Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл… Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?
Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Изучаем понятие «интеграл»
Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц, но суть вещей не изменилась.
Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о пределах и производных, необходимые и для понимания интегралов, уже есть у нас в блоге.
Неопределенный интеграл
Пусть у нас есть какая-то функция f(x).
Неопределенным интегралом функции f(x) называется такая функция F(x), производная которой равна функции f(x).
Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как вычислять производные, читайте в нашей статье.
Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.
Простой пример:
Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.
Полная таблица интегралов для студентов
Определенный интеграл
Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.
В качестве примера представим себе график какой-нибудь функции.
Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:
Точки а и b называются пределами интегрирования.
«Интеграл»
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Правила вычисления интегралов для чайников
Свойства неопределенного интеграла
Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.
- Производная от интеграла равна подынтегральной функции:
- Константу можно выносить из-под знака интеграла:
- Интеграл от суммы равен сумме интегралов. Верно также для разности:
Свойства определенного интеграла
- Линейность:
- Знак интеграла изменяется, если поменять местами пределы интегрирования:
- При любых точках a, b и с:
Как считать определенный интеграл? С помощью формулы Ньютона-Лейбница.
Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:
Примеры решения интегралов
Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.
Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.
Содержание:
Интеграл
Центр Гейдара Алиева славится своим архитектурным стилем и является уникальной архитектурной работой. Красота архитектуры была достигнута при помощи решения многих систематических задач. Стены здания выполнены в виде волны и можно сказать, что в проекте не использовались прямые линии. Структура здания крыши, касаясь земли, формирует гладкое и гармоничное изображение. Такая структура представляет собой постмодернистскую архитектуру, а также эффект бесконечности. Линии здания символизируют связь прошлого и будущего. Для построения здания были использованы конструкции в виде металлической решетки, общая длина которой составила 90 км. При установки крыши, общая площадь которой составила 4 га, были использованы 12027 штук специальных панелей, имеющих форму треугольников, прямоугольников, трапеций и параллелограммов различных размеров. Если мы захотим найти площадь какой-либо части здания в виде волны, то нам придется прибегнуть к интегрированию.
Первообразная функции. Неопределенный интеграл
Исследование. Путь, пройденный свободно падающим телом за время
экспериментально. Дифференцируя, находим скорость: 


Дифференцирование — это нахождение производной функции. Нахождение функции с заданной производной является действием, обратным к дифференцированию. В этом случае, зная производную или дифференциал, надо найти саму функцию, т. е для функции 


Определение. Функция 


Например, функция 



С другой стороны, 



Таким образом, для заданной функции первообразная функция не является единственной. Если, функции 











Неопределенный интеграл
Определение. Множество всех первообразных для функции 

Если функция 

Здесь 



Пример 1. По определению найдите неопределенные интегралы.
a) 

Решение:
Так как:
Пример 2. Найдите интеграл
Решение: подумаем, производной какой функции является функция 



потом сократиться с коэффициентом 4 и получится
Такой функцией является функция 
Интеграл постоянной и степенной функции
Интеграл постоянной:
Интеграл степенной
функции
Пример 1. Найдите неопределенный интеграл
Решение:
Пример 2. Найдите общий вид первообразных функции
Решение: Так как функция 


Тогда общий вид первообразных имеет вид:

Свойства неопределенного интеграла
При интегрировании используют следующие свойства:
Пример 1. Найдите интеграл
Решение:
В отличии от производной, у интеграла нет формулы для интегрирования произведения и частного. Поэтому, если это возможно, функцию представляют в виде суммы или разности, а потом находят первообразную.
Пример. Найдите первообразную функции
Решение: запишем заданную функцию в виде
Тогда получим,
Интегралы показательной функции и функции
Интеграл показательной функции
Интеграл функции
При 
При 
При 
В общем случае:
Пример. Найдите неопределенные интегралы: a)
Решение: a)
b)
Интегралы тригонометрических функций
Пример 1. Найдите интеграл
Решение:
При интегрировании тригонометрических функций удобно использовать тригонометрические тождества.
Пример 2. Найдите первообразную функции
Решение: Так как 
Пример 3. Вычислите интеграл
Решение: Воспользуемся тождеством 
Пример 4. Найдите интеграл
Решение: Воспользуемся формулой
Прикладные задания
Задании на нахождение постоянной интегрирования
Пример. Найдите первообразную функции 
Решение: Сначала запишем общий вид первообразных функции 
a) По условию 




b) По условию 




Задания на реальную жизненную ситуацию
Пример 1. Движение. Скорость мяча, брошенного с высоты 1 м вверх, можно выразить как 


Решение: гак как 

Как можно найти постоянную
Мяч брошен с высоты 1 м. Т. е. в момент 






Т. е. в момент 
Пример 2. Прирост населении. Статистические исследования показывают, что при помощи отношения 



Решение: найдем первообразную для функции 
Теперь найдем постоянную
Например, по условию при 


Численность населения в 2020 году соответствует значению функции 

Т. е. в 2020 году численность городского населения будет приблизительно равна 1979800 человек.
Площадь, ограниченная кривой
Представьте, что вы проводите следующее исследование: определение количества солнечной энергии, которую получает растение. Для этого вам необходимо узнать площадь поверхности листа. Разместите лист на бумаге в клетку и приблизительно найдите площадь.
Если продолжить уменьшать размер клеток, то площадь листа можно найти, подсчитав сумму клеток, и, уменьшая приближения, можно достаточно точно найти значение действительной площади. Применяя этот способ, можно найти площади фигур различной формы. Например, можно найти площадь, ограниченную графиком неотрицательной функции 



Пример 1. Определите, приблизительно, площадь фигуры, ограниченной графиком 

Решение: На рисунке изображена площадь, ограниченная графиком функции 



Площадь:
Разбивая показанную площадь на еще более маленькие прямоугольники и найдя сумму площадей полученных прямоугольников, можно достаточно точно найти значение, близкое к реальному.
Если отрезок [2; 4] разделить на две части ([2;3] и [3;4]) (рис.а и b), то площадь, приблизительно, равна сумме площадей двух прямоугольников.
a) площадь, приблизительно, равна сумме площадей прямоугольников шириной, равной 1, с высотами 
b) площадь, приблизительно, равна сумме площадей прямоугольников шириной равной 1 с высотами 

В рассмотренном случае площадь точно можно найти по формуле площади трапеции: 
В 1-ом случае количество интервалов 







Интеграл и его применение
Первообразная
Вы умеете по заданной функции находить ее производную, знаете, что производная применяется во многих областях. В частности, умея дифференцировать, по данному закону 

Нередко в механике приходится решать обратную задачу: находить закон движения по известному закону изменения скорости.
Например, из курса физики вам известен такой факт: если скорость изменяется по закону и 

Вы знаете, что нахождение производной заданной функции называют дифференцированием. Обратную операцию, то есть нахождение функции по ее производной, называют интегрированием.
Определение. Функцию 



Например, функция 



Часто в задачах, связанных с первообразной функции, промежуток 



Рассмотрим еще один пример. Функция 


Однако на промежутке 



Рассмотрим функции 








Цель интегрирования состоит в том, чтобы для заданной функции найти все ее первообразные на заданном промежутке.
Как связаны между собой все первообразные данной функции, указывает следующая теорема.
Теорема 24.1 (основное свойство первообразной). Если функция 










Доказательство. Поскольку функция 




Следовательно, функция 

Пусть функция 




Согласно признаку постоянства функции (теорема 11.1) получаем, что функция 



Если функция 





Из основного свойства первообразной следует, что графики любых двух первообразных данной функции можно получить друг из друга параллельным переносом вдоль оси координат (рис. 24.1).
Совокупность всех первообразных функции 


Например, функция 






При решении задач на первообразную удобно пользоваться таблицей, приведенной на форзаце 3.
Покажем на примерах, с помощью каких соображений можно обосновать утверждения, приведенные в этой таблице.
Пример:
Найдите общий вид первообразных функции
Решение:
Поскольку 

Тогда согласно теореме 24.1 запись 

Из решения примера 1 следует, что
Пример:
Найдите общий вид первообразных функции 

Решение:
На промежутке 


Следовательно, функция 





Поскольку 


Пример:
Для функции 
Решение:
Поскольку 




Из условия следует, что 

Таким образом, искомая первообразная имеет вид
Замечание.
Можно доказать, что функция 









Правила нахождения первообразной
При нахождении производных функций вы пользовались не только формулами, записанными в таблице (см. форзац 2), но и правилами дифференцирования. В этом пункте мы рассмотрим три правила нахождения первообразных.
Теорема 25.1. Если функции 





Доказательство. Из условия следует, что для любого 




Из теоремы 25.1 следует, что
где 
Аналогично можно доказать, что
Теорема 25.2. Если функция 




Докажите теорему 25.2 самостоятельно.
Теперь можно записать: 

Теорема 25.3. Если функция 




Доказательство. Используя правило нахождения производной сложной функции, запишем:
Коротко записывают: 

Пример:
Найдите общий вид первообразных функции 
Решение:
Напомним, что функция 













Воспользовавшись теоремой 25.1, получаем, что функция


Решение примера 1 можно записать и так:
Пример:
Найдите одну из первообразных функции:

Решение:
1) Поскольку функция 







Тогда первообразная функции 

Пример:
Для функции 

Решение:
Согласно теореме 25.3 запись 


На промежутке 





Пример:
Скорость движения материальной точки по координатной прямой изменяется по закону 


Решение:
Функция 



где 

Имеем: 
Тогда искомый закон движения задается формулой
В пункте 8 вы узнали, как найти производные произведения функций, частного функций и производную сложной функции. Наверное, после ознакомления с материалом этого пункта у вас возник вопрос: как найти первообразные функций 



Площадь криволинейной трапеции. Определенный интеграл
Рассмотрим функцию 




На рисунке 26.1 приведены примеры криволинейных трапеций.
Рассмотрим теорему, которая позволяет вычислять площади криволинейных трапеций.
Теорема 26.1. Площадь 





Доказательство. Рассмотрим функцию 

Если 



Докажем, что 
Пусть 





Имеем:
Получаем, что 
На отрезке 






Если 





Имеем
Поскольку 





Пусть 




Имеем:
По определению функции 


Пример:
Найдите площадь 


Решение:
На рисунке 26.5 изображена криволинейная трапеция, площадь которой требуется найти.
Одной из первообразных функции 
является функция 
Пример:
Найдите площадь 

Решение:
График функции 





Одной из первообразных функции 


Определение. Пусть 








Определенный интеграл функции 


где 

Например, функция 





Заметим, что значение разности 

Действительно, каждую первообразную 




Равенство (1) называют формулой Ньютона—Лейбница.
Следовательно, для вычисления определенного интеграла 
- найти любую первообразную
функции
на отрезке
- вычислить значение первообразной
в точках
и
- найти разность
При вычислении определенных интегралов разность 
Используя такое обозначение, вычислим, например, 
Пример:
Вычислите
Решение:
Имеем:
Если функция 



Действительно,
Если каждая из функций 


Формула Ньютона-Лейбница позволяет установить связь между определенным интегралом и площадью 


Используя теорему 26.1, можно записать:
Заметим, что в этой формуле рассматриваются непрерывные функции 

Рассмотрим непрерывные на отрезке 



Покажем, как найти площадь 





Перенесем фигуру 





Поскольку фигуры 













Таким образом, используя свойства определенного интеграла, можем записать:
Следовательно, если функции 









Пример:
Найдите площадь 

Решение:
На рисунке 26.10 изображена фигура, площадь которой требуется найти.
Решив уравнение 



Тогда искомая площадь
Вычисление объемов тел
В предыдущем пункте вы узнали, как с помощью интегрирования можно вычислять площадь криволинейной трапеции. Напомним, что если фигура ограничена графиками функций 



Рассмотрим функцию 



В пространственной прямоугольной декартовой системе координат рассмотрим тело 









Эту формулу можно доказать, используя идею доказательства теоремы 26.1.
Покажем, как с помощью полученной формулы вывести формулу объема пирамиды.
Пусть дана пирамида с высотой 






Пусть плоскость 


Отсюда 
Пример:
Фигура, ограниченная графиком функции 



Решение:
При пересечении образовавшегося тела плоскостью 


Поэтому
Вообще, имеет место такое утверждение.
Если при вращении фигуры, ограниченной графиком непрерывной и неотрицательной на отрезке 



Интеграл и его применения
Понятия первообразной и неопределённого интеграла
А вы знаете, что если точка двигаясь по прямой, за время t после начала движения проходит путь s(t), то её мгновенная скорость равна производной функции
Эту задачу можно переформулировать так: найти функцию s(t), если задана ее производная v(t).
Если 

Пример:
Пусть а — заданное число, a v(t)=at. Тогда функция

Пример:
Пусть 


Пример:
Пусть 
Тогда функция 

так как
Пример:
Пусть 
является первообразной для функции 
Пример:
Докажите, что функции 

Используя таблицу производных, мы можем написать:
Из этой задачи можно сделать вывод:
где С -постоянная является первообразной функцией для функции 
Действительно,
Для заданной функции
Именно, любая первообразная для функции 


Совокупность всех функций вида 


В этом обозначении 

Пример:


Пример:
Так как 
Пусть
Согласно примеру 4.
График функции 

Пример:
Найдите первообразную для функции 
Решение:
Любая первообразная функции 

так как 
Подберём постоянную С такую, чтобы график функции

чтобы при х=3 выполнялось F (3)=10. Отсюда 
Следовательно, искомая первообразная имеет вид
Ответ:
Пример:
Найдите первообразную для функции 
Решение:
Любая первообразная функции



Для этого необходимо, чтобы выполнялось 
Значит 
Следовательно, искомая первообразная имеет вид
Ответ:
Пример:
Докажите, что
Решение:
Таблица интегралов
Опираясь на таблицу производных можно составить таблицу интегралов.
Для того, чтобы функция F(x) была первообразной для функции f(х) на некотором промежутке X, необходимо, чтобы обе функции F(x) и f(х) были определены на этом промежутке X.
Например, 

Используя правила дифференцирования, можно сформулировать некоторые правила интегрирования.
Пусть функции F(x) и G(x) на некотором промежутке являются первообразными для функций 

Правило 1: Функция 

Правило 2: Функция 

Пример:
Проинтегрируйте функцию
Решение:
Согласно правилу 1 и 9 пункту таблицы интегралов:
Так как согласно таблице интегралов
Ответ:
Пример:
Проинтегрируйте функцию
Решение:
Найдём интеграл этой функции, используя правила 1, 2 интегирования, а также пункты 1 и 10 таблицы интегралов:
Ответ:
Пример:
Вычислить интеграл
Решение:
При решении таких примеров удобно использовать замену переменных.
Именно, обозначим х2 + 8 = u тогда,
Проверка: Найдём производную от полученной функции и получим
подынтегральную функцию
Ответ:
Пример:
Вычислить интеграл
Решение:
Сделаем замену sinx = t. Тогда 
получит вид 

Проверка.
Ответ:
Пример:
Вычислить интеграл
Решение:
При вычислении этого интеграла помогает тождество
Тогда
Ответ:
Пример:
Вычислить интеграл
Решение:
Согласно тождеству 
Ответ:
Пример:
Вычислить интеграл
Решение:
Для подынтегральной функции справедлива равенства:
Тогда
Ответ:
Пример:
Вычислить интеграл
Решение:
Для вычисления этого интеграла воспользуемся
и 
Проверка:
Ответ:
Пример:
Вычислить интеграл
Решение:
Для вычисления этого интеграла воспользуемся
Ответ:
Приведём также правило интегрирования по частям.
Правило 3*.
Если на некотором интервале X функции 




Эта формула называется формулой интегрирования по частям.
Доказательство формулы следует из правила дифференцирования произведения функций 
Примечание. Для использования этого правила: 1) Подъинтсграль-ная функция представляется в виде произведения 



Пример:
Вычислить интеграл
Решение:
Подберём 

Поэтому
Ответ:
Пример:
Вычислить интеграл
Решение:
Представим подынтегральную функцию 


Тогда
Согласно формуле (1),
Значит,
Проверка:
Ответ:
Пример 3.
Для нахождения интеграла удобно положить 
Решение:
В этом случае 
Ответ:
Определенный интеграл, формула ньютона — лейбница
Фигура, изображённая на рисунке 2, называется криволинейной трапецией. Криволинейная трапеция — фигура, ограниченная сверху графиком функции 
Возникает вопрос: «Как вычислить площадь криволинейной трапеции?»
Обозначим эту площадь через S. Оказывается, площадь S можно вычислить, опираясь на первообразную для функции f(х). Приведём соответствующие рассуждения.
Обозначим площадь криволинейной трапеции с основанием [a; х] через S (х) (рисунок 3). Точка х — произвольная точка из отрезка [a; b]. В случае х = а отрезок [а; х] превращается в точку, поэтому S(a)=0; а при х = b S(b) = S.
Покажем, что функция S(х) является первообразной для функции f(х), то есть 
Рассмотрим разность 


По определению производной, левая часть этого приближенного равенства при 


Первообразная S(x) отличается от произвольной первообразной F(x) па постоянную величину, то есть
Положим в этом равенстве х=а получим 



Значит, площадь криволинейной трапеции (рисунок 2) можно вычислить по формуле: 
где F(x) — любая первообразная для функции f (х).
Таким образом, вычисление площади криволинейной трапеции сводится к нахождению первообразной функции F(x) для функции f(х), то есть к интегрированию функции f(х).
Разность F(b) — F(a) называется определённым интегралом от функции f(х) на отрезке [а; b] и обозначается так: 
Таким образом,
Формула (3) называется формулой Ньютона-Лейбница. Из (2) и (3) имеем:
Обычно при вычислении определенного интеграла принято обозначение:

Приведём дополнительные сведения.
Задачу нахождения криволинейной фигуры свели к вычислению определённого интеграла. Рассмотрим непрерывную функцию, определённую на отрезке [а; b]. Разобьем этот отрезок точками а=х0, х1.., х1-n , хn= b на равные отрезки 







Видно, что каждое слагаемое в этой сумме есть площадь прямоугольника с основанием 

Сумма (6) называется интегральной суммой функции f(х) по отрезку [а; b]. Пусть при стремлении n к бесконечности
Пример:
Найдите площадь криволинейной трапеции, изображённой на рисунке 6.
Решение:
Согласно формуле (4) 
формуле Ньютона — Лейбиица (3). Очевидно, что функция



Пример:
Найдите площадь заштрихованной фигуры на рисунке 7.
Решение:
По формуле Ньютона-Лейбница и формуле (5): 
Пример:
Вычислить определённый интеграл 
Решение:
По формуле Ньютона-Лейбница и формуле (5):
Ответ: 0.
Пример:
Вычислить определённый интеграл
Решение:
По формуле Ньютона-Лейбница и формуле (5):
Ответ: 13,5.
Пример:
Вычислить определенный интеграл
Решение:
Сначала найдём неопределенный интеграл:
Значит
Ответ:
Пример:
Вычислить определённый интеграл
Решение:
Сначала найдем неопределенный интеграл:
Согласно таблице интегралов 

Определённый интеграл обладает следующими свойствами:
1.
2.
Значит,
3.Пусть а, b, с — действительные числа. Тогда
(свойство аддитивности определённого интеграла).
4.Пусть 
5.Если 

6.Если 

——
Эйлеровы интегралы
Определение 1. Эйлеровым интегралом 1-го рода или бета-функцией называется интеграл
Эйлеровым интегралом 2-го рода или гамма-функцией называется интеграл

Теорема 1. При 
Доказательство.
Если 



Если 



Таким образом 
Теорема 2. При a >0 интеграл (2) – сходится.
Доказательство.
Если x∈[0,1], то функция 

∫
Если 
сходится, поэтому 
Следовательно 
Свойства функций В(а,b), Г(а)
Найти
Решение. По формуле (11):
n.4. Перепишем формулу (4) в виде: 
что позволяет доопределить функцию Г (а) для отрицательных значений а:
Пример 2.
Найти
Решение.
Пример 3.
Вычислить интеграл
Решение.
n.5. Рассмотрим
Поэтому 
—-в математике
Интеграл и его применение
1. Первообразная
Определение:
- Функция F (х) называется первообразной для функции
на заданном промежутке, если для любого х из этого промежутке F’ (х) = f (х).
Пример:
Для функции 


2. Основное свойство первообразной
Свойство:
Пример:
Поскольку функция 




Геометрический смысл:
- Графики любых первообразных для данной функции получаются один из другого параллельным переносом вдоль оси Оу.
3. Неопределенный интеграл
Определение:
Совокупность всех первообразных для данной функции f(x) называется неопределенным интегралом и обозначается символом 

Пример:




4. Правила нахождения первообразных (правила интегрирования)
- Если F — первообразная для f, a G — первообразная для g, то F + G — первообразная для f + g. Первообразная для суммы равна сумме первообразных для слагаемых.
- Если F — первообразная для f и с — постоянная, то cF — первообразная для функции
- Если F — первообразная для f, а k и b — постоянные (причем
то
— первообразная для функции
Пример:
5. Таблица первообразных (неопределенных интегралов) Функция
Общий вид первообразных
- 1.
- 2.
- 3.
- 4.
Запись с помощью неопределенного интеграла
Объяснение и обоснование:
Понятие первообразной. Основное свойство первообразной
В первом разделе мы по заданной функции находили ее производную и применяли эту операцию дифференцирования к решению разнообразных задач. Одной из таких задач было нахождение скорости и ускорения прямолинейного движения по известному закону изменения координаты х (t) материальной точки: 

Важно уметь не только находить производную заданной функции, но и решать обратную задачу: находить функцию f (х) по ее заданной производной 

Таким образом, операция интегрирования является обратной операции дифференцирования. Операция интегрирования позволяет по заданной производной f’ (х) найти (восстановить) функцию 
Приведем определения понятий, связанных с операцией интегрирования.
Функция F (х) называется первообразной для функции f (х) на данном промежутке, если для любого х из этого промежутка
Например, для функции 


Отметим, что функция 



Если функция F (х) является первообразной для функции f (х) на заданном промежутке, а С — произвольной постоянной, то функция F (х) + С также является первообразной для функции 

Выражение F (х) + С называют общим видом первообразных для функции f (х).



2) Пусть функция













Замечание. Для краткости при нахождении первообразной функции f (х) промежуток, на котором задана функция 
Геометрически основное свойство первообразной означает, что графики любых первообразных для данной функции f (х) получаются друг из друга параллельным переносом вдоль оси Оу (рис. 100). Действительно, график произвольной первообразной F (х) + С можно получить из графика первообразной F (х) параллельным переносом вдоль оси Оу на С единиц.
- Заказать решение задач по высшей математике
Неопределенный интеграл
Пусть функция f (х) имеет на некотором промежутке первообразную F (х). Тогда по основному свойству первообразной совокупность всех первообразных для функции f (х) на заданном промежутке задается формулой F (х) + С, где С — произвольная постоянная.
Совокупность всех первообразных для данной функции f (х) называется неопределенным интегралом и обозначается символом 

В приведенном равенстве знак

Например, как отмечалось выше, общий вид первообразных для функции 

Правила нахождения первообразных (правила интегрирования)
Эти правила аналогичны соответствующим правилам дифференцирования.
Правило 1. Если F — первообразная для f, a G — первообразная для g, то F + G — первообразная для f + g.
Первообразная для суммы равна сумме первообразных для слагаемых.
1 ) Действительно, если F — первообразная для f (в этой кратком формулировке имеется в виду, что функция F(x) — первообразная для функции f (х)), то F’ = f. Аналогично, если G — первообразная для g, то G’ = g. Тогда по правилу вычисления производной суммы имеем (F + G)’ = F’ + G’ = f + g, а это и означает, что F + G — первообразная для f + g. 
то есть интеграл от суммы равен сумме интегралов от слагаемых. Отметим, что правило 1 может быть распространено на любое количестве слагаемых (поскольку производная от любого количества слагаемых равна сумме производных слагаемых).
Правило 2. Если F — первообразная для 


С помощью неопределенного интеграла это правило можно записать так:

Правило З. Если F — первообразная для f,



а это и означает, что 
С помощью неопределенного интеграла это правило можно записать так:
Таблица первообразных (неопределенных интегралов)
Для вычисления первообразных (или неопределенных интегралов), кроме правил нахождения первообразных, полезно помнить табличные значения первообразных для некоторых функций. Чтобы обосновать правильность этих формул, достаточно проверить, что производная от указанной первообразной (без постоянного слагаемого С) равна заданной функции. Это будет означать, что рассмотренная функция действительно является первообразной для заданной функции. Поскольку в записи всех первообразных во второй колонке присутствует постоянное слагаемое С, то по основному свойству первообразных можно сделать вывод, что это действительно общий вид всех первообразных заданной функции. Приведем обоснование формул для нахождения первообразных функций 

Следовательно, функция


С помощью неопределенного интеграла это утверждение записывается так:



Следовательно, на каждом из промежутков 


общий вид всех первообразных для функции 
Примеры решения задач:
Пример №292
Проверьте, что функция 

Решение:

Комментарий:
По определению функция F (х) является первообразной для функции f (х), если 
Пример №293
1) Найдите одну из первообразных для функции
2) Найдите все первообразные для функции
3*) Найдите
Решение:


будет функция 
Комментарий:
1) Первообразную для функции 











2) если мы знаем одну первообразную F (х) для функции f (х), то по основному свойству первообразных любую первообразную для функции f (х) можно записать в виде F (х) + С, где С — произвольная постоянная.
3) По определению

Пример №294
Для функции 
Решение:

По условию график первообразной проходит через точку М (9; 10). Следовательно, при х = 9 получаем
Отсюда С = -8. Тогда искомая первообразная:
Комментарий:
Сначала запишем общий вид первообразных для заданной функции F(x) + С, затем воспользуемся тем, что график полученной функции проходит через точку М (9; 10). Следовательно, при х = 9 значение функции F (х) + С равно 10. Чтобы найти первообразную для функции



Пример №295
Найдите общий вид первообразных для функции
Решение:

первообразной является функция 

Первообразной для функции будет функция
Тогда общий вид первообразных для заданной функции будет:
Комментарий:
Используем правила нахождения первообразных. Сначала обратим внимание на то, что заданная функция является алгебраической суммой трех слагаемых. Следовательно, ее первообразная равна соответствующей алгебраической сумме первообразных для слагаемых (правило 1). Затем учтем, что все функции-слагаемые являются сложными функциями от аргументов вида

Для каждого из слагаемых удобно сначала записать одну из первообразных (без постоянного слагаемого С), а затем уже записать общий вид первообразных для заданной функции (прибавить к полученной функции постоянное слагаемое С).
Для третьего слагаемого также учтем, что постоянный множитель 2 можно поставить перед соответствующей первообразной (правило 2).
Для первого слагаемого учитываем, что первообразной для 


Определенный интеграл и его применение
1. Вычисление определенного интеграла (формула Ньютона-Лейбница)
Формула:
Если функция f (х) определена и непрерывна на отрезке [а; b], a F (х)— произвольная ее первообразная на этом отрезке (то есть F’ (х) = f (х)), то
Пример:
Так как для функции
2. Криволинейная трапеция
Определение:
Пусть на отрезке 


Иллюстрация:
3. Площадь криволинейной трапеции
Формула:
Пример:
Вычислите площадь фигуры, ограниченной линиями
Изображая эти линии, видим, что заданная фигура — криволинейная трапеция. Тогда
4. Свойства определенных интегралов 
Если функция f (х) интегрируема на 

5. Определение определенного интеграла через интегральные суммы
Пусть функция 

- Разобьем отрезок
на
отрезков точками
(полагаем, что
- Обозначим длину первого отрезка через
, второго — через
и т. д. (то есть
- На каждом из полученных отрезков выберем произвольную точку
- Составим сумму
Эту сумму называют интегральной суммой функции 
Если 



Объяснение и обоснование:
Геометрический смысл и определение определенного интеграла
Как отмечалось, интегрирование — это действие, обратное дифференцированию. Оно позволяет по заданной производной функции найти (восстановить) эту функцию. Покажем, что эта операция тесно связана с задачей вычисления площади.
Например, в механике часто приходится определять координату 

Рассмотрим сначала случай, когда точка двигается с постоянной скоростью 




Рассмотрим случай неравномерного движения. Теперь скорость можно считать постоянной только на маленьком отрезке времени 





Приведем соответствующие определения и обоснования, которые позволяют сделать эти рассуждения более строгими.
Пусть на отрезке 






Отрезок 
Обозначим через S (х) площадь криволинейной трапеции с основанием [а; х] (рис. 105, а), где х — любая точка отрезка 


По определению производной нам необходимо доказать, что
при 


Поскольку 

Рассмотрим теперь прямоугольник с такой же площадью AS, одной из сторон которого является отрезок


По формуле площади прямоугольника имеем 

Поскольку точка с лежит между

Поскольку S (х) является первообразной для функции f (х), то по основному свойству первообразных любая другая первообразная F (х) для функции f (х) для всех 
Чтобы найти С, подставим х = а. Получаем F (а) = S (а) + С. Поскольку S (а) = 0, то С = F (а), и равенство (1) можно записать так:
Учитывая, что площадь криволинейной трапеции равна S (b), подставляем в формулу (2) х = b и получаем S = S (b) = F (b) — F (а). Следовательно, площадь криволинейной трапеции (рис. 104) можно вычислить по формуле
где 
Таким образом, вычисление площади криволинейной трапеции сводится к нахождению первообразной F (х) для функции f (x), то есть к интегрированию функции f (х).
Разность 


Запись
Формулу (4) называют формулой Ньютона—Лейбница.
Вычисляя определенный интеграл, удобно разность F (b) -F (а) обозначать следующим образом: 
Например, поскольку для функции
Отметим, что в том случае, когда для функции f (х) на отрезке

Из формул (3) и (4) получаем, что площадь криволинейной трапеции, ограниченной графиком непрерывной и неотрицательной на отрезке 



(При вычислении определенного интеграла учтено, что для функции f (х) = cos х одной из первообразных является функция
Замечание. В задачах из курса алгебры и начал анализа на вычисление площадей как ответ чаще всего приводится числовое значение площади. Поскольку на координатной плоскости, где изображается фигура, всегда указывается единица измерения по осям, то в этом случае мы всегда имеем и единицу измерения площади — квадрат со стороной 1. Иногда, чтобы подчеркнуть, что полученное число выражает именно площадь, ответ записывают так: 


Свойства определенных интегралов
При формулировании определения определенного интеграла мы полагали, что 


С помощью формулы Ньютона-Лейбница легко обосновываются и другие свойства определенных интегралов, приведенные в пункте 4 таблицы 18.






Следовательно, если функция f (х) интегрируема на отрезке 

Определение определенного интеграла через интегральные суммы
Исторически интеграл возник в связи с вычислением площадей фигур, ограниченных кривыми, в частности, в связи с вычислением площади криволинейной трапеции.
Рассмотрим криволинейную трапецию, изображенную на рисунке 107 (функция f (х) — непрерывна на отрезке 








Площадь S заданной криволинейной трапеции приближенно равна сумме площадей построенных прямоугольников. Обозначим эту сумму через 
Следовательно, площадь S криволинейной трапеции можно приближенно вычислять по формуле (9), то есть
Сумму (9) называют интегральной суммой функции f (х) на отрезке 





Замечание. Изменяя способ разбиения отрезка







Определение определенного интеграла через интегральные суммы позволяет приближенно вычислять определенные интегралы по формуле (9). Но такой способ требует громоздких вычислений, и его используют в тех случаях, когда для функции f (х) не удается найти первообразную (в этих случаях приближенное вычисление определенного интеграла обычно проводят на компьютере с использованием специальных программ). Если же первообразная для функции f(x) известна, то интеграл можно вычислить точно, используя формулу Ньютона-Лейбница (см. пример в пункте 1 таблицы 19 и примеры, приведенные далее).
Примеры решения задач:
Пример №296
Вычислите
Решение:
Ответ: 1.
Комментарий:
Поскольку для функции 

Пример №297
Вычислите
Решение:
I способ


Комментарий:
Возможны два способа вычисления заданного интеграла.
1) Сначала найти первообразную для функции 
2) Использовать формулу (8)
и записать заданный интеграл как алгебраическую сумму двух интегралов, каждый из которых можно непосредственно вычислить, как в задаче 1 (для первого слагаемого можно также использовать формулу (7) и вынести постоянный множитель 4 за знак интеграла).
Замечание. Заданный интеграл рассматривается на отрезке [1; 3], где х > 0. Но при х > 0 одной из первообразных для функции 

Пример №298
Вычислите площадь фигуры, ограниченной прямыми х = 1, х = 8, осью Ох и графиком функции
Решение:

Тогда ее площадь ровна
Комментарий:
Заданная фигура является криволинейной трапецией, и поэтому ее площадь можно вычислить по формуле
Также необходимо учесть, что на заданном отрезке [1; 8] значения х > 0, и при этом условии можно записать
Вычисление площадей и объемов с помощью определенных интегралов
1. Площадь криволинейной трапеции
Площадь криволинейной трапеции, ограниченной графиком непрерывной неотрицательной на отрезке



2. Площадь фигуры, ограниченной графиками двух функций и прямыми х = а и
Формула
Если на заданном отрезке 






3. Объемы тел
Если тело помещено между двумя перпендикулярными к оси Ох плоскостями, проходящими через точки 


Если тело получено в результате вращения вокруг оси Ох криволинейной трапеции, ограниченной графиком непрерывной и неотрицательной на отрезке 

Объяснение и обоснование:
Вычисление площадей фигур
Обоснование формулы площади криволинейной трапеции и примеры ее применения были приведены выше.





Площадь S этой фигуры равна разности площадей 



Следовательно,
Эта формула будет верной и в том случае, когда заданные функции не являются неотрицательными на отрезке 







Например, площадь фигуры, изображенной на рисунке 111, равна
Вычисление объемов тел
Задача вычисления объема тела с помощью определенного интеграла аналогична задаче нахождение площади криволинейной трапеции.
Пусть задано тело объемом V, причем есть такая прямая (ось Ох на рисунке 112), что какую бы ни взяли плоскость, перпендикулярную к этой прямой, нам известна площадь S сечения тела этой плоскостью. Но плоскость, перпендикулярная к оси Ох, пересекает ее в некоторой точке х. Следовательно, каждому числу х из отрезка 







Через каждую точку 






Поэтому 

Используем полученный результат для обоснования формулы объема тел вращения.



Действительно, каждая плоскость, которая перпендикулярна к оси Ох и пересекает отрезок 

Примеры решения задач:
Пример №299
Вычислите площадь фигуры, ограниченной линиями 
Решение:

Комментарий:
Изображая заданные линии (рис. 115), видим, что искомая фигура находится между графиками двух функций. Сверху она ограничена графиком функции 


Комментарий:
Чтобы найти пределы интегрирования, найдем абсциссы точек пересечения графиков заданных функций. Поскольку ординаты обеих кривых в точках пересечения одинаковы, то достаточно решить уравнение
Для решения полученного иррационального уравнения можно использовать уравнения-следствия (в конце выполнить проверку) или равносильные преобразования (на ОДЗ, то есть при 
Отметим также, что на полученном отрезке [-1; 0] значение 


Поскольку заданная фигура — криволинейная трапеция, то объем тела вращения равен
Комментарий:
Изобразим заданную фигуру (рис. 116) и убедимся, что она является криволинейной трапецией. В этом случае объем тела вращения можно вычислять по формуле:
Чтобы найти пределы интегрирования, достаточно найти абсциссы точек пересечения заданных линий.
Как и для задач на вычисление площадей, в ответ записывают числовое значение объема, но можно подчеркнуть, что мы получили именно величину объема, и записать ответ: 
Замечание. Можно было обратить внимание на то, что заданная фигура симметрична относительно оси
Простейшие дифференциальные уравнения
Понятия дифференциального уравнения и его решения
До сих пор мы рассматривали уравнения, в которых неизвестными были числа. В математике и ее применениях приходится рассматривать уравнения, в которых неизвестными являются функции. Так, задача о нахождении пути s (t) по заданной скорости 
Например, если v (t) = 3 — 
Это уравнение содержит производную неизвестной функции. Такие уравнения называют дифференциальными уравнениями. Решением дифференциального уравнения называется любая функция, удовлетворяющая этому уравнению (то есть функция, при подстановке которой в заданное уравнение получаем тождество).
Пример №300
Решите дифференциальное уравнение
Решение:
Необходимо найти функцию у (х), производная которой равна х + 3, то есть
найти первообразную для функции х + 3. По правилам нахождения первообразных получаем 
При решении дифференциальных уравнений следует учитывать, что решение дифференциального уравнения определяется неоднозначно, с точностью до постоянной. Такое решение называют общим решением заданного уравнения.
Обычно к дифференциальному уравнению добавляется условие, из которого эта постоянная определяется. Решение, полученное с использованием такого условия, называют частным решением заданного дифференциального уравнение.
Пример №301
Найдите решение у (х) дифференциального уравнения у’ = sin х, удовлетворяющего условию у (0) = 2.
Решение:

Решения многих физических, биологических, технических и других практических задач сводится к решению дифференциального уравнения
где k — заданное число. Решениями этого уравнения являются функции
где С — постоянная, которая определяется условиями конкретной задачи.
Например, в опытах установлено, что скорость

где
Постоянную С можно найти, например, при условии, что в момент t = 0 масса 

Другим примером применения уравнения (1) является задача о радиоактивном распаде вещества. Если

Если в момент времени t масса вещества равна 
Отметим, как на практике скорость распада радиоактивного вещества характеризуется периодом полураспада, то есть промежутком времени, в течение которого распадается половина исходного вещества.
Пусть Т — период полураспада, тогда из равенства (3) при t = Т получаем

так:
Гармонические колебания
На практике часто встречаются процессы, которые периодически повторяются, например колебательные движения маятника, струны, пружины и т. п.; процессы, связанные с переменным электрическим током, магнитным полем и т. д. Решение многих таких задач сводится к решению дифференциального уравнения
где 
Решением уравнения (4) является функция
где 
Например, если у (t) — отклонение точки струны, которая свободно колеблется, от положения равновесия в момент времени t, то



Графиком гармонического колебания является синусоида.
Примеры применения первообразной и интеграла к решению практических задач
Пример №302
Цилиндрический бак, высота которого равна 4,5 м, а радиус основания равен 1 м, заполнен водой. За какое время вода вытечет из бака через круглое отверстие в дне, если радиус отверстия равен 0,05 м?
Решение:


Скорость вытекания жидкости v зависит от высоты столба жидкости х и вычисляется по формуле Бернулли
где 

Пусть t (х) — время, за которое из бака высоты х с основанием радиуса R вытекает вода через отверстие радиуса 
Найдем приближенно отношение


За время 





Тогда при 
Если x = 0 (в баке нет воды), то t (0) = 0, отсюда С = 0. При х = Н находим искомое время
Используя данные задачи, получаем
Пример №303
Вычислите работу силы F при сжатии пружины на 0,06 м, если для ее сжатия на 0,01 м необходима сила 5 Н.
Решение:




сила
Следовательно,
Найдем формулу для вычисления работы при перемещении тела (оно рассматривается как материальная точка), которое двигается под действием переменной силы F (х), направленной вдоль оси Ох. Пусть тело переместилось из точки х = а в точку
Обозначим через А (х) работу, выполненную при перемещении тела из точки а в точку х. Дадим х приращение


Тогда при 
Учитывая, что А (а) = 0, по формуле Ньютона-Лейбница получаем
Таким образом, работа переменной силы F (х) при перемещении тела из точки а в точку 
Используя данные задачи, получаем
Сведения из истории:
Интегральное исчисление и само понятие интеграла возникло из необходимости вычисления площадей плоских фигур и объемов тел. Идеи интегрального исчисления берут свое начало в работах древних математиков. В частности, важное значение для развития интегрального исчисления имел метод исчерпывания, предложенный Евдоксом Книдским (ок. 408 — ок. 355 гг. до н. э.) и усовершенствованный А р х им е д о м. По этому методу для вычисления площади плоской фигуры вокруг нее описывается ступенчатая фигура и в нее вписывается ступенчатая фигура. Увеличивая количество сторон полученных многоугольников, находят предел, к которому стремятся площади ступенчатых фигур (именно так в курсе геометрии вы доказывали формулу площади круга). Архимед предвосхитил многие идеи интегрального исчисления. Но прошло более полутора тысяч лет, прежде чем эти идеи были доведены до уровня исчисления. Отметим, что математики XVII в., получившие множество новых результатов, учились на работах Архимеда. Именно в XVII в. было сделано много открытий, касающихся интегрального исчисления, введены основные понятия и термины.
Символ 


Следует отметить, что при всей значимости результатов, полученных математиками XVII в., интегрального исчисления еще не было. Необходимо было выделить общие идеи, на которых основывается решение многих отдельных задач, а также установить связь операций дифференцирования и интегрирования. Это сделали Ньютон и Лейбниц, которые независимо друг от друга открыли факт, известный нам под названием формулы Ньютона-Лейбница. Тем самым окончательно оформился общий метод. Необходимо было еще научиться находить первообразные для многих функций, дать логические основы нового исчисления и т. п. Но главное уже было сделано: дифференциальное и интегральное исчисления созданы. Методы интегрального исчисления активно развивались в следующем столетии (прежде всего следует назвать имена Л.Эйлера, который закончил систематическое исследование интегрирования элементарных функций, и И. Бернулли). В развитие интегрального исчисления значительный вклад внесли российские математики украинского происхождения М. В. Остроградский (1801 — 1862), В.Я.Буняковский (1804-1889).
—11клас
Применение интеграла
С помощью интегралов можно определять не только площади фигур, но и многие другие величины, приближённые значения которых выражаются интегральными суммами, т.е. суммами вида 


Объём тела вращения
Пусть тело образовано вращением подграфика функции 






Следовательно, его объём
Пример №594
Пусть надо найти вместимость сосуда высотой 4 дм, осевое сечение которого — график функции 





С помощью определённых интегралов можно вычислять не только объёмы тел вращения, но и многих других тел: пирамид, усечённых пирамид и т. д.
Работа переменной силы
Если в результате действия постоянной силы 


Например, чтобы растянуть пружину на 1 см, на 2 см и т. д., надо прикладывать всё большую и большую силу. Согласно закона Гука, сила 




Поделим отрезок 



расстояние 







Значение 




Если
Сила давления жидкости
Пусть разница уровней воды по обе стороны от ворот шлюза равна 8 м. Ворота имеют прямоугольную форму, их ширина 
Известно, что с увеличением глубины давление воды увеличивается. Оно выражается формулой 


Разобьём этот отрезок точками 





Полученное произведение ширины ворот 
Экономическое содержание интеграла
Пусть функция 

Отметим, что когда производительность не изменяется в течение времени 




Разобьём отрезок 




Следовательно,
Если 
Если 


Известный вам определённый интеграл учёные называют интегралом Римана, он применяется к ограниченным функциям и конечным интервалам интегрирования. Но решение многих важных задач нуждалось в нахождении границ бесконечных сумм, определённых широким классом функций и на бесконечных промежутках. Впоследствии были введены такие интегралы: интегралы Лебега, Стилтьеса, интегралы кратные, криволинейные и т. д. Их рассматривают в высших учебных заведениях.
Пример №595
Керосин содержится в цилиндрическом резервуаре (рис. 132), осевое сечение которого — квадрат со стороной 2 м. Какую работу нужно выполнить, чтобы откачать весь керосин из резервуара через отверстие в его верхнем основании, если плотность керосина равна
Решение:
Решим сначала задачу в общем виде. Разобьём высоту цилиндра 





Чтобы тело массой 




По условию задачи 
Ответ.
Пример №596
Производительность труда бригады рабочих в течение смены приближённо определяется формулой 

Решение:
Объём выпуска продукции в течение смены является первообразной от функции, выражающей производительность труда. Поэтому
Ответ. 
- Первообразная и интегра
- Уравнения и неравенства
- Уравнения и неравенства содержащие знак модуля
- Уравнение
- Рациональные уравнения
- Рациональные неравенства и их системы
- Геометрические задачи и методы их решения
- Прямые и плоскости в пространстве
#статьи
- 18 окт 2022
-
0
Интегралы: всё, что вы хотели знать, без интриг и сложных терминов
Объясняем, почему любой интеграл — это много-много маленьких умножений, и показываем, как его посчитать.
Иллюстрация: Оля Ежак для Skillbox Media
Журналист, изучает Python. Любит разбираться в мелочах, общаться с людьми и понимать их.
Интегральное исчисление — мудрёный на первый взгляд раздел математического анализа, который оперирует такими понятиями, как «первообразная», «производная», «дифференцирование» и «предел». Оно описывается кучей формул, в которых легко заблудиться, особенно если зайти в тему без должной математической подготовки.
На самом деле в сути интегрирования нет ничего сложного: нужно лишь провести множество операций умножения нескольких слагаемых, а затем сложить результаты этих умножений друг с другом. Идеальный (то есть без погрешностей) интеграл работает с бесконечными величинами.
Если сказать простыми словами, интеграл — это сумма бесконечного количества умножений, проведённых с бесконечно малыми слагаемыми.
В природе практически не существует ничего прямого и постоянного: процессы изменяют свою скорость, а материальные объекты сплошь и рядом неправильной формы. Это сильно затрудняет вычисление и описание реальности, но математики научились с этим справляться.
Представьте, что у вас есть велосипед со спидометром, который не только показывает вашу скорость, но и записывает её в каждый момент времени, а затем выдаёт график вашего движения.
Вы выехали из точки А в точку Б и два часа двигались со средней скоростью 12 км/ч. Так вам казалось, во всяком случае. То есть график вашего движения, по вашему мнению, выглядел как-то так:
Изображение: Skillbox Media
Но в реальности всё было иначе. Сначала вы колесили не спеша, потом разогнались, потом замедлились на подъёме в горку, затем вообще встали на светофоре, после чего снова пришлось разогнаться. То есть реальный график вашего движения был таким:
Изображение: Skillbox Media
Скорость менялась, и в разные периоды времени вы проделывали разный путь. Как же посчитать, сколько вы накрутили в итоге?
Очень просто: нужно поделить всё время на равные промежутки — и посчитать, с какой примерно скоростью вы ехали в каждый из них. Возьмём промежутки по 15 минут, умножим их на примерную среднюю скорость, получим расстояние — и представим всё это в таблице.
| Время, мин | Скорость, км/ч | Расстояние, км |
|---|---|---|
| 0–15 | ~7 | ~1,75 |
| 15–30 | ~13 | ~3,25 |
| 30–45 | ~12 | ~3 |
| 45–60 | ~8 | ~2 |
| 60–75 | ~4 | ~1 |
| 75–90 | ~7 | ~1,75 |
| 90–105 | ~12 | ~3 |
| 105–120 | ~11 | ~2,75 |
Теперь сложим все расстояния и получим приблизительно 18,5 км. Но это всё ещё не точный результат: скорость-то мы оценивали примерно.
Чтобы посчитать точнее, нужно взять как можно большее количество промежутков — по минуте, секунде, наносекунде и так далее. Чем короче будет каждый промежуток, тем ближе к реальности окажется результат.
В идеале наш график можно поделить на число промежутков, стремящееся к бесконечности, а размер каждого из них будет стремиться, соответственно, к нулю. Затем произвести умножение во всех промежутках и сложить результаты — в общем, сделать то же, что и раньше. Только табличка получится безразмерная. Это и есть интеграл нашей функции, который математически, если кто не помнит, записывается так:
∫ — значок интеграла. Выбран неслучайно: так как интеграл представляет собой сумму, то и обозначается вытянутой буквой S.
f(x) — это функция, которую мы интегрируем. В нашем примере мы задали функцию вручную, а не формулой, но математики работают именно с формулами.
dx — это обозначение того, что каждый промежуток является бесконечно малой величиной. Читается как «дельта икс».
У интегрирования есть ещё один математический смысл. Это операция, обратная дифференцированию. Давайте разберёмся, что это значит.
Представьте, что вы выпускаете в космосе аппарат, который удаляется от вас по формуле y = x2, где y — расстояние от вас в километрах, а x — время в часах. Причём x может принимать только положительные значения.
Вот график движения этого аппарата:
Наша функция растёт неравномерно: скорость её роста увеличивается, причём по определённому принципу.
Чтобы найти эту скорость, или, математически выражаясь, производную нашей функции, придумали дифференцирование. Производной от функции f(x2) будет F(2x). Физически она будет показывать не положение аппарата в пространстве, а скорость, с которой движется аппарат:
Изображение: Skillbox Media
Сравните саму функцию и её производную (то есть скорость изменения этой функции). Она растёт — её производная принимает положительные значения. Она начинает расти быстрее — её производная принимает более высокие значения.
Чтобы лучше понять смысл производной, посмотрите на графики функций и их производных и попробуйте понять связь между ними:
Изображение: Skillbox Media
Слева — y = 8, справа — производная y = 0. Так как функция не растёт и не убывает, то и её производная отражает отсутствие изменений в левом графике.
Изображение: Skillbox Media
Слева — y = 2x, справа — производная y = 2. Функция равномерно растёт в течение всего своего существования. Её производная отражает наличие роста и то, что этот рост неизменен: за каждый шаг x к функции всегда прибавляются два шага y.
Изображение: Skillbox Media
Слева — y = x2, справа — производная y = 2x. Чтобы лучше понять связь, рассмотрим графики по частям.
На промежутке от минус бесконечности до нуля функция убывает. Следовательно, её производная принимает отрицательные значения.
Чем дальше, тем медленнее убывает левый график. На промежутке x от −3 до −2 он уменьшается с 9 до 4 — сразу на пять делений. А на промежутке от −2 до −1 уменьшается с 4 до 2 — всего на два деления. Так и производная, приближаясь к нулю, показывает, что функция убывает всё медленнее и медленнее.
В точке x = 0 функция не растёт и не убывает. Следовательно, в этой точке её производная равна нулю.
На промежутке от нуля до плюс бесконечности левый график растёт. Следовательно, производная принимает положительные значения.
Чем дальше, тем рост быстрее — по аналогии с предыдущим промежутком. Вместе с тем и производная увеличивает свои значения и этим показывает всё ускоряющийся рост функции. Всё это нужно понять, потому что интегрирование — это операция, обратная дифференцированию.
А теперь вернёмся к нашим интегралам. Если при дифференцировании мы ищем производную и превращаем левый график в правый, то при интегрировании поступаем наоборот: ищем первообразную и превращаем правый график в левый.
Вернёмся к аппарату, который мы запустили в космос. Мы знали расстояние, на котором он был от нас в каждый момент времени, и с помощью дифференцирования построили график его скорости.
Если же мы знаем скорость аппарата в каждый момент времени, то можем сделать наоборот и с помощью интегрирования построить график его перемещения.
Итак, мы выяснили, что с помощью интегралов можем воспроизвести функцию, зная только её производную. Такая восстановленная функция называется первообразной, а интеграл, который её ищет, — неопределённым. Для него выбрали такое имя, потому что он представляет собой не конкретное число, а целую функцию.
У неопределённого интегрирования есть интересная особенность — оно возвращает не одну первообразную, а целое их семейство.
Возьмём три первообразные: f(2x), f(2x + 5) и f(2x − 5). Вот их графики.
Теперь продифференцируем функции и найдём производную для каждой из них. Во всех трёх случаях получается F(2), то есть y = 2.
Так получается, потому что каждая из этих функция растёт с одинаковой скоростью: за один шаг в «иксе» они прибавляют два шага в «игреке». Следовательно, и производная у них одна и та же.
Интегрирование — обратная операция. Когда мы берём интеграл от F(2), то можем получить и f(2x), и f(2x + 5), и f(2x − 5), бесконечное количество других функций того же типа. Это дополнительное число называется произвольной постоянной.
Поэтому, когда мы берём неопределённый интеграл, то указываем в результате эту произвольную постоянную: f(2x + C).
В общем виде неопределённый интеграл выглядит так:
Определённый интеграл отличается от неопределённого тем, что его результатом является не формула (семейство первообразных), а конкретное число.
Когда мы считали, сколько проехали на велосипеде за два часа, то брали именно определённый интеграл. Его запись отличается от записи неопределённого интеграла и выглядит так:
a здесь обозначает начало интегрируемого промежутка, b — его окончание. Таким образом, если мы берём интеграл:
То нас интересует только вот этот кусок параболы:
Наши красные линии вам ничего не напоминают? Это же криволинейная трапеция! А так как интеграл представляет собой сумму маленьких умножений x на y в каждой возможной точке, то в результате интегрирования у нас получается площадь красной фигуры.
Именно поэтому интеграл часто описывают как «площадь фигуры под кривой» — это одно из его геометрических проявлений.
Теперь давайте посмотрим, как посчитать интеграл
Если интеграл сложный, то сначала его нужно преобразовать, пользуясь методами интегрирования. Этих методов не очень много, но они сложные и комплексные, поэтому мы не рассматриваем их в этой статье.
Примечание. Интегрировать можно не каждую функцию. Это возможно только в тех случаях, когда она определена и непрерывна в области интегрирования.
После того как подынтегральная функция приведена в элементарный вид, нужно найти её первообразную. Чтобы сделать это, следует воспользоваться таблицей неопределённых интегралов.
Вот список основных и самых простых (но далеко не всех) интегралов:
Если вы считали неопределённый интеграл, то вуаля: подставляете значения в формулу, и ответ готов — очень просто. Если же вы ищете определённый интеграл, нужно воспользоваться формулой Ньютона — Лейбница.
Как видим, для нахождения определённого интеграла необходимо провести два преобразования.
Сначала, как и в случае с неопределённым интегралом, мы находим первообразную F (x). Константа C в этом случае не добавляется.
Этот символ значит, что мы работаем со значениями этой первообразной от a до b.
Затем мы должны подставить значения a и b в найденную первообразную, посчитать результат и найти разность этих результатов. Это и будет определённый интеграл.
Чтобы было нагляднее и понятнее, закрепим алгоритм интегрирования несколькими простыми примерами.
Найдите неопределённый интеграл:
Решение
Найдите определённый интеграл:
Решение
Найдите неопределённый интеграл:
Решение
Обратите внимание, что если построить график функции и её первообразной, то в обоих случаях x будет принимать значения от нуля до плюс бесконечности.
Найдите определённый интеграл:
Решение

Научитесь: Профессия Data Engineer
Узнать больше
Одно из самых значимых понятий в математике — интеграл. Термин часто можно встретить при решении задач по математике и физике. С помощью интеграла существенно упрощается поиск площади под кривой, пройденного пути объекта, движущегося неравномерно, массы неоднородного тела, функции по производной.
Что такое интеграл — понятие и определение
Интеграл представляет собой аналог суммы для бесконечного числа бесконечно малых слагаемых.
Интеграл является эффективным инструментом для решения задач из математического анализа. Слово «интеграл» происходит от латинского «integer», то есть «целый». Впервые это понятие ввел Иоганн Бернулли.
Разобраться в определении интеграла можно, если рассмотреть понятный график функции:
Исходя из графика, можно сделать вывод, что интегралом является сумма малых частей, которые составляют в целом рассматриваемый объект. Компоненты складываются в какую-то геометрическую фигуру. При сложении этих частей можно определить, какова ее площадь. Таким образом, пояснение для интеграла заключается в следующем: интеграл является площадью какой-то фигуры, расположенной под линией функции.
Данное понятие относится к определенному интегралу. Он определен на отрезке между точками а и b. В верхней части в качестве ограничения выступает некоторый график функции, как представлено на рисунке:
Математическая запись интеграла:
(int_{a}^{b}{f(x)dx})
где f(x) является той самой функцией, график которой ограничивает фигуру в верхней части;
a и b представляют собой пределы;
x соответствует направлению, вдоль которого построены столбцы на графике.
Процесс интегрирования является обратным дифференцированию. В том случае, когда требуется определить минимальный промежуток заданной функции, целесообразно взять от нее производную. Это объясняется тем, что производная или дифференциал являются быстрым методом поиска части чего-либо. Можно наглядно определить с помощью рисунка, что минимальная фигура, которая является частью целого, при таком числе составляющих компонентов не повторяет форму кривой функции. Таким образом, требуется уменьшить габариты таких частей, чтобы они максимально точно совпадали с графиком. Площадь наименьшего компонента фигуры будет стремиться к нулевому значению. Точность повышается с уменьшением размеров рассматриваемой части. Площадь геометрической фигуры состоит из суммы таких частей, которые стремятся к нулю. Записать это можно с помощью уравнения:
(P=lim_{Delta x_{i}rightarrow 0}sum{y_{i}Delta x_{i}})
Подробно полученное выражение можно рассмотреть на графике:
Площадь малой части фигуры определяется так же, как площадь прямоугольника. Значение Y нужно помножить на значение ΔХ. Так как фигура представляет собой совокупность малых частей, то их требуется сложить. Следует учитывать, что каждый компонент фигуры ΔХ стремится к нулевому значению. Поэтому формула, которая представлена выше, включает это условие и позволяет определить результат максимально точно.
Если обозначить количество частей ΔХ, стремящихся к бесконечности, то можно определить, что существует предел интегральной суммы, которая состоит из таких компонентов, стремящихся к нулю и к бесконечности по числу таких частей. Таким образом, правая граница фигуры, изображенной на графике, является пределом. В этом выражается геометрический смысл определенного интеграла.
Физический смысл интеграла состоит в том, что это сумма бесконечно малых величин на бесконечно большом интервале. Исходя из этого, можно определить любую величину, которая изменяется, согласно функции. К примеру, рассчитать общий путь по закону изменения скорости. Необходимость в интеграле возникла, когда потребовалось рассчитать площади каких-либо фигур и объем любых тел, выбранных произвольно.
В том случае, когда расчеты подразумевают наличие постоянной характеристики, к примеру, скорости, найти путь можно с помощью произведения этой постоянной скорости и времени. Этот же момент можно проверить при вычислении интеграла от такой функции и записи уравнения прямой. Но скорость в процессе движения может меняться. Данное изменение можно представить в виде зависимости. Тогда следует вписать граничные условия, например, в случае пути — это время, в интеграл скорости по времени. Полученное выражение будет равно площади трапеции, которая расположена под функцией скорости, что является физическим смыслом определенного интеграла.
Свойства, которыми обладает определенный интеграл:
- Когда функции f и g интегрируются на интервале [a, b], то для любых чисел (alpha) и (beta (alpha in R, beta in R)) функция (varphi(x) = alpha f(x) + beta g(x)) также интегрируема на отрезке [a, b]. Справедливо равенство: (intlimits_a^b (alpha f(x) + beta g(x)) dx = alpha intlimits_a^b f(x) dx + beta intlimits_a^b g(x) dx.label{ref1})
- Если функции f и g интегрируемы на отрезке [a, b], то функция (varphi(x) = f(x)g(x)) также интегрируема на этом отрезке.
- В том случае, когда функция f(x) интегрируема на отрезке (Delta = [a, b]) она интегрируема на любом отрезке (Delta_{1} subset Delta.)
- При функции f(x), интегрируемой на отрезке [a, b] и a < c < b, будет работать формула: (intlimits_a^b f(x) dx = intlimits_a^c f(x) dx + intlimits_c^b f(x) dx)
- При функции f, интегрируемой на отрезке [a, b] и если (c_{1}, c_{2}, c_{3}) являются любыми точками данного интервала, то (intlimits_{c_{1}}^{c_{3}} f(x) dx = intlimits_{c_{1}}^{c_{2}} f(x) dx + intlimits_{c_{2}}^{c_{3}} f(x) dx)
Термин «неопределенный интеграл» применим в ситуациях, когда требует найти площадь криволинейной трапеции, путь в соответствии с известной скоростью тела, которое движется неравномерно, и для решения других подобных задач.
Свойства, которыми характеризуется неопределенный интеграл:
- Константу можно выносить за знак интеграла: (int kf(x) dx = kint f(x) dx)
- Интеграл разности или суммы функций соответствует разности или сумме интегралов от этих функций: (int ( f(x) pm g(x) ) dx = int f(x) dx pm int g(x) dx)
- Производная интеграла определяется как выражение, находящееся под знаком интеграла: (bigg (int f(x) dx bigg )’ = f(x))
- Интеграл от производной функции равен сумме этой функции и постоянной: (int F'(x) dx = F(x) + C)
- Интеграл дифференциала функции равен сумме этой функции и постоянной интегрирования: (int df(x) dx = f(x) + C)
Таблица интегралов для студентов
Такие формулы позволяют упростить решение многих задач. Основные интегралы:
(int 0dx=C)
(int dx=int 1dx=x+C)
(int x^n dx = frac{x^{n+1}}{n+1}+C)
(int frac{dx}{x}=ln |x|+C)
(int a^x dx = frac{a^x}{ln a} + C)
(int e^x dx = e^x + C)
(int sin x dx = -cos x + C)
(int cos x dx = sin x+C)
(int frac{dx}{sin^2 x}=-ctgx + C)
(int frac{dx}{cos^2 x}=tgx+C)
(int frac{dx}{sqrt{a^2-x^2}}=arcsin frac{x}{a}+C)
(int frac{dx}{a^2+x^2}=frac{1}{a}arctgfrac{x}{a}+C)
(int frac{dx}{a^2-x^2}=frac{1}{2a} ln|frac{a+x}{a-x}|+C)
(int frac{dx}{sqrt{x^2pm a^2}}=ln|x+sqrt{x^2pm a^2}|)
Методы решения интегралов
Данные методики позволяют преобразовать сложные уравнения в простые формы, решения которых можно найти в таблице. Также к преобразованным выражениям можно применять свойства интегралов.
Непосредственное интегрирование
Данный метод целесообразно применять, когда в интеграле имеются табличные простейшие функции, либо функции, которые можно представит в таком виде по результатам элементарных действий. К примеру, когда требуется вынести константу за знак интеграла, разбить интеграл на слагаемые в виде интегралов, чтобы в подынтегральном выражении присутствовала готовая функция для интегрирования. Можно привести простой пример:
Необходимо определить интеграл непосредственным интегрированием:
(int bigg ( x^3 + frac{3}{2sqrt{x}} + frac{2}{x} bigg ) dx)
Исходя из свойства суммы интегралов, получим:
(int bigg ( x^3 + frac{3}{2sqrt{x}} + frac{2}{x} bigg ) dx = int x^3 dx + int frac{3 dx}{2sqrt{x}} + int frac{2 dx}{x})
Первый интеграл записан в табличном виде. В таком случае можно воспользоваться непосредственным интегрированием:
(int x^3 dx = frac{x^{3+1}}{3+1} = frac{x^4}{4} + C)
Второй интеграл обладает константой, которую допустимо вынести за знак. Затем интеграл будет преобразован в табличную форму:
(int frac{3dx}{2sqrt{x}} = 3 int frac{dx}{2sqrt{x}} = 3 sqrt{x} + C)
В третьем интеграле можно вынести константу. Далее необходимо воспользоваться методом непосредственного интегрирования:
(int frac{2dx}{x} = 2int frac{dx}{x} = 2 ln x + C)
Полученные выражения необходимо представить в виде одной записи:
(int bigg ( x^3 + frac{3}{2sqrt{x}} + frac{2}{x} bigg ) dx = frac{x^4}{4} + 3sqrt{x} + 2ln x + C)
Ответ: (int bigg ( x^3 + frac{3}{2sqrt{x}} + frac{2}{x} bigg ) dx = frac{x^4}{4} + 3sqrt{x} + 2ln x+ C)
Метод подведения под знак дифференциала
Решить некоторые типы интегралов можно с помощью этого способа. Он заключается в вынесении под знак интеграла. Таким образом получается интеграл табличной формы. Формула имеет следующий вид:
(f'(x) dx = d( f(x) ))
В том случае, когда подынтегральная функция содержит произведение пары функций, одна из которых представляет собой дифференциал другой, нужно внести под знак дифференциала нужную функцию. Данное действие можно записать таким образом:
(int f(varphi(x)) varphi'(x) dx = int f(varphi(x)) d(varphi(x))=int f(u) du)
(u=varphi(x))
Воспользоваться способом подведения основных функций можно при знании таблицы производных и интегрирования. Из них следуют следующие уравнения:
(dx = d(x+c) )
(c=const)
(-sin x dx=d(cos x))
(dx=frac{1}{a} d(ax))
(cos x dx = d(sin x))
(xdx=frac{1}{2} d(x^2+a) )
(frac{dx}{x} = d(ln x))
(-frac{dx}{x^2}= d(frac{1}{x}))
(frac{dx}{cos^2 x} = d(tg x))
(int f(kx+b)dx = frac{1}{k} int f(kx+b)d(kx+b) = frac{1}{k} F(kx+b) + C)
В качестве примера можно решить задачу на нахождение интеграла, обладающего таким видом:
(int sin x cos x dx)
В этом случае допустимо заносить под знак дифференциала любую из указанных функций. Целесообразно занести (cos x) из-за удобства смены знаков. Применяя формулы, получим:
(int sin x cos xdx = int sin x d(sin x) = frac{1}{2} sin^2 x + C)
Ответ: (int sin x cos x dx = frac{1}{2} sin^2 x + C)
Метод интегрирования по частям
Данная методика применима, когда требуется решить интегралы от произведения двух простейших функций. Одна из них достаточно просто дифференцируется, а вторая — интегрируется. В данном случае справедлива методика для неопределенных и определенных интегралов. Неопределенный интеграл характеризуется уравнением:
(int udv = uv — int vdu)
Определенный интеграл соответствует формуле:
(int limits_{a}^{b} udv = uv bigg |_{a}^{b} — int limits_{a}^{b} vdu)
В качестве примера можно определить интеграл:
(int xe^xdx)
Заметим, что в состав подынтегральной функции входит пара функций. Одна из них путем дифференцирования преобразуется в единицу, а вторая достаточно просто интегрируется. Поэтому в данном случае справедлив метод интегрирования по частям. Можно предположить, что:
(u = x rightarrow du=dx)
(dv = e^x dx rightarrow v=e^x)
Далее необходимо подставить полученные значения в первую формулу интегрирования:
(int xe^x dx = xe^x — int e^x dx = xe^x — e^x + C)
Ответ: (int xe^x dx = xe^x — e^x + C)
Метод замены переменной или метод подстановки
Этот способ нахождения интегралов применим в задачах, где одна функция — это производная второй функции. Допустим, что интеграл записан так:
(int f(x) dx)
Можно заменить (x=phi(t)). При этом функция (phi(t)) является дифференцируемой, поэтому можно найти (dx = phi'(t) dt.)
Далее следует подставить (begin{vmatrix} x = phi(t) \ dx = phi'(t) dt end{vmatrix}) в интеграл. Таким образом:
(int f(x) dx = int f(phi(t)) cdot phi'(t) dt)
Полученное выражение является формулой замены переменной в неопределенном интеграле.
При условиях задачи, которая содержит интеграл (int f(phi(x)) cdot phi'(x) dx), целесообразно заменить переменную на новую:
(t = phi(x))
(dt = phi'(t) dt)
Таким образом, интеграл преобразуется в форму, которую легко рассчитать с помощью основных методов интегрирования:
(int f(phi(x)) cdot phi'(x) dx = int f(t)dt)
Следует помнить, что по итогам расчетов требуется вернуть замененную переменную назад к x.
Например, можно рассмотреть задачу, по условиям которой необходимо вычислить неопределенный интеграл с помощью замены переменной:
(int e^{3x} dx)
Замена переменной будет выполнена следующим образом:
(t = 3x)
(dt = 3dx)
Таким образом:
(int e^{3x} dx = int e^t frac{dt}{3} = frac{1}{3} int e^t dt =frac{1}{3} e^t + C = frac{1}{3} e^{3x} + C)
Ответ: (int e^{3x} dx = frac{1}{3} e^{3x} + C)
Примеры решения
Задача 1
Требуется рассчитать определенный интеграл:
(int_0^1 frac{x}{x^4+1} dx)
Решение
Требуется заменить (t = x^2)
Таким образом, (dt = 2xdx)
Далее необходимо пересчитать пределы интегрирования для переменной t. Для этого нужно подставить 0 и 1 в замену (t = x^2)
В данной задаче они остались прежними. После манипуляций с подстановками получим:
(int_0^1 frac{x}{x^4+1}dx = int_0^1 frac{1}{2} frac{dt}{t^2+1})
Можно найти интеграл по таблице:
(int_0^1 frac{1}{2} frac{dt}{t^2+1}=frac{1}{2} arctg t bigg |_0^1)
Используя формулу Ньютона-Лейбница, запишем решение:
(frac{1}{2} arctg t bigg |_0^1 =frac{1}{2} arctg 1 — frac{1}{2} arctg 0 = frac{1}{2} cdot frac{pi}{4} = frac{pi}{8})
Ответ: (int_0^1 frac{x}{x^4+1} dx = frac{pi}{8})
Задача 2
Необходимо решить определенный интеграл:
(int_0^pi (x+5)sin x dx)
Решение
Можно заметить произведение двух функций, которое находится под интегралом. В этом случае целесообразно воспользоваться методом интегрирования по частям:
(int udv = uv — int vdu)
(int_0^pi (x+5) sin x dx = begin{vmatrix} u = x+5 & du = dx \ dv = sin x dx & v = -cos x end{vmatrix})
Нужно подставить в уравнение интегрирования по частям рассчитанные данные из вертикальных скобок:
(-(x+5)cos x bigg |_0^pi + int_0^pi cos x dx)
С помощью формулы Ньютона-Лейбница для вычисления определенного интеграла запишем ответ:
(-(x+5)cos x bigg |_0^pi + int_0^pi cos x dx = -(pi+5) cdot (-1) + 5 + sin x bigg |_0^pi = pi + 10 + sin pi — sin 0 = pi + 10)
Ответ: (int_0^pi (x+5)sin x dx = pi + 10)
Задача 3
Требуется найти определенны интеграл, записанный в виде:
(int_0^2 (x^3 + 2x + 2) dx)
Решение
Используя способ разложения интеграла на простейшие, после получения промежуточного результата необходимо интегрировать каждый интеграл индивидуально:
(int_0^2 (x^3+2x+2) dx = int_0^2 x^3dx + 2int_0^2 xdx + 2int_0^2 dx)
В случае первых двух интегралов целесообразно воспользоваться правилом:
(x^p = frac{x^{p+1}}{p+1})
Третий интеграл содержит константу. Таким образом:
(int_0^2 x^3dx + 2int_0^2 xdx + 2int_0^2 dx = frac{x^4}{4} bigg |_0^2 + 2 frac{x^2}{2} bigg |_0^2 + 2x bigg |_0^2 = frac{x^4}{4} bigg |_0^2 + x^2 bigg |_0^2 + 2x bigg |_0^2 )
Далее следует подставить пределы интегрирования в каждую функцию и записать ответ:
(int_0^2 x^3dx + 2int_0^2 xdx + 2int_0^2 dx = frac{x^4}{4} bigg |_0^2 + 2 frac{x^2}{2} bigg |_0^2 + 2x bigg |_0^2 = frac{x^4}{4} bigg |_0^2 + x^2 bigg |_0^2 + 2x bigg |_0^2 )
Ответ: (int_0^2 (x^3 + 2x + 2) dx = 12)
Задача 4
Необходимо найти решение интеграла:
(int 3cos x dx)
Решение
Требуется вынести константу по первому свойству за знак интеграла и записать ответ:
(int 3cos x dx = 3 int cos x dx = 3 sin x + C)
Ответ: (int 3cos x dx = 3 sin x + C)
Задача 5
Необходимо определить интеграл:
(int (e^x + sin x) dx)
Решение
Исходя из первого свойства неопределенного интеграла, интеграл суммы равен сумме интегралов:
(int (e^x + sin x) dx = int e^x dx + int sin x dx = e^x — cos x)
Ответ: (int (e^x + sin x) dx = e^x — cos x)
Задача 6
Требуется определить производную от интеграла:
( int ln x dx)
Решение
Согласно третьему свойству неопределенного интеграла, производная неопределенного интеграла определяется, как подынтегральная функция:
(bigg (int ln x dx bigg )’ = ln x)
Ответ: (bigg (int ln x dx bigg )’ = ln x)
Задача 7
Требуется доказать следующее выражение:
( int (x^2+x)’ = x^2+x+C)
Решение
В первую очередь необходимо определить производную подынтегральной функции:
( (x^2+x)’ = (x^2)’ + (x)’ = 2x + 1)
Исходя из первого и второго свойства неопределенного интеграла, получим ответ:
(int (2x+1) dx = int 2x dx + int 1 dx = 2 int x dx + int 1 dx =2 cdot frac{x^2}{2} + x + C = x^2 + x + C)
Ответ: выражение доказано.
Благодаря теоретическим знаниям и практическим навыкам решения задач с интегралами, можно с легкостью осваивать самые сложные темы по физике и математическому анализу. Главное — уметь пользоваться таблицей с основными формулами и свойствами определенного и неопределенного интегралов. Если в процессе изучения материала возникают трудности, то в любое время можно открыть сервис Феникс.Хелп.









































































































































































в точках
и 






















































































































































на заданном промежутке, если для любого х из этого промежутке F’ (х) = f (х).


то
— первообразная для функции 



















































на
отрезков точками
(полагаем, что 
, второго — через
и т. д. (то есть 






































































































































































