) и (10) в равенство (8), получим
Подставим сюда выражение 
Вносим 
или
Если бы мы воспользовались формулой (4) для приближенного вычисления площади 

Искомая площадь 



Будем увеличивать 







Предел правой части равенства (12) также равняется 





Первообразная функция
Основная задача дифференциального исчисления состоит в нахождении дифференциала данной функции или ее производной. Интегральное исчисление решает обратную задачу: по заданному дифференциалу, а следовательно, и производной неизвестной функции F(x) требуется определить эту функцию. Иными словами, имея выражение
или соответственно
где f(x) — известная функция, нужно найти функцию F(x). Для простоты мы будем предполагать, что равенство (1) выполнено на некотором конечном или бесконечном промежутке.
Искомая функция F (я) называется при этом первообразной функцией по отношению к функции f(x). Таким образом, мы можем дать следующее определение первообразной функции.
Определение: Первообразной функцией для данной функции f(x) на данном промежутке называется такая функция F(x), производная которой равна f(x) или дифференциал которой равен f(x)dx на рассматриваемом промежутке.
Например, одной из первообразных функций для функции Зх2 будет х3, ибо (х3)’ = Зх2. Первообразная функция не единственна, так как (х3 + 1)’ = Зх2, (х3- 5)’ = 3х2ит. п., поэтому функции х3 + 1, х3 — 5 и т. п. также являются первообразными для функции Зх2. Следовательно, данная функция имеет бесчисленное множество первообразных.
В нашем примере каждые две первообразные отличались друг от друга на некоторое постоянное слагаемое. Покажем, что это будет иметь место и в общем случае.
Теорема: Две различные первообразные одной и той же функции, определенной в некотором промежутке, отличаются друг от друга в этом промежутке на постоянное слагаемое.
Доказательство: В самом деле, пусть f (х) — некоторая функция, определенная на промежутке 
Отсюда
Но если две функции имеют одинаковые производные, то эти функции отличаются друг от друга на постоянное слагаемое. Следовательно,
где С — постоянная величина, что и требовалось доказать. Геометрическая иллюстрация. Если
— первообразные одной и той же функции /(*), то касательные
к их графикам в точках с общей абсциссой х параллельны между собой: 
т. е. эти кривые в некотором смысле «параллельны» друг другу.
Следствие. Прибавляя к какой-либо первообразной F(x) для данной функции f (х), определенной на промежутке 
В самом деле, с одной стороны, если F (х) есть первообразная функция для 

С другой стороны, мы доказали, что каждая первообразная функции fix) может быть получена из функции путем прибавления к ней надлежащим образом подобранного постоянного слагаемого С.
Следовательно, формула
где 
В дальнейшем мы будем предполагать, если явно не оговорено противное, что рассматриваемая функция f(x) определена и непрерывна на некотором конечном или бесконечном промежутке 
Введем теперь основное понятие интегрального исчисления — понятие неопределенного интеграла.
Определение: Общее выражение для всех первообразных данной непрерывной функции f(x) называется неопределенным интегралом от функции f(x) или от дифференциального выражения f(x) dx и обозначается символом
При этом функция f(x) называется подынтегральной функцией, а выражение f(x) dx называется подынтегральным выражением.
Вспоминая определение первообразной, можно сказать, что неопределенный интеграл 
Пусть f(x) — некоторая вполне определенная первообразная для функции f(x). Как мы видели, всякая другая первообразная этой функции имеет вид F (х) + С, где С — некоторая постоянная. Согласно определению неопределенного интеграла можно написать
где 
Пример:
Как мы видели, для функции Зх2 одной из первообразных является функция х3. Поэтому
Геометрически неопределенный интеграл
представляет собой семейство «параллельных» кривых (рис. 129).
Из определения неопределенного интеграла вытекает, что если мы имеем дифференциальное уравнение (т. е. уравнение, содержащее дифференциалы) (подробнее см. гл. XIX) вида
где функция f(x) непрерывна в интервале (а, b), то общее решение этого уравнения при а < х < b дается формулой
Основные свойства неопределенного интеграла
Опираясь на формулу (3) предыдущего параграфа, выведем основные свойства неопределенного интеграла.
I. Дифференциал неопределенного интеграла равен подынтегральному выражению, а производная неопределенного интеграла равна подынтегральной функции.
Это свойство непосредственно вытекает из определения неопределенного интеграла.
Таким образом, имеем
И. Неопределенный интеграл от дифференциала непрерывно дифференцируемой функции равен самой этой функции с точностью до постоянного слагаемого.
В самом деле, пусть
где функция 


Замечание. В формулах (1) и (2) знаки d и 
III.Отличный от нуля постоянный множитель можно выносить за знак неопределенного интеграла, т. е. если постоянная 
В самом деле, пусть F (х) — первообразная для f(x). В силу основной формулы (3) из имеем
где С1 = АС, причем С и С1 — произвольные постоянные при 
Поэтому из формулы (4) получаем требуемую формулу (3).
Замечание. При А = 0 формула (3) неверна, так как левая часть ее представляет собой произвольную постоянную, а правая часть тождественно равна нулю.
IV.Неопределенный интеграл от алгебраической суммы конечного числа непрерывных функций равен такой же алгебраической сумме неопределенных интегралов от этих функций, т. е. если, например, функции 
при
Действительно, пусть 



где 



Следовательно,
Из формул (6) и (7) вытекает равенство (5).
Таблица простейших неопределенных интегралов
Пользуясь тем, что интегрирование есть операция, обратная дифференцированию, нетрудно получить таблицу простейших интегралов. Для этого, будем исходить из формулы (3), которую перефразируем теперь таким образом: если
Обращая формулы дифференцирования, получим:
I. Так как
Для полноты таблицы присоединим сюда еще две формулы, справедливость которых можно проверить непосредственно дифференцированием:
Так как 

Примеры:
Независимость вида неопределенного интеграла от выбора аргумента
В таблице основных интегралов предполагалось, что х есть независимая переменная. Однако эта таблица полностью сохраняет свое значение, если под х понимать любую непрерывно дифференцируемую функцию от независимой переменной.
В самом деле, пусть х есть независимая переменная, f(x) — некоторая непрерывная функция на данном промежутке, — ее первообразная, т. е. F'(x) = f(x). Имеем
Положим теперь
где ф(х) — некоторая непрерывно дифференцируемая функция1), и рассмотрим интеграл
В таком случае сложная функция
является первообразной для подынтегральной функции интеграла (2). Действительно, в силу независимости дифференциала первого порядка от выбора независимой переменной получаем
и, следовательно,
Поэтому
где
Таким образом, из справедливости формулы (1) следует справедливость формулы (5); при этом последняя формула получается из предыдущей путем формальной замены х на и. На основании этого свойства получаем обобщенную таблицу простейших интегралов:
где и — любая непрерывно дифференцируемая функция от независимой переменной. Эта таблица является обращением обобщенных формул дифференцирования. Выбирая различным образом функцию и9 мы можем существенно расширить таблицу простейших интегралов.
Пример: Из формулы (1) следует
Заменяя здесь х на sin х, получим
Далее, подставляя, например, в формулу (6) вместо х функцию пх, будем иметь
Отсюда становится понятной важность умения приводить данное дифференциальное выражение f(x)dx к виду
где и есть некоторая функция от х, a g — функция более простая для интегрирования, чем f.
Приведем некоторые преобразования дифференциала, полезные для дальнейшего:
Пример:
Пользуясь этими преобразованиями дифференциалов, найти следующие неопределенные интегралы:
Понятие об основных методах интегрирования
Для вычисления данного интеграла мы должны, если это возможно, пользуясь теми или другими способами, привести его к табличному интегралу и таким образом найти искомый результат. В нашем курсе мы рассмотрим лишь некоторые, наиболее часто встречающиеся приемы интегрирования и укажем их применение к простейшим примерам.
Наиболее важными методами интегрирования являются: 1) метод разложения, 2) метод подстановки и 3) метод интегрирования по частям.
1. Метод разложения. Пусть 
По возможности слагаемые 
Пример:
Примечание. Нет надобности после каждого слагаемого ставить произвольную постоянную, потому что сумма произвольных постоянных есть также произвольная постоянная, которую мы пишем в конце.
Пример:
Пример:
Пример:
Так как
то
Пример:
Так как
то имеем
Метод подстановки (метод введения новой переменной).
Пусть f(x) непрерывна на интервале 



На основании свойства независимости неопределенного интеграла от выбора аргумента и учитывая, что 
Интеграл, стоящий в правой части равенства (1), может оказаться проще интеграла, стоящего в левой части этого равенства, или даже табличным. Рассмотрим примеры.
Пример:
Чтобы избавиться от корня, полагаем 


Производя подстановку, последовательно имеем
Пример:
Здесь полезно применить тригонометрическую подстановку х = a sin t, отсюда dx = a cos t dt. Следовательно,
Возвращаясь обратно к переменной х, будем иметь
Далее,
Поэтому окончательно получим
Иногда формулу (1) полезно применять справа налево:
где
На практике желательно не вводить новой переменной t> а ограничиться использованием формулы (1). Простейшие примеры этого типа были разобраны. Здесь мы дополнительно рассмотрим еще несколько примеров.
Пример №51
Полагая 
Пример №52
Так как 
Пример №53
Метод интегрирования по частям
Пусть и и v — непрерывно дифференцируемые функции от х. На основании формулы дифференциала произведения имеем
отсюда
Интегрируя, получим
или окончательно
Это и есть формула интегрирования по частям. Выведенная формула показывает, что интеграл 

Пример:
Полагая здесь 
Следовательно, в силу формулы (4) будем иметь
Пример:
Полагая и = х и dv = cos х dx, имеем du = dx и 
На практике важно научиться применять формулу (4), не выписывая в стороне выражения для функций и и v.
Пример:
Интегрирование рациональных дробей с квадратичным знаменателем
Речь идет о вычислении интегралов вида





Интеграл от многочлена^*) находится непосредственно; поэтому мы покажем, как вычисляются интегралы вида
Выведем сначала два основных интеграла.
И.
Имеем
Отсюда
Итак
Результаты (2) и (3) следует запомнить. К интегралам I и II присоединим еще интеграл:
Пример:
Пример:
Основной прием вычисления интеграла (1) состоит в следующем: квадратный трехчлен 


Пример:
Пример:
Пример:


Следовательно,
Пример:
Произведя деление 

Отсюда
Замечание. Если квадратный трехчлен 

где А и В — неопределенные коэффициенты. Числа А и В находятся путем приведения тождества (4) к целому виду и приравнивания коэффициентов при одинаковых степенях х в левой и правой частях полученного равенства.
Пример:
Найти
Решение:
Приравнивая знаменатель нулю, получаем уравнение 

Отсюда, освобождаясь от знаменателя и учитывая, что 
или
Приравнивая друг другу коэффициенты при одинаковых степенях х в правой и левой частях последнего равенства, будем иметь
Следовательно, А = 3/7, В = 4/7.
Заметим, что коэффициенты А и В можно просто определить из тождества (6), полагая в нем сначала х = 1, откуда 3 = А • 7 и А = 3/7, а затем полагая х = -6, что дает -4 = В(-7) и В = 4/7. На основании разложения (5) получаем
Интегрирование простейших иррациональностей
1. Если подынтегральное выражение содержит лишь линейную иррациональность 
Пример №54
Найти
Решение:
Полагаем 
Имеем
2. Интеграл от простейшей квадратичной иррациональности


вычисление которых дано ниже.
Применим здесь подстановку Эйлера:
где t — новая переменная. Возводя это равенство почленно в квадрат, будем иметь 
Беря дифференциалы от обеих частей последнего равенства, получим 
Отсюда 

Эту формулу необходимо запомнить.
Пример №55
Используя формулу (1), имеем
Полагая здесь x — 3 = t, последовательно получим
Так как 
Пример №56
Интегрирование тригонометрических функций
В приложениях важное значение имеют интегралы
где 
- хотя бы один из показателей
есть число нечетное;
- оба показателя тип есть числа четные.
В первом случае интеграл I берется непосредственно.
Пример №57
Найти
Решение:
Последовательно полагаем
Во втором случае для вычисления интеграла / используют формулы двойного аргумента:
Пример №58
Найти
Решение:
Имеем
В теории рядов Фурье важное значение имеют интегралы
Они вычисляются на основании формул тригонометрии:
Пример №59
Интегрирование некоторых трансцендентных функций
Интеграл
где Р(х) — многочлен, берется многократным интегрированием по частям.
Пример:
Аналогичным приемом вычисляются интегралы вида
где Р(х) — многочлен.
Теорема Коши. Понятие о «неберущихся» интегралах
До сих пор мы весьма удачно для некоторых непрерывных функций f(x) находили их неопределенные интегралы
Возникает вопрос, всегда ли это будет так, т. е.: 1) всякая ли непрерывная функция f(x) имеет неопределенный интеграл и 2) каким способом можно найти этот интеграл, если он существует?
Ответом на первую часть этого вопроса служит теорема Коши, являющаяся основной теоремой интегрального исчисления.
Теорема Коши: Всякая непрерывная функция имеет первообразную.
Иными словами, для каждой непрерывной в интервале (а, Ь) функции f(x) существует функция F(x), производная которой в интервале (а, в точности равна данной функции f(x), т. е.
Тем самым существует и неопределенный интеграл
где С — произвольная постоянная.
Доказательство этой теоремы ввиду его сложности не может быть з^есь приведено.
Этим не решается вторая часть нашего вопроса: если дана непрерывная функция f(x), то как найти ее неопределенный интеграл. Теорема Коши вовсе не утверждает, что первообразную данной функции можно фактически отыскать с помощью конечного числа известных операций и выразить ответ в элементарных функциях (алгебраических, показательных, тригонометрических и т. п.). Более того, имеются непрерывные элементарные функции, интегралы от которых не являются элементарными функциями. Такие интегралы часто называют «неберущимися», подразумевая под этим, что такого рода интегралы не могут быть выражены с помощью конечного числа элементарных функций.
Например, можно доказать, что интегралы
и ряд других не сводятся к конечной комбинации элементарных функций и, следовательно, являются «неберущимися» в нашем смысле слова.
Неопределенный интеграл в математическом анализе
Первообразная и неопределенный интеграл:
В дифференциальном исчислении решалась следующая основная задача: по данной функции найти её производную (или дифференциал). Многочисленные прикладные вопросы приводят к постановке обратной задачи: для данной функции f(х)найти такую функцию F(x), производная от которой равнялась бы заданной функции f(х), т.е.
Поставленную задачу можно сформулировать в следующей равносильной ей форме: для заданной функции f(х) найти такую функцию F(x), дифференциал от которой равнялся бы заданному выражению
Функция F(x), называется первообразной для функции f(х).
Определение. Неопределенным интегралом от функции 
где: f(x) — подынтегральная функция; 

Задача нахождения по данной функции её первообразной решается неоднозначно.
Так например, если 



Операция нахождения неопределенного интеграла от функции называется интегрированием.
График первообразной функции f(x) называется интегральной кривой функции f(x).
Геометрически неопределенный интеграл представляет собой семейство параллельных кривых в направлении оси ординат y = F(x) + C. Каждому числовому значению С соответствует определенная кривая.
Рассмотрим графическое представление примера интегрирования функции
На рисунке 6.1 показаны графики:
- — подынтегральной функции;
- — четыре графика подходящих первообразных
Свойства неопределенного интеграла в математическом анализе
1. Дифференциал от неопределенного интеграла равен подынтегральному выражению (знак дифференциала перед знаком интеграла уничтожает последний), т.е.
2. Производная от неопределенного интеграла равна подынтегральной функции
3. Неопределенный интеграл от дифференциала некоторой функции равен этой функции плюс произвольная постоянная
Указанные свойства означают, что дифференцирование и интегрирование являются взаимно обратными действиями.
4. Постоянный множитель можно выносить за знак интеграла:
где а = const.
5. Неопределенный интеграл от алгебраической суммы функций равен алгебраической сумме интегралов этих функций:
аналогично для всякого другого числа слагаемых.
6. «Инвариантность формулы интегрирования»: всякая формула интегрирования сохраняет свой вид при подстановке вместо независимой переменной любой дифференцируемой функции от нее, т.е. если
то и
Для вычисления неопределенных интегралов используются правила:
если 
Пример:

В частности
Таблица основных интегралов
В дифференциальном исчислении мы нашли производные основных элементарных функций, установили правила дифференцирования суммы, произведения, частного, а также сложных функций. Для отыскания первообразных, т.е. для интегрирования функций таких определенных правил и рецептов, как в дифференциальном исчислении не существует.
Методы интегрирования функций сводятся к выполнению ряда преобразований подынтегрального выражения, которые во многих случаях приводят к цели.
Для облегчения интегрирования используется таблица основных интегралов:
Следует отметить, что, несмотря на сложность (по сравнению с дифференцированием) процесса интегрирования, всегда имеется возможность проверить результат обычным дифференцированием полученной первообразной функции.
Пример:
(Формула 14).
Проверим, дифференцируя
Основные методы интегрирования
Непосредственное интегрирование
Этот метод основан на разложении подынтегральной функции на алгебраическую сумму функции, от каждой из которых первообразную можно найти непосредственно или с помощью других методов.
Пример:
Пример:
Пример:
Интегрирование методом замены переменной (метод подстановки)
Во многих случаях удается введением вместо исходной переменной интегрирования х новой переменной z свести данный интеграл 

легко вычисляется другим способом. Этот метод интегрирования получил название метода замены переменной или метода интегрирования подстановкой.
Если подынтегральное выражение удалось записать в виде
где 

Часто методы интегрирования разложением и замены переменной применяют одновременно
Метод замены переменной является одним из основных методов вычисления интегралов. Успех интегрирования зависит в значительной степени от того, сумеем ли мы подобрать такую удачную замену переменной, которая упростила бы данный интеграл.
Пример:
Найти интеграл
Выполним замену переменной:
получаем
Пример:
Найти интеграл
Пример:
Найти интеграл
Пример:
Найти интеграл
Способ подведения под знак дифференциала
Данный способ эквивалентен способу подстановки, однако, часто интегрирование выполняется с меньшим количеством рутинных операций. Способ основан на следующих простых соотношениях:


Пример:
Пример:
Найти интеграл
Пример:
Найти интеграл
Пример:
Найти интеграл
Интегрирование по частям
Пусть 
Интегрируя обе части равенства, мы получаем
Отсюда следует формула интегрирования по частям
Таким образом, если при нахождении интеграла
выражение 

предпринять попытку нахождения искомого интеграла интегрированием по частям. Чаще всего такая ситуация встречается, когда подынтегральная функция 
Иногда для получения окончательного результата нужно интегрирование по частям применять последовательно несколько раз.
Рассмотрим три вида часто встречающихся интегралов, которые вычисляются методом интегрирования по частям:
1. Интегралы вида:
где 

За u(х) следует принять
2. Интегралы вида:
где P(x) — многочлен. В интегралах второго вида за u(х) при интегрировании по частям принимают функцию, являющуюся множителем при Р(х)
3. Интегралы вида:

Для этого вида используется двукратное интегрирование.
Пример:
Найти интеграл
Полагая 

Здесь уместна следующая запись:
Заметим, что, если бы изначальное разбиение подынтегрального выражения на сомножители было бы иным, то было бы получено
Такое разбиение подынтегрального выражения на произведение двух сомножителей следует признать неудачным, так как оно приводит к более сложному интегралу.
Пример:
Найти интеграл
Пример:
Найти интеграл
Пример:
Найти интеграл

Окончательно получаем
Пример:
Найти интеграл
Пример:
Найти интеграл
Интегралы третьего вида находятся двукратным интегрированием по частям
К последнему интегралу снова применим интегрирование по частям
Таким образом,
В правой части имеем интеграл аналогичный интегралу в левой части, следовательно
отсюда
Рациональные функции
Алгебраической называется функция, значения которой можно получить, произведя над независимой переменной конечное число алгебраических действий: сложений, вычитаний, умножений, делений и возведения в степень с рациональным показателем.
Алгебраическая функция, не являющаяся рациональной, называется иррациональной.
Рациональной функцией называется алгебраическая функция, если среди действий, которые производятся над независимой переменной, отсутствует извлечение корней. Обозначается R(х).
Наиболее простыми рациональными функциями являются целые рациональные функции или многочлены (при этом одночлен рассматривается как частный случай многочлена).
Целой рациональной функцией (или полиномом) аргумента х называется функция, представляемая многочленом
с действительными или комплексными коэффициентами; причем
(коэффициент при старшей степени не равен нулю).
Корнем многочлена Р(х) называют всякое число 
Например, для многочлена 
Теорема. Всякий многочлен степени n может быть представлен в виде произведения n линейных множителей вида 



Может оказаться, что некоторые из корней многочлена 
Число 
Предполагается, что функция f(х) имеет k производных в точке
Например, функция y = x-sinx в точке х = 0 имеет трехкратный корень нуль, т.к.
т.е. третья производная в точке х = 0 не равна нулю.
Так как произведение линейных множителей, соответствующих комплексно-сопряженным корням, можно заменить квадратным трехчленом с действительными коэффициентами, то всякий многочлен с действительными коэффициентами можно представить в следующей форме:
Если корень 



где 

сопряженных корней. Ясно, что сумма кратностей всех корней равна степени алгебраического уравнения, т.е.
Всякая рациональная функция R(x) может быть представлена в виде дроби 
Дробной рациональной функцией называется отношение целых рациональных функций
Если степень m числителя Р(х) меньше степени n знаменателя Q(x), дробь называется правильной, в противном случае — неправильной.
Пример:
Функции 
Пример:
Функции 
Пример:
Функции 
Отметим, что всякую неправильную рациональную дробь можно представить в виде суммы многочлена и правильной рациональной дроби.
Пусть 
Разделим числитель на знаменатель, получим 



Переход от неправильной дроби к сумме многочлена и правильной дроби легко осуществляется обычным «делением столбиком», путем последовательного исключения членов, содержащих старшие степени аргумента.
Пример:
Пусть требуется преобразовать неправильную рациональную

В итоге получаем
Таким образом, интегрирование неправильной рациональной дроби сводится к интегрированию многочлена и интегрированию правильных рациональных дробей.
Интегрирование простейших рациональных дробей
Простейшими рациональными дробями называются дроби, приводящие к
следующим двум типам:
где n — натуральное число; 

Интегрирование простейших дробей I типа
Пример:
Пример:
Пример:
Интегрирование простейших дробей II типа
Для интегрирования дробей II типа выделим в знаменателе дроби полный квадрат
Обозначим
Эту подстановку легко запомнить, если заметить, что t равно половине производной знаменателя.
Искомый интеграл преобразуется к сумме двух «табличных» интегралов
Возвращаясь к исходной переменной интегрирования, получаем
Несмотря на громоздкость интегрирования, нахождение конкретных интегралов не вызывает затруднений.
Пример №60
Найти
Решение. Перейдем к новой переменной
Метод неопределенных коэффициентов
Весьма существенное значение имеет разложение знаменателя рациональной дроби на произведение линейных и квадратичных множителей.
Пусть для определенности имеем правильную рациональную дробь
знаменатель разлагается на множители следующим образом:
можно единственным образом разложить на сумму
Такую дробь простейших дробей:
где 
используется метод неопределенных коэффициентов.
Метод заключается в следующем:
- приведение правой части последнего равенства к общему знаменателю и сравнению числителей левой (Р(х)) и правой частей;
- приравнивание коэффициентов при равных степенях х в правой и левой частях равенства (два многочлена тождественны друг другу тогда и только тогда, когда коэффициенты при одинаковых степенях х равны). Таким образом составляется система линейных алгебраических уравнений, где неизвестными являются
Итоги по способам интегрирования рациональных дробей
- Если рациональная дробь неправильна, то её представляют в виде суммы многочлена и правильной рациональной дроби;
- Знаменатель правильной дроби разлагают на множители;
- Правильную рациональную дробь разлагают на сумму простейших дробей.
Пример №61
Вычислить интеграл
Решение. Данная рациональная дробь 
Разложим дробь на сумму простейших дробей, используем метод неопределенных коэффициентов:
Приводим к общему знаменателю и приравниваем числители левой и правой частей выражения:
Приравниваем коэффициенты при равных степенях х
Получаем систему из трех линейных алгебраических уравнений с тремя неизвестными А, В и С
Решив (любым способом) данную систему уравнений, находим
Окончательно, получаем
В случае отсутствия кратных корней знаменателя (как в вышеприведенном случае) нахождение коэффициентов можно упростить. Так как данное разложение справедливо для любых значений х, рассмотрим промежуточную запись решения задачи
и будем подставлять в левую и правую части равенства такие значения х, чтобы выражения в некоторых скобках обнулялись.
Получим
Подставим полученные значения коэффициентов
Пример №62
Вычислить интеграл
Решение. Разложим правильную рациональную 
приравняем коэффициенты при соответствующих степенях х:
Решение полученной системы уравнений даёт: 
Пример №63
Вычислить интеграл
Решение. Разложить на простейшие дроби
Решение полученной системы уравнений даёт:
Окончательно, подставив полученные коэффициенты, получаем:
Интегрирование тригонометрических функций
До сих пор мы систематически изучали интегралы только от алгебраических функций (рациональных). В настоящем параграфе мы рассмотрим интегралы от некоторых классов неалгебраических, в первую очередь тригонометрических функций. С помощью подстановок интегралы от тригонометрических функций приводятся к интегралам от рациональных функций и, следовательно, до конца интегрируются, т.е., говорят, что интеграл рационализируется.
Алгебраической называется функция, значения которой можно получить, произведя над независимой переменной конечное число алгебраических действий: сложений, вычитаний, умножений, делений и возведения в степень с рациональным показателем.
Рациональной функцией называется такая алгебраическая функция, если среди действий, которые производятся над независимой переменной, отсутствует извлечение корней.
Иррациональной функцией называется алгебраическая функция, не являющаяся рациональной.
Рационализация интеграла — это приведение неалгебраического интеграла с помощью подстановок к интегралу от рациональных функций.
Интегралы вида I:
Запись 

Интегралы указанного вида сводятся к интегралам от рациональных функций с помощью «универсальной тригонометрической подстановки» (УТП):
Выразим тригонометрические функции sinx и cosx через 
в) далее, выразим из (1)
Таким образом, sinx, cosx и dx выразились через t рационально. Так как рациональная функция от рациональных функций есть функция рациональная, то, подставляя полученные выражения в интеграл типа I, получим интеграл от рациональной функции:
Пример:
Полагая 
Окончательно, получим новый табличный интеграл, который внесем в таблицу интегралов:
Пример:

Аналогично, используя полученную формулу (6), получим следующий интеграл:
Внесем в таблицу интегралов
Данная подстановка дает возможность проинтегрировать всякую функцию вида I. Поэтому её называют «универсальной тригонометрической подстановкой».
Однако на практике, «универсальная тригонометрическая подстановка» часто приводит к слишком сложным тригонометрическим функциям.
Поэтому наряду «универсальной» используют и другие подстановки, которые быстрее приводят к цели.
Интегралы вида II. Для вычисления интегралов вида
используется подстановки:
sinx = t — для нечетной степени cosx (6.8)
cosx = t — для нечетной степени sinx (6.9)
Пример:
Интегралы вида III. Для вычисления интегралов вида 
и вводить вспомогательную переменную 
Пример:
Применим к третьему интегралу повторно формулу (10)
Получаем:
Интегралы вида IV. 
Для данного типа характерны следующие случаи
1 случай: один из показателей m, n нечетное положительное число
Если m — степень при sinx, вводят вспомогательную функцию cos x=t
Если n — степень при cosx, вводят вспомогательную функцию sin x = t
Пример:

2 случай: Одно из чисел m или n нечетное и положительное, а другое -любое действительное число.
Используется аналогичный прием.
Пример:
Найти интеграл 

3 случай: оба показателя степени — (m и n) — четные неотрицательные четное положительное число (одно из чисел может быть равно нулю)
а) применяется постановка
После подстановки получается интеграл от рациональной функции.
Так как
После подстановки получается интеграл от рациональной функции.
Пример:
Подынтегральная функция четна относительно sinx и cosx.
Полагаем 

это табличный интеграл
б) Интегрирование осуществляется путем снижения показателей степени с использованием тригонометрических соотношений (6.10), (6.11):
Пример:
Найти интеграл
Интегралы вида V:
Для таких интегралов используются тригонометрические формулы:
Пример:
Интегралы вида VI. 
а) Для рационализации такого типа интегралов удобно выделить множитель 
Пример:
Выделяем множитель 
Первый интеграл равен
Второй интеграл вычисляется тем же приемом
Окончательно:
Запишите в таблицу интегралов новые табличные интегралы, полученные при решении примера 11:
б) Если подынтегральная функция зависит только от 

приводит этот интеграл к интегралу от рациональной функции:
Пример:

Найдем интеграл от рациональной дроби, для чего разложим рациональную дробь на простейшие дроби:
Освободимся от знаменателя:
Если многочлены равны, а это тождество, то равны коэффициенты при одинаковых степенях t. Из системы трех уравнений с тремя неизвестными найдем три коэффициента:
Итак, рациональная дробь преобразована к сумме простейших дробей:
(данный пример по пройденной ранее теме можно рекомендовать для самостоятельной работы).
Подставим tgx = t в полученное выражение
Выводы: В настоящем параграфе мы рассмотрели интегралы от некоторых классов неалгебраических — тригонометрических функций, которые с помощью подстановок к интегралам от рациональных функций и, следовательно, до конца интегрируются, т.е. интеграл рационализируется.
Интегрирование иррациональных функций
Иррациональной функцией называется алгебраическая функция, не являющаяся рациональной.
Рационализация интеграла — это приведение неалгебраического интеграла с помощью подстановок к интегралу от рациональных функций.
Введение:
До сих пор мы рассмотрели интегралы от рациональных и некоторых тригонометрических функций. Рассмотрим интегралы от иррациональных функций.
Не от всякой элементарной функции интеграл выражается через элементарные функции. В данной лекции мы рассмотрим те иррациональные функции, интегралы от которых приводятся с помощью подстановок к интегралам от рациональных функций, и, следовательно, до конца интегрируются (рационализируются).
Основным методом интегрирования иррациональных функций является замена переменной — переход к такой переменной, которая позволит избавиться от иррациональности в подынтегральной функции.
Тригонометрические подстановки
К рациональному тригонометрическому виду приводятся интегралы:
а также квадраты этих радикалов
Пример:


подставим в интеграл
Возвращаясь к переменной x, находим:

- Заказать решение задач по высшей математике
Пример:


. Для такого типа интеграла можно использовать
Итак:
Подставим полученные выражения (6.32) и (6.33) в интеграл:
Возвращаемся к переменной x, находим:
Из (6.33) найдем
из (6.28) найдем
Окончательно получим
Интегралы вида II:

Запись 

только рациональные операции.
Пусть k — общий знаменатель дробей 
Тогда каждая дробная степень х выразится через целую степень t и, следовательно, подынтегральная функция преобразуется в рациональную функцию от t.
Пример №64
Решение. Общий знаменатель дробей 

Перейдем к первоначальной переменной
Интегралы вида III:
Этот интеграл сводится к интегралу от рациональной функции с помощью подстановки:
где k — общий знаменатель дробей
Пример №65
Решение. Общий знаменатель 

выразим
Интегралы вида IV
Интегралы от дифференциальных биномов (некоторые авторы употребляют термин биномиальный дифференциал),
где m,n,p — рациональные числа, а,b — постоянные числа, не равные нулю. Как доказал П.Л.Чебышёв, интегралы от дифференциальных биномов
выражаются через элементарные функции только в трех случаях:
1) когда р — целое число, тогда данный интеграл сводится от рациональной функции с помощью подстановки
где k — наибольшее общее кратное знаменателей дробей 
Пример:
Здесь 
2) когда 
3) когда 
где k — знаменатель дроби р.
Интегралы вида V:

Интеграл более общего вида 
Интегралы вида VI:

Пример №66
Найти интеграл
Интегралы, которые не выражаются через элементарные функции
Есть функции, интегралы от которых не выражаются через элементарные функции, такие интегралы называют «не берущиеся».
1. Всякая непрерывная на отрезке функция имеет на ней первообразную.
2. Не всякая первообразная функция может быть выражена с помощью конечного числа элементарных функций. Так, например, первообразные функции, выраженные интегралами
существуют, но представляют собой специальные функции.
Специальные функции хорошо изучены, их значения табулированы.
Справочный материал по неопределенному интегралу
Основной задачей дифференциального исчисления является отыскание производной заданной функции. Обратная задача — восстановление функции по известной производной, является основной задачей интегрального исчисления.
Всюду в этой главе функции рассматриваются на промежутках (конечных или бесконечных), расположенных в их области определения.
Первообразная функция и неопределенный интеграл
Определение 5.1. Пусть D — промежуток в 





F / (x) = 
Очевидно, что если F — первообразная функции 
Например, функция F (x) = x является на 

1, поскольку F (x) = x дифференцируема на 
F / (x) = 1 = 

Аналогично, функция F (x) = arcsin x — первообразная для функции 
В отличие от производной, первообразная функции не обладает свойством единственности. Например, для функции 

(cos 2x)/ = -2 sin 2x и (-2 sin2 x)/= -4sin x cos x = -2 sin 2x .
Возникает вопрос об описании всех первообразных заданной функции.
Теорема 5.1. Пусть 



1) Обозначим через 






2) . Докажем обратное вложение, для чего рассмотрим функцию Φ(x) ∈ 
φ/(x) = F/(x) — Φ/(x) = 

Откуда по критерию постоянства функции на промежутке (см. теорему 4.13) следует, что φ(x) ≡ C, ∀x ∈ D, где C — некоторая постоянная. Таким оразом, F(x) — Φ(x) = C, ∀ x ∈ D, то есть 

Учитывая еще вложение, полученное в первой части доказательства, окончательно получаем, что 

Определение 5.2. Пусть D — промежуток, функция 



при этом x называется переменной интегрирования, 

Таким образом, если F(x) — некоторая первообразная функции 

где C — произвольная постоянная. Последнее равенство следует понимать как равенство двух множеств, состоящих из функций, определенных на промежутке D, причем слева — совокупность, образующая неопределенный интеграл от 
Операция поиска неопределенного интеграла от заданной функции 
Пример №67
Найти неопределенный интеграл функции 
При x > 0 e|x| = ex и для этой функции на интервале (0, +∞) ex является одной из ее первообразных. При x 



условие

то есть 1 = -1 + C, откуда C = 2.
Итак, функция
является непрерывной на 
Докажем, что эта функция является на

Очевидно, что 

Покажем, что F/(0) = e0 = 1:


то есть F/(+0) = F/ (-0) = F/(0) = 1 = e|0|. Следовательно,
Основные свойства неопределенного интеграла
Теорема 5.2. Пусть функция 

Действительно, если F(x) — некоторая первообразная функции 

Тогда по определению 5.1 для всех x ∈ D

Теорема 5.3. Если функция 
Так как d


Теорема 5.4. Если функции 


Заметим, что равенство в формуле (5.1) следует понимать как совпадение двух множеств функций. Пусть F(x) и G(x) некоторые первообразные функций 

Функция F(x) ± G(x) дифференцируема на D и
(F (x) ± G(x))/ = F/ (x) ± G/ (x) = 
Последнее означает, что F(x) ± G(x) является первообразной функции 
Левая часть формулы (5.1) — множество, состоящее из функций вида F(x) ± G(x) + C, а правая — из функций (F (x) + C1) ± (G(x) + C2). Ввиду произвольности постоянных C, C1 , C2 эти множества совпадают, то есть справедливо равенство (5.4).
Теорема 5.5. Если функция 



Пусть F(x) — первообразная функции 

Тогда функция λF (x) дифференцируема на D и
(λF (x))/ =λF/(x) =λf(x), ∀x ∈ D.
Следовательно, λF(x) является первообразной функции λ


Левая часть формулы (5.2) — множество функций вида λF(x) + C1, а правая — множество функций вида λ(F(x) + C) = λF(x) + λC. Если λ 
Объединяя вместе эти две теоремы, получаем следующий результат.
Следствие. Если функции 







Замечание. Свойство, указанное в следствии из теорем 5.4 и 5.5, обычно называют свойством линейности неопределенного интеграла.
Таблица основных неопределенных интегралов
В основе построения приводимой ниже таблицы неопределенных интегралов лежит теорема 5.3 и таблица производных. Например, для любого промежутка D в


Для проверки правильности результатов интегрирования достаточно воспользоваться определениями 5.1, 5.2 и таблицей производных:
(sin x + C)/ = cos x, x ∈ 
В приводимой ниже таблице речь идет о неопределенных интегралах на любом промежутке D , входящем в естественную область определения подынтегральной функции.
1) 

2) 


3) 


4) 



5) 


6) 


7) 






9) 


10) 



11) 






12) 


13) 



14) 



15) 

16) 

17) 

18) 


Интегралы, содержащиеся в этой таблице, принято называть табличными.
Основные методы интегрирования
При вычислении производных обычно пользуются стандартным набором правил и формул, что превращает дифференцирование в единообразную, выполняемую по одним и тем же схемам, работу. Иначе обстоит дело с интегрированием функций. Не существует единого рецепта вычисления неопределенного интеграла, пригодного для всех элементарных функций. Поэтому приходится рассматривать отдельные классы функций и для них разрабатывать правила или хотя бы рекомендации по вычислению интегралов.
Непосредственное интегрирование
Теоремы, приведенные в разделе 5.2 и таблица основных неопределенных интегралов, позволяют вычислять только простейшие интегралы. Рассмотрим
несколько примеров.
Пример:
Вычислить интеграл 
Пример:
Вычислить интеграл 
Пример:
Вычислить интеграл
Метод подстановки (замены переменной)
Одним из основных методов интегрирования функций является метод подстановки (или метод замены переменной). Он основан на следующей теореме.
Теорема 5.6. Пусть D, T — промежутки в 




Поскольку функция φ дифференцируема на T, φ(T) ⊂ D, а функция F дифференцируема на D , то по теореме о дифференцируемости суперпозиции (см. теорему 4.5) функция F ◦ φ дифференцируема на T и
(F ◦ φ)’






Следовательно, функция F(^>(t)) на промежутке T является первообразной для функции 
Итак, если выполнены условия теоремы 5.6 и 

Формула (5.5) называется формулой интегрирования посредством подстановки φ(t) = X. Её применение к вычислению интегралов состоит в том, что вместо вычисления интеграла, стоящего слева в формуле (5.5), вычисляется интеграл, стоящий справа, а затем, возвращаясь к переменной t, полагается x = φ(t). В ряде случаев формулу (5.5) целесообразно использовать в обратном порядке. Именно, иногда удобно вычисление интеграла 


Формула (5.6) называется формулой интегрирования заменой переменной x = φ(t).
При использовании метода интегрирования с помощью подстановки или замены переменной общих рекомендаций по определению нужной подстановки не существует. Такие рекомендации можно дать только для некоторых специальных видов подынтегральных функций. Эти замены будут рассматриваться
ниже, а пока рассмотрим этот метод на простых примерах.
Пример:
Вычислить интеграл 
Выполним подстановку 2x + 3 = t. Тогда 
Пример:
Вычислить интеграл 
Выполним подстановку 

Пример:
Вычислить интеграл 
Сделаем замену переменной x = sint (|t| ≤ —/2)). Тогда dx = cos t dt и

так как t — arcsin x при |t| ≤ 
Метод интегрирования по частям
Метод интегрирования по частям основан на следующей теореме.
Теорема 5.7. Пусть функции u, v : D → 

Так как функции u(x) и v(x) дифференцируемы на D, то функция u(x)v(x) также дифференцируема на D и
(u(x) v(x))/ = u/(x) v(x) + u(x) v/(x)
или
u(x) v/(x) = (u(x) v(x))/— u/(x) v(x).
По теореме 5.3 У (u(x) v(x))/ dx = u(x) v(x) + C для всех x ∈ D. Поскольку на промежутке D существуют первообразные функций (u(x)v(x))/ и u/(x)v(x), то по теореме 5.4 на D существует первообразная функции u(x) v/(x) и



=u(x)v(x)-
Определение дифференциала функции и свойство инвариантности его формы позволяют записать формулу (5.7) в виде


Формулы (5.7),(5.8) называют формулами интегрирования по частям.
Заметим, что, применяя метод интегрирования по частям, следует предварительно представить подынтегральное выражение в виде произведения одной функции u на дифференциал другой функции dv. При этом функция v определяется неоднозначно. Обычно в качестве v(x) выбирается функция, записываемая в наиболее простой форме (не добавляется константа C ), поскольку для любого числа c из




= uv + cu —


Метод интегрирования по частям позволяет, например, вычислять интегралы
вида:
(A) 





(B) 



(C) 

де P (x) — многочлен, а также подобные им интегралы. В случае (A) следует полагать u = P (x), в случае (B) — dv = P (x) dx, в случае (C) — u = ex или u = sin x (u = cos x). При этом, для интегралов вида (A) требуется применить формулу (5.8) k раз, где k — степень многочлена P (x), для интегралов вида (B) — один раз, а затем использовать другие методы, а для интегралов вида (С) требуется двукратное интегрирование по частям.
Пример:
Вычислить интеграл I = 
Положим u = ln2 x, dv = dx. Тогда du = 2
Чтобы вычислить последний интеграл, еще раз применим формулу (5.8), полагая u = ln x, dv = dx. Тогда du = dx/x, v = x и
Пример:
Вычислить интеграл
Положим u = 

Получили уравнение относительно исходного интеграла. Перенося его из правой
части уравнения в левую, получим
Замечание. Аналогично можно доказать, что

Пример:
Вычислить интеграл 
Положим u 

Таким образом, 

Полученная рекуррентная формула сводит вычисление интеграла с показателем степени n к вычислению интеграла с показателем степени n — 1. Так как интеграл 
то применяя рекуррентная формулу к вычислению, например, интеграла 
получим

Классы интегрируемых элементарных функций
Операция дифференцирования, как известно, не выводит из класса элементарных функций. Однако первообразная от элементарной функции не обязательно является элементарной функцией и, следовательно, интеграл от элементарной функции не обязательно выражается через элементарные функции. Например, через элементарные функции не выражаются интегралы

Если интеграл от элементарной функции выражается через элементарные функции, то говорят, что интегрирование выполняется в элементарных функциях (или в конечном виде). Рассмотрим некоторые классы функций, интегрируемых в элементарных функциях.
Интегрирование рациональных функций
Напомним, что рациональной функцией или рациональной дробью называется функция вида 
коэффициентами. Функция 
многочлена P(x) меньше степени многочлена Q(x) и неправильной дробью в
противном случае.
Из курса алгебры известно, что если степень m многочлена P(x) не меньше степени n многочлена Q(x), то существуют такие многочлены S(x) степени k и R(x) степени l, что m = n + k, 0 ≤ l 
Операция поиска многочленов S(x) и R(x) по заданным многочленам Q(x) и P (x) называется делением многочлена P (x) на Q(x), при этом многочлен P (x) называется делимым, Q(x) — делителем, S(x) — частным, R(x) — остатком от деления P (x) на Q(x).
Отметим, что если n = 1, то l = 0 и остаток от деления является числом (многочленом нулевой степени): P (x) = S (x)Q(x) + r, где S(x) — многочлен
степени n — 1, r — некоторое число.
Если рациональная функция 

где S(x) — некоторый многочлен, а слагаемое 
Рассмотрим сначала задачу интегрирования простых рациональных дробей. Так называют дроби вида
где A, B, a, p, q ∈ 


Лемма 5.1. Простые дроби интегрируются в элементарных функциях.
Действительно,

Для вычисления интеграла от простой дроби (3) представим квадратный трехчлен в виде x2 + px + q = 




Для вычисления интеграла от простой дроби (4) используем введенную выше замену переменной и аналогично предыдущему получим:

Для вычисления последнего интеграла можно воспользоваться рекуррентной формулой (5.9), полагая t = a u.
Итак, интегралы от простых дробей выражаются в конечном виде с помощью рациональных функции, логарифмов и арктангенсов.
Прежде чем продолжить решение задачи об интегрировании правильной рациональной дроби, изучим некоторые алгебраические свойства многочленов и рациональных дробей.
Разложение многочлена на множители
Рассмотрим многочлен степени n ∈
Qn(x) = cnxn + cn-1xn-1+ ∙ ∙ ∙ + c1x + co, cn 
Коэффициенты cn, cn-1, ∙ ∙ ∙ ,c0 многочлена могут быть как действительными, так и комплексными числами, переменная x может принимать любые значения из множества 
Число a называется корнем многочлена Qn(x), если Qn(a) = 0. Из курса алгебры известен следующий результат.
Теорема 5.8 (Безу). Число a является корнем многочлена Qn(x) степени n ≥ 1 тогда и только тогда, когда этот многочлен делится без остатка на x — a, то есть справедливо равенство Qn(x) = Sn-1(x) (x — a), где Sn-1(x) — многочлен степени n — 1.
Число a является корнем многочлена Qn(x) степени n ≥ 1, то по теореме Безу Qn(x) = Sn-1(x) (x — a), где Sn-1(x) — многочлен степени n — 1. Но, возможно, Sn-1(a) = 0, то есть a корень многочлена Sn-1(x), тогда, применяя к нему теорему Безу, получим представление Sn-1 (x) = Sn-2(x) (x — a), где Sn-2(x) — многочлен степени n — 2. Тогда Qn(x) = Sn-2(x)(x — a)2. Продолжая это рассуждение, получим, что существует
k0 ∈ 
где Sn-k0 (x) — многочлен степени n — k0 и Sn-k0 (a) 6

Естественно, возникает вопрос, всякий ли многочлен имеет корни? Ответ на него дает основная теорема алгебры.
Теорема 5.9 (основная теорема алгебры). Всякий многочлен степени n ≥ 1 с действительными или комплексными коэффициентами имеет, по крайней мере, один корень.
Пусть x1 — корень кратности k1 многочлена Qn(x), степень которого равна n. Тогда этот многочлен представляется в виде
Qn(x) = (x — x1)k1S1(x),
где S1 (x) — многочлен степени n — k1 , причем S1 (x1) 
Qn(x) = (x — x1)k1 (x — x2)k2S2(x), x1 


Продолжая, по индукции получим следующее представление
Qn(x) = Cn(x — x1)k1 (x — x2)k2 ∙∙∙ (x — xm)km , k1 +…+ km = n, (5.11)
где cn — коэффициент при xn в многочлене Qn(x), а x1 , . . . , xm — его различные корни (вещественные или комплексные).
Для многочленов с действительными коэффициентами, справедливо следующее утверждение.
Теорема 5.10. Если z0 = α+ iβ — комплексный корень (β 
Всюду далее будем рассматривать многочлены только с действительными коэффициентами!
В случае существования такой пары комплексных корней у многочлена Qn(x) с действительными коэффициентами, правая часть (5.11) содержит множители
(x — z0)r и (x — z0)r, при этом
(x — z0)(x — z0) = (x — α — iβ )(x — α + iβ) = (x — a)2 + β2 = x2 + px + q,
где p = —2a, q = a2 + β2, p2 — 4q = —4β2 
Qn(x) = (χ2 + px + q)r Tn—2r (x), Tn—2r (


Пусть a1, a2, ∙ ∙ ∙ ,ak — все действительные корни многочлена Qn(x), а их кратности соответственно равны l1, l2, ∙ ∙ ∙ , lk. Тогда равенство (5.11) можно записать
в виде
Qn(x) = (x — a1)l1 (x — a2)l2 ∙ ∙ ∙ (x — ak)lkR(x),
где R(x) — многочлен с действительными коэффициентами степени n —
не имеющий действительных корней.
Если R(x) — многочлен ненулевой степени, то в формуле (5.11) каждой паре
комплексно сопряженных корней zj и 

Qn(x) = Cn(x — a1)l1 ∙ ∙ ∙ (x—ak)lk(x2+ p1 x+q1)r1 ∙ ∙ ∙ (x2 + ps x+qs)rs, (5.12)
в котором
Таким образом, зная все действительные и комплексные корни многочлена
Qn(x) с действительными коэффициентами, можно этот многочлен разложить на множители, то есть представить в виде (5.12).
Разложение рациональной функции на простые дроби
Лемма 5.2. Пусть 
Q(x) = (x — a)kN (x) и N (a) 
тогда существует действительное число A и многочлен M (x) с действительными коэффициентами такие, что

где дробь 
Представим рациональную дробь 

где A — любое действительное число.
По условию степень многочлена P(x) меньше степени многочлена Q(x) = (x — a)kN(x). Очевидно, что и степень многочлена N(x) меньше степени многочлена Q(x), так как k ≥ 1, поэтому для любого числа A рациональная дробь 
Выберем теперь число A так, чтобы число a было корнем многочлена P(x) —
AN (x), то есть P (a) — AN (a) = 0. По условию N (a) = 0, поэтому A = ɪŋ
При таком выборе A многочлен P(x) — AN (x) делится без остатка на x и второе слагаемое в правой части формулы (5.13) можно сократить на x (x 

Так как эта дробь получена сокращением правильной рациональной дроби с действительными коэффициентами на множитель x—a, где a — действительное число, то полученная дробь также является правильной рациональной дробью с действительными коэффициентами.
Следствие. Пусть выполнены условия леммы 5.2, тогда справедливо равенство
где числа A1, ∙∙∙ , Ak являются действительными, T (x) — многочлен с действительными коэффициентами, дробь 
x = a не является корнем многочлена N (x).
Для доказательства достаточно применить лемму 5.2 k раз.
Лемма 5.3. Пусть 
Q(x) = (x2 + px + q)sN(x), где x2 + px + q = (x — z0)(x — 

где дробь 


Второе слагаемое в правой части (5.14), очевидно, является правильной дробью.
Подберем числа B и C так, чтобы числитель второй дроби делился на x2 + px +
q = (x — z0)(x — 
корнем многочлена P(x) — (Bx + C)N (x).
Пусть P(z0) — (Bz0 + C)N(z0) = 0, тогда Bz0 + C =
условию, N(z0) 

K+iL = Bz0+C= B(α+iβ) +C.
Приравнивая действительные и мнимые части, получаем уравнения
Bα + C = K, Bβ = L,
следовательно, 
Заметим, что B и C — действительные числа и при этих значениях B и C многочлен P(x) — (Bx + C)N(x) будет делиться на многочлен x2 + px + q.
Сокращая второе слагаемое правой части равенства (5.14) на квадратный трехчлен x2 + px + q , получаем дробь вида

Так как эта дробь получена сокращением правильной рациональной дроби с действительными коэффициентами на многочлен с действительными коэффициентами, то и сама она является также правильной рациональной дробью с действительными коэффициентами.
Следствие. Пусть выполнены условия леммы 5.3, тогда справедливо представление

где Bj, Cj (j = 1, 2, ∙ ∙ ∙ , s) — действительные числа, T(x) — многочлен с действительными коэффициентами, дробь 
многочлен N(X) не делится на х2 + pх + q.
Для доказательства достаточно применить лемму 5.3 s раз.
Теорема 5.11. Пусть 
Q(х) = (х — a1)k1 . . . (х — al)kl (х2 + p1х + q1)n1 . . . (х2 + psх + qs)ns ,
где ai , pj , qj ∈ 



Тогда 
где 
Итак, надо доказать представление

Применяя следствие леммы 5.2, выделим сначала простые дроби вида 
где j = 1, 2, ∙ ∙ ∙ , k1. Затем к дроби 
корням многочлена Q(x). В результате правильная дробь 

где m = n —


Применяя к каждой паре комплексно сопряженных корней многочлена Q(x) следствие леммы 5.3, получим

Из формул (5.16) и (5.17) следует равенство (5.15), которое дает разложение правильной рациональной дроби на простые дроби.
Так как правильная рациональная дробь по теореме 5.11 представима в виде конечной суммы простых дробей, а каждая простая дробь интегрируема в элементарных функциях, то, используя свойство линейности неопределенного интеграла, получаем, что любая правильная рациональная дробь, а значит и любая рациональная дробь, интегрируема в элементарных функциях. Таким образом, доказан следующий результат, полностью решающий задачу интегрирования рациональной дроби.
Теорема 5.12. Всякая рациональная функция с действительными коэффициентами интегрируема в элементарных функциях.
Приведем примеры вычисления неопределенных интегралов от рациональных функций.
Пример:
Вычислить интеграл I = 
Разложение правильной дроби 
Приводя к общему знаменателю правую часть, имеем

Приравнивая числители дробей, получаем тождество
2x2+2x+13= (A+B)x4+(C-2B)x3+(2A+B-2C+D)x2+
+(-2B+C-2D+E)x+A-2C-2E.
Приравнивая коэффициенты при одинаковых степенях x, получаем систему уравнений
решая которую находим: A = 1, B = -1, C = -2, D = -3, E = -4. Следовательно,

Вычисляем каждый интеграл:

Далее, используя формулу (5.10), получаем, что

Таким образом,

Заметим, что иногда полезно в тождество, получаемое при приравнивании многочлена P (x) к числителю дроби, полученной после приведения к общему знаменателю простых дробей, подставлять вместо x некоторые специально подобранные числа (обычно действительные корни знаменателя данной рациональной дроби). В результате будут получаться линейные уравнения относительно искомых коэффициентов. Но следует помнить, что при подстановке произвольных чисел полученные уравнения могут оказаться зависимыми.
Так как разложение на простые дроби часто требует громоздких выкладок, то иногда при вычислении интегралов от рациональной функции, полезно производить некоторые преобразования, делать замены переменных, позволяющие упростить вычисление интегралов.
Пример №68
Вычислить интеграл 


Пример №69
Вычислить интеграл 
Разлагая многочлен x3 — 1 по степеням (x + 2), получим, что

Пример №70
Вычислить интеграл 



Пример №71
Вычислить интеграл

Метод остроградского
При интегрировании правильной рациональной дроби P (X)/Q(X) часто используется метод, суть которого состоит в выделении рациональной части первообразной. Основанием этого метода служит тот факт, что первообразные простых дробей (1) и (3) являются трансцендентными функциями, первообразная простой дроби (2) является правильной рациональной дробью, а первообразная простой дроби (4) может быть представлена в виде суммы правильной рациональной дроби и трансцендентной функции.
Пусть многочлены P (X) и Q(X) не имеют общих корней и
Q(х) = (х — a1)k1 . . . (х — al)kl (х2 + p1х + q1)n1 . . . (х2 + ps + qs)ns ,
ai , pj , qj , ∈ 



Составим многочлен Q2(х) так, чтобы все его корни были простыми и каждый корень Q2(х) (включая и комплексные) являлся бы корнем многочлена Q(X) , то есть положим
Q2(х) = (х — a1) . . . (х — al)(х2 + p1х + q1) . . . (х2 + ps + qs).
Тогда представим Q(х) = Q2(х)Q1 (х), где корни многочлена Q1 (х) есть корни многочлена Q(х), но каждый с кратностью на единицу меньше. В частности, все простые корни Q(х) будут корнями Q2(х) и не будут корнями Q1 (х). При таких обозначениях справедливо соотношение, называемое формулой Остроградского,

где R(х) и T (х) — многочлены с неопределенными коэффициентами, степени которых на единицу меньше степеней многочленов Q1(х) и Q2(х), соответственно. Неопределенные коэффициенты многочленов R(х), T(х) вычисляются из равенства, которое получается при дифференцировании равенства (5.18).
В формуле Остроградского рациональная функция R(x)/Q1 (x), называется T(x)
алгебраической частью интеграла от дроби P(x)/Q(x), а слагаемое 
Пример №72
Вычислить интеграл 
Так как квадратный трехчлен x2 + 4x + 8 не имеет действительных корней, положим

Дифференцируя это равенство, получим, что

откуда 2x + 12 = A(x2 + 4x + 
откуда C = 0, A = B = D = 1. Следовательно,

Интегрирование иррациональных функций
Интегрирование дробно-линейных иррациональностей
Напомним, что рациональной функцией, зависящей от двух переменных x и y называют функцию вида

где P(x, y) и Q(x, y) — многочлены от двух переменных, то есть функции вида 

Например, функция
является рациональной функцией переменных x и y, при этом степень числителя равна 4, а степень знаменателя — 5.
Рациональная функция вида (5.19) при подстановке вместо x и y функций x = φ(t), y = ψ(t) является функцией уже одной переменной. Если при этом функции φ(t), ψ(t) будут рациональными функциями, то в результате подстановки получится тоже рациональная функция. Этим соображением далее мы будем постоянно пользоваться.
Лемма 5.4. Функции вида 


Пусть m ∈ 

в интеграле
подстановку 


где R1 (t) — рациональная функция от t.
Так как рациональная функция интегрируется в элементарных функциях, то первообразная рассматриваемой функции является элементарной функцией.
Заметим, что интегралы вида

где ri ∈ 


где k — наименьшее общее кратное знаменателей дробей r1, ∙ ∙ ∙ ,rs.
Пример №73
Вычислить интеграл 
Так как НОК(2; 3) = 6, то положим x = t6. Тогда получим

Пример №74
Вычислить интеграл
Запишем подынтегральную функцию 

Так как 




Интегрирование квадратичных иррациональностей
Лемма 5.5. Функции вида R(x, 


Заметим, что трехчлен ax2 + bx + c либо имеет действительные корни, либо, если нет действительных корней, его знак совпадает со знаком числа a. Действительно, если D = b2 — 4ac 
откуда следует, что sgn(ax2 + bx + c) = sgn a. А так как в области определения функции R должно выполняться неравенство ax2+bx+c ≥ 0, то, если трехчлен ax2 + bx + c не имеет действительных корней, должно быть a > 0.
Итак, пусть квадратный трехчлен не имеет действительных корней, тогда подстановка 



где R1(t), R2(t) и R3(t) — рациональные функции от t. Поэтому

где R4(t) — рациональная функция от t. Следовательно, если трехчлен ax2 + bx + c не имеет действительных корней, то первообразная рассматриваемой функции является элементарной функцией.
Пусть теперь трехчлен ax2 +bx +c имеет действительные корни x1 и x2. Если x1 = x2, то ax2 + bx + c = a(x — x1 )2 и потому должно быть a > 0. Тогда

то есть на рассматриваемом промежутке подынтегральная функция является рациональной, а значит, интегрируется в элементарных функциях.
Пусть x1 
действительно, возводя последнее равенство в квадрат и сокращая на (x — x1), получим, что a(x — x2) = t2(x — x1), откуда следует, что


Следовательно,

где R1, R2, R3, R4 — рациональные функции от t, а значит, рассматриваемая функция интегрируется в элементарных функциях.
Замечание. В случае, если c > 0, рационализацию подынтегрального выражения можно осуществить с помощью подстановки

Действительно, пусть, например, 



Тогда, окончательно,
где R1, R2, R3, R4 — рациональные функции от t, и, следовательно, функция 
Эти подстановки, рационализирующие выражение 
где x1 действительный корень трехчлена ax2 + bx + c.
Пример №75
Вычислить интеграл 
Применим подстановку Эйлера 


Пример №76
Вычислить интеграл 
Так как x2 + 3x + 2 = (x + 1)(x + 2) то , применим подстановку Эйлера 



где 
Хотя подстановки Эйлера во всех случаях решают вопрос о вычислении интегралов 
1) 
2) 
3) 
4) 
Выделяя из квадратного трехчлена ax2 + bx +c полный квадрат, запишем его в виде ax2 +bx+c = a(x + δ)2 +q. Если в интегралах 1) и 2) сделать подстановку x + δ = t, то получим интегралы:

Вычисление этих интегралов, в зависимости от знака числа a, сводится к вычислению интегралов вида

каждый из которых представляет собой сумму двух интегралов, одного табличного, и другого, сводимого к табличному при использовании равенства t dt = 
Интегралы 



Пример №77
Вычислить интеграл 
Так как 1 — x — х2 = — 


Пример №78
Вычислить интеграл 
Так как x2+x+1 = 


Интеграл 3) можно свести к интегралу от рациональной функции с помощью одной из подстановок Эйлера. Однако в данном случае значительно быстрее к цели приводит применение формулы

здесь Qn-1 — многочлен степени n — 1 с неопределенными коэффициентами, λ — неизвестная константа. Определение коэффициентов многочлена Qn-1 и постоянной λ производится по методу неопределенных коэффициентов. Дифференцируя (5.20) и умножая полученное равенство на 
что
Приравнивая коэффициенты при одинаковых степенях x в последнем равенстве, получим систему (n+ 1) линейных уравнений, из которой и определяются коэффициенты многочлена Qn-1 (x) и постоянная λ. Интеграл в правой части формулы (5.20) сводится к табличному с помощью линейной подстановки.
Заметим, что формула (5.20) позволяет у интеграла 

Пример №79
Вычислить интеграл 
Положим

Дифференцируя это тождество, получим, что

решая которую находим, что 




Интеграл вида 4) подстановкой x — α = 
Пример №80
Вычислить интеграл 
Положим 

Остается в последнее выражение подставить 
Интегрирование дифференциальных биномов
Определение 5.3. Дифференциальным биномом называются выражения вида
xm(a + bxn)p dx, где a, b ∈ 



В середине XIX века выдающийся русский математик П. Л. Чебышев доказал следующее утверждение.
Теорема 5.13 (Чебышева). Дифференциальные биномы интегрируются в элементарных функциях только в трех случаях:
1) 
2) 
3) 
Лемма 5.6. В случаях, перечисленных в теореме 5.13, рационализация дифференциальных биномов проводится с помощью следующих подстановок:
1) если p ∈ 
2) если p 


3) если p 



1). Пусть p ∈ 


Положим x = tl . Тогда dx = ltl-1 dt и



где R(t) — рациональная функция от t. Следовательно, первообразная рассматриваемой функции является элементарной функцией.
2). Пусть p 


xm(а + bxn)p =xm-n+1(а+bxn)pxn-1,
и положим а + bxn = ts. Тогда xn-1 dx = 

где R1 (t) — рациональная функция от t, так как

Следовательно, первообразная подынтегральной функции является элементарной функцией.
3). Пусть 



xm(а+bxn)p = xm+np(аx-n +b)p.
Тогда интеграл 



Заметим, что при вычислении интеграла 
Пример №81
Вычислить интеграл 
Так как 



Пример №82
Вычислить интеграл 
Так как 





Прежде, чем сделать подстановку, преобразуем подынтегральную функцию к виду (1 + x4)-1/4 = x-1(x-4 + 1)-1/4. Тогда

Интегрирование тригонометрических функций
Лемма 5.7. Функции вида R(sin x, cos x), где R(u, v) — рациональная функция от u и v , интегрируются в элементарных функциях.
Подстановка tg 
R(sin x, cos x) dx,
так как

Поэтому 
Подстановка tg 

Однако универсальная тригонометрическая подстановка приводит иной раз к сложным выкладкам. Рассмотрим частные случаи, когда цель может достигаться с помощью более простых подстановок. Напомним следующие простые результаты из курса алгебры. Если рациональная функция R(u, v) является нечетной по переменной u, то есть R(-u, v) = -R(u, v), то она приводится к виду R(u, v) = u R1(u2, v), где R1 — рациональная функция. Аналогичное представление имеет место, если функция R(u, v) является нечетной по переменной v. Если же рациональная функция R(u, v) является четной по совокупности переменных, то есть R(-u, -v) = R(u, v), то она приводится к виду R(u,v) = R2(-,v2), где R2 — рациональная функция.
Теперь выделим три специальных подстановки.
1. Если R(- sin x, cos x) = -R(sin x, cos x), то подстановка cosx = t рационализирует выражение R(sin x, cos x) dx, так как dt = — sinx dx и


= —

где R2(t) — рациональная функция от t.
2. Если R(sin x, — cos x) = -R(sin x, cos x), то аналогичным образом подстановка sin x = t рационализирует выражение R(sin x, cos x) dx.
3. Если R(- sin x, — cos x) = R(sin x, cos x), то исходное выражение рационализирует подстановка tg x = t, x ∈ (—π/2, π/2), так как тогда x = arctg t, dx =

где R4 (t) — рациональная функция от t.
Рассмотрим примеры интегрирования в элементарных функциях рациональных функций от sin x и cos x.
Пример №83
Вычислить интеграл 
Выполним подстановку 
Пример №84
Вычислить интеграл
Так как R(- sin x, cos x) = — sin5 x cos4 x = -R(sin x, cos x), полагая cos x = t, получим

Пример №85
Вычислить интеграл
Так как R(- sin x, — cos x) = 

Иногда при вычислении интегралов указанного типа бывает полезно прибегать к другим искусственным приемам, используя известные тригонометрические формулы.
Пример №86
Вычислить интеграл 

При вычислении интегралов вида 



Интегралы вида


с помощью подстановок sin x = t или cos x = t сводятся к интегралам от дифференциального бинома. Например, выполняя в этом интеграле замену sin x = t, получаем, что dt = cos x dx и


Если m и n — целые неотрицательные четные числа, то для вычисления интегралов вида (5.21) используют формулы понижения степени


Пример №87
Вычислить интеграл 

Первообразная и неопределённый интеграл
Определение 8.1. Функция 



Функции 


По следствию из теоремы 4.15, если 




Определение 8.2. Множество всех первообразных функции 

Символ 
Применяются записи типа 







(неопределённый интеграл вводится только для промежутка, для простоты применяется единая запись для двух промежутков сразу).
Аналогично, 


Приведём так называемые табличные интегралы, которые являются обращением формул дифференцирования:
(последние два интеграла соответствуют стандартным формулам дифференцирования, если 
Приведём пример вычисления интеграла с применением комплекснозначных функций действительной переменной.
Пример №88
Вычислить 
Из примера 7.6 следует, что
где 
(в последних двух случаях, строго говоря, нужно писать 

Можно производить переобозначения постоянных для упрощения записи постоянного выражения, которое всё равно принимает произвольные действительные или комплексные значения; можно выражения типа 
Обозначим 
(что и так ясно, потому что 
Пример №89
Вычислить 
Легко видеть, что 
С другой стороны, так как 


Основные приёмы интегрирования
Теорема 8.1 (линейность неопределённого интеграла). Если 
где
Так как во всех точках промежутка
Примеры:
Теорема 8.2 (интегрирование по частям). Пусть функции 
(из существования одного из интегралов следует существование другого и выполнение равенства (8.1), обе части этого par венства определены с точностью до прибавления произвольной постоянной).
Из формулы производной произведения двух функций следует, что при всех
Так как 
Символически теорема 8.2 записывается так:
Здесь удобна запись интеграла с 
Пример №90
Вычислить
Положим 


Пример №91
Вычислить
Положим 

взять 
Заметим, что мы ищем 

Теорема 8.3 (интегрирование подстановкой, или замена переменной в неопределённом интеграле). Пусть 



Функция F дифференцируема на промежутке I, причём 



Пример №92
Из формулы 



Аналогично, обращая формулу производной функции 

В теореме о замене переменной формальный символ 


Пример №93
Вычислить
Так как 

(здесь мы воспользовались тем, что 



Пример №94
Вычислить
Сделаем замену 




Тогда
Этот интеграл обычно называется «длинным логарифмом». Полученное равенство легко проверить дифференцированием функции
Пример №95
Вычислить
Сделав ту же замену, что в примере 8.8, получим
Так как 
Интегралы из примеров 8.7-8.9 принято считать табличными.
Интегрирование рациональных дробей
Пример №96
Вычислить
В примере 7.9 показано, что
Интегралы 


Этот интеграл принято считать табличным. Он обычно называется «высоким логарифмом».
В примере 8.10 мы разложили рациональную дробь 
1) 

2) 

3)
Выделим в знаменателе полный квадрат: 
где 
(модуль не нужен, так как 
4) 

где 

Во втором слагаемом в (8.4) сделаем замену 

Но при любом чётном показателе степени 





Тогда
Остаётся воспользоваться тем, что
и нужное разложение будет получено для значения 
Пример №97
Вычислить
После замены 
(выкладки были проведены выше в общем случае, сейчас 

Окончательно
Пример №98
Вычислить
Разложение дроби в сумму простейших найдено в примере 7.9. Тогда
Интеграл в первом слагаемом равен 

Окончательно
Пример №99
Вычислить
Сделаем замену 

Последний пример показывает, что, хотя алгоритмический способ интегрирования правильной дроби разложением в сумму простейших всегда приведёт к цели, но в каждом конкретном случае возможно более простое решение. В примере 8.13 решение алгоритмическим способом было бы чрезвычайно громоздким.
Интегрирование некоторых иррациональных и трансцендентных функций
Во второй части курса (глава XII) будет доказано, что любая непрерывная на промежутке функция имеет первообразную. Но не всегда эта первообразная выражается через известные нам элементарные функции. Если первообразная не является суперпозицией элементарных функций, то говорят, что интеграл не берётся. Примерами неберущихся интегралов являются 
Будем обозначать через 


Пусть 



Пример №100
Вычислить
Так как 


после этого получим
где 
II. 
Сделаем замену 

где 
а) 

б) 

в) 

Пример №101
Вычислить
После замены 




Мы уже вычисляли очень похожий интеграл (пример 8.12). Аналогично получим
где
Ш.
а) Если 



б) Если 





в) Если 




IV.
Алгоритмическим (но, как правило, далеко не самым удобным) способом вычисления такого интеграла является универсальная тригонометрическая подстановка 


Интеграл сводится к интегралу от рациональной функции.
Пример №102
Вычислить
После универсальной подстановки интеграл примет вид
где
В некоторых случаях рекомендуются другие подстановки. Например, если 


V.
После замены 

Пример №103
Вычислить
После замены 
Рациональная функция под знаком интеграла раскладывается на простейшие дроби так: 
Подставляя 



- Методы интегрирования неопределенного интеграла
- Определённый интеграл
- Кратный интеграл
- Ряды в математике
- Линейное программирование
- Дифференциальное исчисление функций одной переменной
- Исследование функции
- Пространство R»
Интегралы и их решение многих пугает. Давайте избавимся от страхов и узнаем, что это такое и как решать интегралы!
Интеграл – расширенное математическое понятие суммы. Решение интегралов или их нахождение называется интегрированием. Пользуясь интегралом можно найти такие величины, как площадь, объем, массу и другое.
Решение интегралов (интегрирование) есть операция обратная дифференцированию.
Чтобы лучше представлять, что есть интеграл, представим его в следующей форме. Представьте. У нас есть тело, но пока не можем описать его, мы только знаем какие у него элементарные частицы и как они расположены. Для того, чтобы собрать тело в единое целое необходимо проинтегрировать его элементарные частички – слить части в единую систему.
В геометрическом виде для функции y=f(x), интеграл представляет собой площадь фигуры ограниченной кривой, осью х, и 2-мя вертикальными линиями х=а и х=b .
Так вот площадь закрашенной области, есть интеграл от функции в пределах от a до b.
Не верится? Проверим на любой функции. Возьмем простейшую у=3. Ограничим функцию значениями а=1 и b=2. Построим:
Итак ограниченная фигура прямоугольник. Площадь прямоугольника равна произведению длины на ширину. В наше случае длина 3, ширина 1, площадь 3*1=3.
Попробуем решить тоже самое не прибегая к построению, используя интегрирование:
Как видите ответ получился тот же. Решение интегралов – это собирание во едино каких-либо элементарных частей. В случае с площадью суммируются полоски бесконечно малой ширины. Интегралы могут быть определенными и неопределенными.
Решить определенный интеграл значит найти значение функции в заданных границах. Решение неопределенного интеграла сводиться к нахождению первообразной.
F(x) – первообразная. Дифференцируя первообразную, мы получим исходное подынтегральное выражение. Чтобы проверить правильно ли мы решили интеграл, мы дифференцируем полученный ответ и сравниваем с исходным выражением.
Основные функции и первообразные для них приведены в таблице:
Таблица первообразных для решения интегралов
Основные приемы решения интегралов:
Решить интеграл, значит проинтегрировать функцию по переменной. Если интеграл имеет табличный вид, то можно сказать, что вопрос, как решить интеграл, решен. Если же нет, то основной задачей при решении интеграла становиться сведение его к табличному виду.
Сначала следует запомнить основные свойства интегралов:
Знание только этих основ позволит решать простые интегралы. Но следует понимать, что большинство интегралов сложные и для их решения необходимо прибегнуть к использованию дополнительных приемов. Ниже мы рассмотрим основные приемы решения интегралов. Данные приемы охватывают большую часть заданий по теме нахождения интегралов.
Также мы рассмотрим несколько базовых примеров решения интегралов на базе этих приемов. Важно понимать, что за 5 минут прочтения статьи решать все сложные интегралы вы не научитесь, но правильно сформированный каркас понимания, позволит сэкономить часы времени на обучение и выработку навыков по решению интегралов.
Основные приемы решения интегралов
1. Замена переменной.
Для выполнения данного приема потребуется хороший навык нахождения производных.
2. Интегрирование по частям. Пользуются следующей формулой.
Применения этой формулы позволяет казалось бы нерешаемые интегралы привести к решению.
3. Интегрирование дробно-рациональных функций.
— разложить дробь на простейшие
— выделить полный квадрат.
— создать в числителе дифференциал знаменателя.
4. Интегрирование дробно-иррациональных функций.
— выделить под корнем полный квадрат
— создать в числителе дифференциал подкоренного выражения.
5. Интегрирование тригонометрических функций.
При интегрировании выражений вида
применяет формулы разложения для произведения.
Для выражений
m-нечетное, n –любое, создаем d(cosx). Используем тождество sin2+cos2=1
m,n – четные, sin2x=(1-cos2x)/2 и cos2x=(1+cos2x)/2
Для выражений вида:
— Применяем свойство tg2x=1/cos2x — 1
С базовыми приемами на этой всё. Теперь выведем своего рода алгоритм:
Алгоритм обучения решению интегралов:
1. Разобраться в сути интегралов. Необходимо понять базовую сущность интеграла и его решения. Интеграл по сути есть сумма элементарных частей объекта интегрирования. Если речь идет об интегрирование функции, то интеграл есть площадь фигуры между графиком функции, осью х и границами интегрирования. Если интеграл неопределенный, то есть границы интегрирования не указаны, то решение сводиться к нахождению первообразной. Если интеграл определенный, то необходимо подставить значения границ в найденную функцию.
2. Отработать использование таблицы первообразных и основным свойства интегралов. Необходимо научиться пользоваться таблицей первообразных. По множеству функций первообразные найдены и занесены в таблицу. Если мы имеем интеграл, которые есть в таблице, можно сказать, что он решен.
3. Разобраться в приемах и наработать навыки решения интегралов.Если интеграла не табличного вида, то его решение сводиться к приведению его к виду одного из табличных интегралов. Для этого мы используем основные свойства и приемы решения. В случае, если на каких то этапах применения приемов у вас возникают трудности и непонимания, то вы более подробно разбираетесь именно по этому приему, смотрите примеры подобного плана, спрашиваете у преподавателя.
Дополнительно после решения интеграла на первых этапах рекомендуется сверять решение. Для этого мы дифференцируем полученное выражение и сравниваем с исходным интегралом.
Отработаем основные моменты на нескольких примерах:
Примеры решения интегралов
Пример 1:
Решить интеграл:
Интеграл неопределенный. Находим первообразную.
Для этого интеграл суммы разложим на сумму интегралов.
Каждый из интегралов табличного вида. Смотрим первообразные по таблице.
Решение интеграла:
Проверим решение(найдем производную):
Пример 2. Решаем интеграл
Интеграл неопределенный. Находим первообразную.
Сравниваем с таблицей. В таблице нет.
Разложить, пользуясь свойствами, нельзя.
Смотрим приемы. Наиболее подходит замена переменной.
Заменяем х+5 на t5. t5 = x+5 . Получаем.
Но dx нужно тоже заменить на t. x= t5 — 5, dx = (t5 — 5)’ = 5t4. Подставляем:
Интеграл из таблицы. Считаем:
Подставляем в ответ вместо t ,
Решение интеграла:
Пример 3. Решение интеграла:
Для решения в этом случае необходимо выделить полный квадрат. Выделяем:
В данном случае коэффициент 1/2 перед интегралом получился в результате замены dx на 1/2*d(2x+1). Если вы найдете производные x’ = 1 и 1/2*(2x+1)’= 1, то поймете почему так.
В результате мы привели интеграл к табличному виду.
Находим первообразную.
В итоге получаем:
Для закрепления темы интегралов рекомендуем также посмотреть видео.
В нем мы на примере физики показываем практическое применение интегрирования, а также решаем еще несколько задач.
Надеюсь вопрос, как решать интегралы для вас прояснился. Мы дорабатываем статью по мере поступления предложений. Поэтому если у вас появились какие то предложения или вопросы по теме решения интегралов, пишите в комментариях.
Рекламная заметка: Для особо пытливых умов советуем Видео-лекции по математическому программированию. Программирование одна из дочек математики!
Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:
Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл… Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?
Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Изучаем понятие «интеграл»
Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц, но суть вещей не изменилась.
Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о пределах и производных, необходимые и для понимания интегралов, уже есть у нас в блоге.
Неопределенный интеграл
Пусть у нас есть какая-то функция f(x).
Неопределенным интегралом функции f(x) называется такая функция F(x), производная которой равна функции f(x).
Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как вычислять производные, читайте в нашей статье.
Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.
Простой пример:
Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.
Полная таблица интегралов для студентов
Определенный интеграл
Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.
В качестве примера представим себе график какой-нибудь функции.
Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:
Точки а и b называются пределами интегрирования.
«Интеграл»
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Правила вычисления интегралов для чайников
Свойства неопределенного интеграла
Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.
- Производная от интеграла равна подынтегральной функции:
- Константу можно выносить из-под знака интеграла:
- Интеграл от суммы равен сумме интегралов. Верно также для разности:
Свойства определенного интеграла
- Линейность:
- Знак интеграла изменяется, если поменять местами пределы интегрирования:
- При любых точках a, b и с:
Как считать определенный интеграл? С помощью формулы Ньютона-Лейбница.
Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:
Примеры решения интегралов
Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.
Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.
Содержание:
- Неопределённый интеграл
- Свойства неопределённого интеграла
- Основные формулы интегрирования (таблица интегралов)
- Таблица основных интегралов
- Непосредственное интегрирование
- Интегрирование методом подстановки (замена переменной)
- Интегрирование по частям
- Интегралы от функций, которые содержат квадратный трёхчлен
- Интегрирование рациональных функций
- Неопределенный интеграл и его определение
- Интеграл постоинной и степенной функции
- Свойства неопределенного интеграла
- Интегралы тригонометрических функций
- Задания на нахождение постоянной интегрирования
- Задания на реальную жизненную ситуацию
- Пример задачи на прирост населения
Неопределённый интеграл
Неопределённый интеграл — это совокупность всех первообразных данной функции.
Понятие неопределённого интеграла:
Дифференцирование — это действие, с помощью которого по данной функции находят производную или дифференциал данной функции.
Нахождение производной имеет большое практическое значение. Так, по известному закону движения тела 




Важными являются обратные задачи, например:
а) известна скорость движения тела, установить закон его движения.
б) дан угловой коэффициент касательной к кривой, найти уравнение этой кривой.
Иначе говоря, по данной производной надо найти функцию, от которой найдена эта производная, то есть выполнить действие обратное дифференцированию. Это действие называют интегрированием. С помощью интегрирования по данной производной или дифференциалом функции находят саму функцию, которую называют первоначальной.
Дифференцированная функция 




Так, для функции 



Докажем теорему: если 




Доказательство:
Следовательно, достаточно найти для функции 

Совокупность 




Тут 

Например:
Геометрически выражение 
Если функция f(х) имеет на некотором промежутке хотя бы одну первоначальную, то её называют интегрированной на этом промежутке.
Свойства неопределённого интеграла
1. Производная неопределённого интеграла равна подынтегральной функции; дифференциал неопределённого интеграла равный подынтегральному выражению:
2. Неопределённый интеграл от дифференциала функции равный этой функции:
3. Постоянный множитель можно вынести за знак интервала:
4. Неопределённый интеграл от алгебраической суммы функции равный такой же самой алгебраической сумме неопределённых интегралов от каждой функции:
5. Если функция F(х) является первоначальной для f(х), где k и b произвольные числа (
Для доказательства свойств 1 — 5 достаточно найти производные обоих частей равенства.
Например, докажем свойство 4:
и производная левой части
Основные формулы интегрирования (таблица интегралов)
Из каждой формулы дифференцирования выходит соответствующая её формула интегрирования. Например, с того, что 
Таблица основных интегралов
Справедливость этих формул легко проверить дифференцированием.
Непосредственное интегрирование
Под непосредственным интегрированием понимают такой способ нахождения интеграла, когда путём тождественных преобразований подынтегральных функций и использованием свойств неопределённого интеграла приходим к одному или нескольким табличным интегралам.
Пример 1. Найти интеграл
Решение: Используем свойство степени с отрицательным показателем 
Ответ:
Пример 2. Найти интеграл
Решение: Используем свойство степени с дробным показателем 
Ответ:
Пример 3. Найти интеграл
Решение: Используем свойство степени с дробным показателем и правилом умножения степени с одинаковыми основами
Найдём неопределённый интеграл от степенной функции:
Ответ:
Пример 4. Найти интеграл
Решение: Используем свойства степени с дробным показателем, правила действий над степенями с одинаковыми основами и найдём интеграл от каждого слагаемого отдельно:
Ответ:
Пример 5. Найти интеграл
Решение: Откроем скобки по формуле 
Ответ:
Пример 6. Найти интеграл: 
Решение: Для нахождения интеграла воспользуемся формулой 
Ответ:
В практике интегрирования часто встречаются интегралы, для нахождения которых можно использовать формулы, которые вытекают из свойства 5:
Так, при нахождении 
Интегрирование методом подстановки (замена переменной)
Если интеграл невозможно привести к табличному с помощью элементарных преобразований, то одним из способов интегрирования является метод подстановки (замены переменной).
Суть метода подстановки заключается в следующем: заменяют новую переменную на такую часть подынтегральной функции, при дифференцировании которой получаем ту часть, что осталась (не учитывая постоянного множителя, на который всегда можно перемножить или разделить соответствующее выражение). В результате введения замены подынтегральное выражение должно принять вид:
что позволяет привести интеграл к табличному виду.
Пример 7. Найти интеграл:
Решение: Сделаем подстановку
Ответ:
Припер 8. Найти интеграл:
Решение:
Ответ:
Припер 9. Найти интеграл:
Решение: Пусть 

Ответ:
Пример 10. Найти интеграл:
Решение: Пусть 


Ответ:
Интегрирование по частям
Выведем формулу интегрирования по частям. Известно, что:
Как видим, нахождение

При использовании метода интегрирования по частям подынтегральную функцию представляют в виде произведения двух множителей u и dv, и находят du и v. Если полученный интеграл
Метод интегрирования по частям часто используют при интегрировании функций, которые содержат произведение, логарифмы и обратные тригонометрические функции.
Пример 11. Найти интеграл:
Решение:
Пример 12. Найти интеграл:
Решение:
Пример 13. Найти интеграл:
Решение:
Интегралы от функций, которые содержат квадратный трёхчлен
Для нахождения указанных интегралов квадратный трёхчлен преобразуют в квадратный двучлен, выделяя полный квадрат
Такие представления подынтегрального выражения позволяет свести искомые интегралы к табличным или к интегралам вида
Приведём примеры.
Пример 14. Найти интеграл:
Решение: Выделим из квадратного трёхчлена полный квадрат
тогда интеграл приобретёт вид
Выведем замену: 
Ответ:
Пример 15. Найти интеграл:
Решение: Выделим из квадратного трёхчлена полный квадрат
и введём замену 
Первый из полученных интегралов, 
а второй, 
Вернёмся к переменной х и запишем результат
Ответ:
Пример 16. Найти интеграл
Решение: Выделим полный квадрат из квадратного трёхчлена
и введём замену 
Ответ:
Пример 17. Найти интеграл
Решение: Выделим из квадратного трёхчлена полный квадрат
и введём замену 
Первый интеграл, 
Второй интеграл является табличным
Подставим найденные интегралы и вернёмся к переменной х, получим
Ответ:
Пример 18. Найти интеграл:
Решение: Выделяем полный квадрат в подкоренном выражении
теперь используя уже известные формулы интегрирования, и положив 
Ответ:
Пример 19. Найти интеграл:
Решение: Выделяем полный квадрат в подкоренном выражении
теперь используя уже известные формулы интегрирования, и положив 
Ответ:
Интегрирование рациональных функций
Целая рациональная функция — это многочлен, который интегрируется непосредственно:
Интеграл от дробной рациональной функции 
Правильную рациональную дробь можно разложить на слагаемые следующих двух видов:
где m, n — целые положительные числа.
Для разложения правильной рациональной дроби 
1. Разложить знаменатель 
2. Записать схему разложения дроби на элементарные слагаемые
где 
3. Освободиться от знаменателей, умножив обе части на
4. Составить систему уравнений относительно неизвестных
приравнивая коэффициенты при одинаковых степенях х в обоих частях.
6. Полученные в разложении дроби приводятся к интегралам типа
Интеграл I3 находят по правилам рассмотренным в параграфе.
Пример 20. Найти интеграл
Решение: Выполним действия согласно приведённой схеме:
1) разложим знаменатель на простейшие действительные множители:
2) запишем схему разложения подынтегральной дроби на элементарные слагаемые
3) освободимся от знаменателей, умножив обе части на
4) составим систему равенств для определения неизвестных А, В, В1, приравняв коэффициенты при одинаковых степенях х:
5) решим полученную систему:
6) запишем разложение подынтегральной функции на элементарные слагаемые и проинтегрируем
Ответ:
Пример 21. Найти интеграл
Решение:
1) разложим знаменатель на простейшие действительные множители:
2) запишем схему разложения подынтегральной дроби на элементарные слагаемые
3) освободимся от знаменателей, умножив обе части на
4) составим систему равенств для определения неизвестных 
5) решим полученную систему:
6) запишем разложение подынтегральной функции на элементарные слагаемые и проинтегрируем
Интеграл I запишем в виде
Неопределенный интеграл и его определение
Определение. Множество всех первообразных для функции 

Если функция 


Здесь 



Задача пример №124
По определению найдите неопределенные интегралы.
Решение:
Так как:
Задача пример №125
Найдите интеграл 
Решение:
подумаем, производной какой функции является функция 





Интеграл постоинной и степенной функции
Интеграл постоянной:
Интеграл степенной функции
Задача пример №126
Найдите неопределенный интеграл
Решение:
Задача пример №127
Найдите общий вид первообразных функции 
Решение:
Так как функция 





Свойства неопределенного интеграла
При интегрировании используют следующие свойства:
1.
2.
3.
4.
5.
Задача пример №128
Найдите интеграл 
Решение:
В отличии от произвордной, у интеграла нет формулы для интегрирования произведения и частного. Поэтому, если это возможно, функцию представляют в виде суммы или разности, а потом находят первообразную.
Задача пример №129
Найдите первообразную функции
Решение:
запишем заданную функцию в виде
Тогда получим,
Интегралы показательной функции и функции
Интеграл показательной функции
Интеграл функции 
При 
При 
При 
В общем случае:
Задача пример №130
Найдите неопределенные интегралы: a) 
Решение: a) 
Интегралы тригонометрических функций
Задача пример №131
Найдите интеграл
Решение:
При интегрировании тригонометрических функций удобно использовать тригонометрические тождества.
Задача пример №132
Найдите первообразную функции 
Решение:
Так как 
Задача пример №133
Вычислите интеграл 
Решение:
Воспользуемся тождеством 
Задача пример №134
Найдите интеграл 
Решение:
Воспользуемся формулой 
Задания на нахождение постоянной интегрирования
Задача пример №135
Найдите первообразную функции 
Решение:
Сначала запишем общий вид первообразных функции 

a) По условию 




b) По условию 




Задания на реальную жизненную ситуацию
Задача пример №136
Движение. Скорость мяча, брошенного с высоты 1 м вверх, можно выразить как 


Решение:
так как 


Как можно найти постоянную 
Мяч брошен с высоты 1 м. Т.е. в момент 








Пример задачи на прирост населения
Статистические исследования показывают, что при помощи отношения 



Решение:
найдем первообразную для функции 

Теперь найдем постоянную 
Например, по условию при 


Численность населения в 2020 году соответствует значению функции 

Т.е. в 2020 году численность городского населения будет приблизительно равна 1979800 человек.
Эта лекция взята из раздела решения задач по математике, там вы найдёте другие лекци по всем темам математики:
Другие темы которые вам помогут понять математику:
|
|
|
|
Лекции:
- График производной функции
- Перпендикулярность прямой и плоскости
- Выпуклость функции
- Сложение матриц: примеры решения
- Исследовать функцию на экстремум
- Модуль комплексного числа
- Пределы функций примеры решения
- Найти предел используя правило Лопиталя
- Решение неравенств
- Элементы дифференциальной геометрии

























































































































































































































































































































































































































































































































































































































































есть число нечетное;









































































































































































































































































































































































































































































































































































































































