Функция распределения случайной величины
- Краткая теория
- Примеры решения задач
- Задачи контрольных и самостоятельных работ
Краткая теория
Пусть
– действительное число. Вероятность события,
состоящего в том, что
примет значение, меньшее
, то есть вероятность
события
обозначим через
. Разумеется, если
изменяется, то, вообще говоря, изменяется и
, то есть
– функция от
.
Функцией распределения называют функцию
, определяющую вероятность
того, что случайная величина
в результате испытания примет значение,
меньшее
, то есть:
Геометрически
это равенство можно истолковать так:
есть вероятность того, что случайная величина примет
значение, которое изображается на числовой оси точкой, лежащей левее точки
.
Иногда
вместо термина «функция распределения» используют термин «интегральная
функция».
Функцию
распределения дискретной случайной величины
можно представить следующим соотношением:
Это
соотношение можно переписать в развернутом виде:
Функция
распределения дискретной случайной величины есть разрывная ступенчатая функция,
скачки которой происходят в точках, соответствующих возможным значениям
случайной величины и равны вероятностям этих значений. Сумма всех скачков
функции
равна 1.
Свойства функции распределения
Свойство 1.
Значения
функции распределения принадлежат отрезку
:
Свойство 2.
– неубывающая функция, то есть:
,
если
Свойство 3.
Если возможные значения случайной величины
принадлежат интервалу
,
то:
1)
при
;
2)
при
Свойство 4.
Справедливо равенство:
Свойство 5.
Вероятность того, что непрерывная случайная
величина
примет одно определенное значение, равна нулю.
Таким образом, не представляет интереса говорить о
вероятности того, что непрерывная случайная величина примет одно определенное
значение, но имеет смысл рассматривать вероятность попадания ее в интервал,
пусть даже сколь угодно малый.
Заметим, что было бы неправильным думать, что
равенство нулю вероятности
означает, что событие
невозможно (если, конечно, не ограничиваться
классическим определением вероятности). Действительно, в результате испытания
случайная величина обязательно примет одно из возможных значений; в частности,
это значение может оказаться равным
.
Свойство 6.
Если возможные значения непрерывной случайной величины
расположены на всей оси
,
то справедливы следующие предельные соотношения:
Свойство 7.
Функция распределения непрерывная слева, то есть:
Смежные темы решебника:
- Дискретная случайная величина
- Непрерывная случайная величина
- Математическое ожидание
- Дисперсия и среднее квадратическое отклонение
Примеры решения задач
Пример 1
Дан ряд
распределения случайной величины
:
|
|
1 | 2 | 6 | 8 |
|
|
0,2 | 0,3 | 0,1 | 0,4 |
Найти и изобразить ее функцию распределения.
Решение
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Будем задавать различные значения
и находить для них
1. Если
,
то, очевидно,
в том числе и при
2. Пусть
(например
)
Очевидно, что и
3. Пусть
(например
);
Очевидно, что и
4. Пусть
Очевидно, что и
5. Пусть
Итак:
График функции распределения
Пример 2
Случайная
величина
задана функцией распределения:
Найти
вероятность того, что в результате испытания
примет значение:
а) меньше
0,2;
б) меньше
трех;
в) не
меньше трех;
г) не
меньше пяти.
Решение
а) Так
как при
функция
, то
то есть
при
б)
в)
События
и
противоположны, поэтому
Отсюда:
г) сумма
вероятностей противоположных событий равна единице, поэтому
Отсюда, в
силу того что при
функция
, получим:
Пример 3
Задана
непрерывная случайная величина X своей плотностью
распределения вероятностей f(x). Требуется:
1)
определить коэффициент A;
2) найти
функцию распределения F(x);
3)
схематично построить графики функций f(x) и F(x);
4)
вычислить математическое ожидание и дисперсию X;
5)
определить вероятность того, что X примет значение из
интервала (a,b).
Решение
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
1)
Постоянный параметр
найдем из
свойства плотности вероятности:
В
нашем случае эта формула имеет вид:
Получаем:
2)
Функцию распределения
найдем из
формулы:
Учитывая
свойства
, сразу можем отметить,
что:
и
Остается
найти выражение для
, когда х принадлежит интервалу
:
Получаем:
3) Построим графики функций:
График плотности распределения
График функции распределения
4) Вычислим
математическое ожидание:
В нашем случае:
Вычислим дисперсию:
Искомая дисперсия:
5) Вероятность того, что
примет значение из интервала
:
Задачи контрольных и самостоятельных работ
Задача 1
Закон
распределения случайной величины X задан таблицей.
Найти ее
математическое ожидание, дисперсию и значение функции распределения в заданной
точке.
F(1)=
M[X]=
D[X]=
Задача 2
Случайная
величины X задана функцией распределения
Найти
плотность распределения вероятностей, математическое ожидание и дисперсию
случайной величины. Построить графики дифференциальной и интегральной функций.
Найти вероятность попадания случайной величины X в интервалы (1,2; 1,8),
(1,8; 2,3)
Задача 3
Дискретная
случайная величина X задана рядом распределения. Найти:
1)
функцию распределения F(x) и ее график;
2)
математическое ожидание M(X);
3)
дисперсию D(X).
|
|
-5 | 5 | 25 | 45 | 65 |
|
|
0.2 | 0.15 | 0.3 | 0.25 | 0.1 |
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Задача 4
В задаче
дискретная случайная величина задана рядом распределения.
Найти
; M(X), D(X), P(0≤X≤2); F(x).
Начертить график F(x)
Задача 5
В задаче
непрерывная случайная величина X задана функцией
распределения F(x).
Найти a; f(x); M(X); D(X); P(X<0.2)
Начертить
графики функций f(x);F(x).
Задача 6
Функция
распределения непрерывной случайной величины X (времени безотказной работы
некоторого устройства) равна
(
). Найти вероятность безотказной
работы устройства за время x больше либо равно T.
Задача 7
Функция
распределения непрерывной случайной величины задана выражением:
Найдите:
1)
параметр a;
2)
плотность вероятностей;
4) P(0<x<1)
Постройте
графики интегральной и дифференциальной функции распределения.
Задача 8
Дана
интегральная функция распределения. Найти: дифференциальную функцию f(x),M(X),σ(X),D(X).
Задача 9
Дана
функция распределения F(х) случайной величины Х.
Найти плотность
распределения вероятностей f(x), математическое ожидание M(X),
дисперсию D(X) и вероятность попадания X на
отрезок [a,b]. Построить графики
функций F(x) и f(x).
Задача 10
НСВ X имеет
плотность вероятности (закон Коши)
Найти:
а)
постоянную C=const;
б)
функцию распределения F(x);
в)
вероятность попадания в интервал -1<x<1
г)
построить графики f(x), F(x).
- Краткая теория
- Примеры решения задач
- Задачи контрольных и самостоятельных работ
2.2.7. Функция распределения случайной величины
Стандартное обозначение:
И для дискретной, и для непрерывной случайной величины она определяется одинаково:
, где
– вероятность того, что случайная величина
примет значение,
МЕНЬШЕЕ, чем переменная , которая«пробегает» все действительные значения от «минус» до
«плюс» бесконечности.
Построим функцию распределения для нашей подопытной игры:
Начинаем разбираться. Чему, например, равно значение ? Это вероятность того, что выигрыш будет меньше, чем –20. И это невозможное событие:
. Совершенно понятно, что
и для всех «икс» из интервала
, а также для
. Почему? По определению функции распределения:
– вы согласны? Функция
возвращает вероятность того,
что в точке выигрыш
будет СТРОГО МЕНЬШЕ «минус» пяти.
Таким образом: , если
.
На интервале функция
, поскольку левее
любой точки этого интервала есть только одно значение случайной величины, которое появляется с вероятностью 0,5. Кроме того,
сюда же следует отнести точку ,
так как:
– очень хорошо осознайте этот
момент!
Таким образом, если , то
Далее рассматриваем промежуток . СТРОГО ЛЕВЕЕ любой точки этого промежутка находятся два выигрыша
, поэтому:
И, наконец, если , то
, ибо все значения
случайной величины
лежат СТРОГО левее
любой точки интервала
Заметим, кстати, важную особенность: коль скоро функция характеризует вероятность, то
она может принимать значения лишь из промежутка – и никакие другие!
Итак, функция распределения вероятностей ДСВ является кусочной и, как многие знают, в таких случаях принято использовать
фигурные скобки:
График данной функции имеет разрывный «ступенчатый» вид:
Причём, функция или её
график однозначно определяют сам закон распределения: в точке высота «ступеньки» (разрыв) составляет
(следим по графику), в точке
«скачок» разрыва равен
и, наконец, в точке
он равен в точности
.
Таким образом, функция распределения вероятностей – это ещё один способ ЗАДАТЬ случайную величину. И этот способ
особо важен для непрерывной случайной величины – по той причине, что её невозможно описать таблицей (ввиду бесконечного и
несчётного количества принимаемых значений). Однако, всему своё время, и НСВ – тоже.
Освоим технические моменты решения типовой задачи:
Задача 93
Построить функцию распределения случайной величины
Найти вероятности того, что случайная величина примет значение из следующих промежутков:
…, пожалуй, достаточно.
Решение: На практике удобно использовать формальный алгоритм построения функции распределения:
Сначала берём первое значение и составляем нестрогое неравенство
. На этом промежутке
.
На промежутке (между
и
):
На промежутке (между
и
):
На промежутке (между
и
):
И, наконец, если строго
больше самого последнего значения , то:
Легко заметить, что с увеличением «икс» идёт накопление (суммирование) вероятностей, и поэтому функцию иногда называют интегральной функцией распределения. В
практических задачах проведённые выше действия обычно выполняют устно, а результат сразу записывают под единую скобку:
Выполним чертёж:
и проконтролируем правильность решения с помощью «скачков» графика: в точке «скачок» равен
, в точке
составляет
, в точке
равен
, и, наконец, в точке
–
.
При выполнении чертежа от руки оптимален следующий масштаб:
горизонтальная ось: 1 ед. = 2 или 1 тетрадная клетка;
вертикальная ось: 0,1 = 1 тетрадная клетка.
На левых концах ступенек (кроме нижнего луча) можно ставить выколотые точки – дело вкуса. Левый нижний луч следует прочертить жирно
(чтобы он не сливался с координатной осью) и до конца оси! Правая верхняя линия не должна заканчиваться раньше
острия оси! Такие оплошности могут говорить о непонимании функции распределения, а это, как вы понимаете, скверно. То было ручное
построение. Ну а о том, как строить такие красивые графики в Экселе можно узнать в этом ролике на Ютубе, к слову, полигон (многоугольник) распределения строится ещё проще.
Переходим ко второй части задания, её коротко можно сформулировать так:


Полную и свежую версию этой книги в pdf-формате,
а также курсы по другим темам можно найти здесь.
Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!
С наилучшими пожеланиями, Александр Емелин
Эмпирическая функция распределения
Содержание:
- Что называют эмпирической функции распределения
- Свойства функции
- Как найти
- Как построить график
- Примеры задач
Что называют эмпирической функции распределения
Допустим, известно статистическое распределение частот количественного признака Х. Обозначим nх – количество наблюдений со значением меньше x1, n – всего наблюдений. Очевидно, что относительная частота события Х<x будет равна nх/n.
Определение
Эмпирическая функция распределения – это функция F*(x), которая определяет для каждого значения x относительную частоту события X
Данное понятие можно записать в виде формулы:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
(Fast(x)=frac{n_x}n)
В этой записи nx – количество вариантов, меньших x; n – объем выборочной совокупности.
Существует также теоретическая функция распределения (функция распределения генеральной совокупности). Ее отличие от выборочной функции распределения состоит в определении объективной возможности или вероятности события X<x.
Свойства функции
Функция распределения выборки обладает рядом свойств, которые следуют из определения понятия.
- Значения рассматриваемой функции F*(x) располагаются на отрезке [0; 1].
- Функция имеет неубывающий характер.
- При минимальной варианте x1 верно равенство F*(x)=0 при условии, что х<х1. При максимальной варианте хk верно равенство F*(x)=1 при условии х>xk.
Таким образом, функция распределения выборки помогает оценить теоретическую функцию распределения.
Как найти
Выборочная функция распределения для случайной величины рассчитывается по формуле:
(F(x)=P(xi<x))
Данное равенство читается так: функция распределения равна вероятности события, при котором случайная величина будем меньше x.
Поскольку при условии, что x меньше или равно 1, событие ξ20<1 невозможно (ξ20 не принимает значение менее 1, вероятность невозможного события равна 0), верно следующее выражение:
(F(x)=P(xi20<1)=0)
При принадлежности x отрезку (1; 2] событие ξ20<2 представляет собой равенство ξ20=1, значит, вероятность этого события равно 0,1. В записи это выглядит так:
(F(x)=P(xi20<2)=0,1)
Когда x принадлежит отрезку (2; 4], событие ξ20<4 состоит в равенстве ξ20 значению 1 или 2, то есть вероятность рассматриваемого события равна 0,1+0,2=0,3 или:
(F(x)=P(xi20<4)=0,3)
Если 4 < x ≤ 5, то событие ξ20<5 означает, что ξ20 принимает значение либо 1, либо 2, либо 4. Следовательно, вероятность данного события вычисляется так: 0,1+0,2+0,35=0,65, то есть:
(F(x)=P(xi20<5)=0,65)
При 5 < x ≤ 6 событие ξ20<6 заключается в том, что ξ20 принимает значение 1, 2, 4 или 5. Значит его вероятность равно 0,1+0,2+0,35+0,1=0,75 или:
(F(x)=P(xi20<6)=0,75)
И так далее.
Итак, эмпирическая функция распределения имеет следующий вид:
Как построить график
Построение графика эмпирической функции распределения возможно после вычисления ее значений на всей числовой оси. Для рассмотренного примера схематическое изображение будет выглядеть так:
График ступенчатого вида, построенный на отрезках. Совпадение графика с горизонтальной осью означает, что левее минимального значения x=1 функция приобретает значение нуля. Увеличение в каждой следующей точке xi происходит на величину вероятности νi. Правее максимального значения х8=13 функция равна 1. Стрелки и точки на концах отрезков указывают на определение функции на полуинтервалах.
Примеры задач
Задача
В таблице даны значения эмпирического распределения:
Необходимо найти объем выборочной совокупности, составить выборочную функцию распределения, построить ее график.
Решение
- Вычислим объем выборки: n=5+10+15+20=50.
- Из свойства эмпирической функции распределения: Fn(x)=0 при x≤1, Fn(x)=1 при x>4.
Выходит, что:
По полученным значениям построим график:
Рассмотрим пространство элементарных событий, в котором каждому элементарному событию 








Эту функцию называют случайной величиной. В случае, когда 



Величина называется случайной, если в результате проведения опыта под влиянием случайных факторов она приобретает то или другое возможное числовое значение с определенной вероятностью.
Если множество возможных значений случайной величины является счетно, то ее называют дискретной. В противном случае ее называют непрерывной.
Случайные величины для удобства обозначают прописными буквами латинского алфавита 

Для установления случайной величины необходимо знать не только множество возможных ее значений, но и указать, с какими вероятностями она приобретает то или иное возможное значение.
С этой целью вводят понятие закона распределения вероятностей – зависимость, которая устанавливает связь между возможными значениями случайной величины и соответствующими им вероятностями.
Закон распределения дискретной случайной величины 
При табличной формы записи закона указывается множество возможных значений случайной величины 
Случайные события должны быть попарно несовместимы и образовывать полную группу, то есть удовлетворять условие:
Приведенную зависимость называют условием нормировки для дискретной случайной величины 
Функция распределения вероятностей и ее свойства
Закон распределения вероятностей можно представить в виде функции распределения вероятностей случайной величины 
Функцию аргумента 

Ее следует понимать как функцию, которая устанавливает вероятность случайной величины, которая может принимать значения, меньше 
Функция распределения обладает следующими свойствами:
1. Она всегда положительная со значениями в пределах от нуля до единицы
2. Функция является монотонно возрастающей, а именно 

С этого свойства получают приведенные выводы:
a) Вероятность вступления случайной величиной 


б) Вероятность, что непрерывная случайная величина 
Для непрерывной случайной величины 
3. На крайних точках непрерывная случайная величина принимает значение 0 и 1.
Из этих границ следует, что для дискретной случайной величины 



—————————-
Приведем решения задач на отыскание функции распределения.
Пример 1. Закон распределения дискретной случайной величины 
Построить функцию распределения 
Решение. Согласно свойствами функции 
1)
2) 
3)
4)
5)
6)
Компактно функция распределения 
График функции распределения 
—————————-
Пример 2. Есть три коробки с шарами. В первой содержится 6 желтых и 4 синие шарики, во втором — 7 желтых и 3 синие, а в третьем — 2 желтых и 8 синих. Из каждой коробки наугад берут по одному шарику. Построить закон распределения вероятностей дискретной случайной величины 

Решение. Среди трех наугад взятых шариков число синих может быть 0, 1, 2, 3.
В табличной форме закон распределения дискретной случайной величины имеет вид:
Вычислим вероятности 



Поскольку случайные события 
Вычисление достаточно просты и сделаны обозначения полностью все объясняют. Проверим выполнение условия нормировки
Всегда выполняйте проверку данного условия: это достаточно просто сделать и позволяет быстро проверить правильность вычислений вероятности. В случаях, когда условие нормировки не выполняется нужно отыскать ошибку и исправить ее.
У нас же все вычисления правильны, потому записываем закон распределения вероятностей в табличной форме:
Вычисляем значение интегральной функции
1)
2)
3)
4)
5)
В случае ошибок при нахождении вероятностей последнее соотношение дает отличный от единицы результат, поэтому можете проверять и по этому значению. Упрощенно функция распределения будет иметь вид
а ее график следующий
—————————-
Пример 3. Закон распределения случайной величины 
Построить график функции распределения 

Решение. Функция распределения будет иметь вид.
Используя определение, вычислим
Таким образом вероятность, что случайная величина принадлежит промежутку [1,4] равна 0,36.
—————————-
Внимательно разберитесь с приведенными примерами нахождения функции распределения, это Вам пригодится на практических занятиях. Старайтесь проверять условие нормирования, чтобы избежать дальнейших ошибок и правильно определяйте вероятности.
———————————————-
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Определение функции распределения
Пусть $X$ – случайная величина, а $x$ – вероятность распределения этой случайной величины.
Определение 1
Функцией распределения называется функция $F(x)$ удовлетворяющая условию $Fleft(xright)=P(X
Также иначе функцию распределения иногда называются интегральной функцией распределения или интегральным законом распределения.
В общем виде график функции распределения представляет собой график неубывающей функции с областью значений, принадлежащей отрезку $left[0,1right]$ (причем 0 и 1 обязательно входят в область значений). При этом функция может, как иметь, так и не иметь скачков функции (рис. 1)
Рисунок 1. Пример графика функции распределения
Сдай на права пока
учишься в ВУЗе
Вся теория в удобном приложении. Выбери инструктора и начни заниматься!
Получить скидку 3 000 ₽
Функция распределения дискретной случайной величины
Пусть случайная величина $X$ является дискретной. И пусть для нее дан ряд её распределения. Для такой величины функцию распределения вероятностей можно записать в следующем виде:
ступенчатую функцию

Функция распределения непрерывной случайной величины
Пусть случайная величина $X$ теперь является непрерывной.
График функции распределения такой случайной величины всегда представляет собой неубывающую непрерывную функцию (рис. 3).

«Определение функции распределения» 👇
Функция распределения смешанной случайной величины
Рассмотрим теперь случай, где случайная величина $X$ является смешанной.
График функции распределения такой случайной величины всегда представляет собой неубывающую функцию, которая имеет минимальное значение в 0, максимальное значение в 1, но которая не на всей области определения является непрерывной функцией (то есть имеет скачки в отдельных точках) (рис. 4).
Рисунок 4. Функция распределения смешанной случайной величины
Примеры задач на нахождение функции распределения
Пример 1
Приведен ряд распределений появления события $A$ в трех опытах
Рисунок 5.
Найти функцию распределения вероятностей и построить её график.
Решение.
Так как случайная величина является дискретной, то мы можем пользоваться формулой $ Fleft(xright)=sumlimits_{x_i
При $xle 0$, $Fleft(xright)=0$;
При $0
При $1
При $2
При $x>3$, $Fleft(xright)=0,2+0,1+0,3+0,4=1$;
Отсюда получаем следующую функцию распределения вероятностей:
Рисунок 6.
Построим ее график:
Рисунок 7.
Пример 2
Проводится один опыт, в котором событие $A$ может, как произойти, так и не произойти. Вероятность того, что данное событие произойдет равно $0,6$. Найти и построить функцию распределения случайной величины.
Решение.
Так как вероятность того, что событие $A$ произойдет равно $0,6$, то вероятность того, что данное событие не произойдет равно $1-0,6=0,4$.
Построим для начала ряд распределения данной случайной величины:
Рисунок 8.
Так как случайная величина является дискретной, найдем функцию распределения по аналогии с задачей 1:
При $xle 0$, $Fleft(xright)=0$;
При $0
При $x>1$, $Fleft(xright)=0,4+0,6=1$;
Таким образом, получаем следующую функцию распределения:
Рисунок 9.
Построим ее график:
Рисунок 10.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме

























































