1.5.5. Как найти единичный вектор?
Единичный вектор – это вектор, длина которого в ортонормированном базисе равна единице. Таковыми являются сами
координатные векторы и
,
и противоположно направленные им векторы, например:
То, что их длина равна единице, элементарно видно не только по чертежам, но и по формулам .
А теперь рассмотрим произвольный вектор либо
и поставим задачу найти
единичный вектор , коллинеарный исходному. Таких векторов будет два. Чтобы найти сонаправленный единичный вектор нужно каждую координату вектора
разделить на его длину:
либо
,
или, что то же самое – умножить каждую координату вектора на
. То
есть, деление – это частный случай умножения (осознаём и привыкаем). Противоположно направленный единичный
вектор очевиден:
либо
Задача 10
Найти единичные векторы, коллинеарные векторам а) , б)
. Выполнить проверку.
Решение: а) вычислим длину вектора и найдём
сонаправленный единичный вектор:
, от иррациональности в знаменателе (корня) тут
обычно не избавляются. Проверка состоит в нахождении длины полученного вектора:

Второй вектор очевиден: , как очевидна и его
длина .
Ответ:
Потребность найти единичный вектор возникает не только в геометрических задачах, и поэтому обязательно прорешайте пункт б)
самостоятельно.


| Оглавление |
Автор: Aлeксaндр Eмeлин
Единичный вектор
Единичный вектор (орты координатных осей) — это вектор, длина которого равна единице.
i — единичный вектор оси абсцисс;
j — единичный вектор оси ординат;
k — единичный вектор оси аппликат.
i⊥j⊥k, i=j=k=1
В прямоугольной системе координат в пространстве координаты векторов равны:
i(1;0;0), j(0;1;0), k(0;0;1)
Единичные векторы являются некомпланарными.
Любой вектор можно разложить в виде вектора по ортам координатных осей, формула ниже.
a=xi+уj+zk
где x, y, z — координаты вектора проекции на соответствующие координатные оси.
Эта формула называется разложением вектора по ортам координатных осей.
Единичный вектор определяется по формуле:
Дан вектор а = (1; 2; -2)
Требуется найти длину (модуль) и единичный вектор e направления вектора а
Находим длину вектора a
затем вычисляем единичный вектор e
Векторное произведения единичных векторов
Если направление кратчайшего пути от первого вектора ко второму вектору совпадает с направлением стрелки, то произведение равно третьему вектору, а если не совпадает, то третий вектор берется со знаком «минус» . Смотрите схему 1.
На основании схемы получаем таблицу векторного произведения единичных векторов
Пример 1
Найти векторное произведение iхj, где i, j — единичные векторы (орты) правой системы координат.
Решение
1) Так как длины основных векторов равны единице масштаба, то площадь параллелограмма MOKT численно равна единице. Значит, модуль векторного произведения равен единице.
2) Так как перпендикуляр к плоскости MOKT есть ось OZ, то искомое векторное произведение есть вектор, коллинеарный с вектором k; а так как оба они имеют модуль 1, то искомое векторное произведение равно либо k, либо -k.
3) Из этих двух возможных векторов надо выбрать первый, так как векторы i, j, k образуют правую систему (а векторы i, j, -k — левую).
iхj=k
Пример 2
Найти векторное произведение jхi.
Решение
Как в примере 1, заключаем, что вектор jхi равен либо k, либо —k. Но теперь надо выбрать -k, ибо векторы j, i, —k образуют правую систему (а векторы i, j, —k -левую).
jхi = −k
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 3.5 / 5. Количество оценок: 4
Вектор: определение и основные понятия
Определение вектора
![]() |
| рис. 1 |
Обозначение вектора
Вектор началом которого есть точка А, а концом — точка В, обозначается AB (рис.1). Также вектора обозначают одной маленькой буквой, например a .
Длина вектора
Для обозначения длины вектора используются две вертикальные линии слева и справа | AB |.
Нулевой вектор
Нулевой вектор обычно обозначается как 0 .
Длина нулевого вектора равна нулю.
Коллинеарные вектора
![]() |
| рис. 2 |
Сонаправленные вектора
![]() |
| рис. 3 |
Противоположно направленные вектора
![]() |
| рис. 4 |
Компланарные вектора
![]() |
| рис. 5 |
Всегда возможно найти плоскости параллельную двум произвольным векторам, по этому любые два вектора всегда компланарные.
Равные вектора
![]() |
| рис. 6 |
То есть, два вектора равны, если они коллинеарные, сонаправленые и имеют равные длины:
a = b , если a ↑↑ b и | a | = | b |.
Единичный вектор
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Геометрия для новичков. Часть 1: координаты и векторы — теория
Внимание! Этот документ ещё не опубликован.
О чем данная статья
В данной статье дается теоретическое описание векторов, координат векторов и операций над ними.
На кого рассчитана статья
Прежде чем читать эту статью, нужно знать:
- что такое прямоугольная система координат и координаты точки на плоскости
- что такое теорема Пифагора
Введение
Зачем нужны координаты точек в играх
В любой игре положение игрового объекта задается координатами какой-либо точки, привязанной к этому объекту, т.е. эта точка перемещается вместе с объектом. Например, мы можем задать координаты объектов в «Супер Марио» следующим образом:
На этом рисунке крупные черные точки — это точки, привязанные к игровым объектам. Координаты этих точек мы и будем считать координатами игровых объектов.
Итак, на этом рисунке:
- координаты Марио равны (-0.5, -2)
- координаты улитки равны (3, -2)
- координаты кубика равны (4, 1)
Пример координат вектора
Я намеренно не написал конкретные значения для координат точек – пусть они будут произвольными.
Зададим себе вопрос «Как нужно изменить начальные координаты Марио, что получить конечные?» Чтобы ответить на этот вопрос, нам нужно найти пару чисел (x, y), таких, чтобы:
Ax + x = Bx
Ay + y = By
Решая эти 2 уравнения, получаем:
x = Bx — Ax
y = By — Ay
Пара (x, y) в нашей задаче является координатами вектора перемещения Марио. Но это — лишь конкретный пример координат вектора. Что такое вектор и что такое его координаты в общем случае? Сейчас узнаем.
Векторы
Что такое направленный отрезок
Стрелка показывает, что А – начало отрезка, а B – конец.
Что такое вектор
Что у этих отрезков общего? Хм, пожалуй 2 вещи:
- Направление
- Длина
Так вот, вектор – это как раз и есть совокупность направления и длины.
Направленный отрезок – не вектор, который мы изучаем в геометрии. Направленный отрезок задает, или как еще говорят, представляет вектор. Но это — не вектор.
В нашем примере направленный отрезок 

Примечание: о тонкостях приведенного мной определения — в конце статьи.
Равенство векторов
Если задуматься, все направленные отрезки одинаковой длины, которые лежат на параллельных прямых и указывают в одну сторону, имеют одинаковое направление и длину. Следовательно, все эти направленные отрезки представляют один и тот же вектор. Из этого следует определение равенства 2 векторов:
Два вектора 



Из данного определения следует, что при параллельном переносе произвольный направленный отрезок продолжает представлять тот же вектор, что он представлял до переноса. Это свойство активно используется для операций над векторами.
Длина вектора
Коллинеарные векторы
На рисунке любая пара из векторов 


Если отрезки, представляющие коллинеарные векторы, имеют одинаковое направления, то векторы называют сонаправленными:
Пишут:
Если отрезки, представляющие коллинеарные векторы, имеют противоположное направления, то векторы, представленные данными отрезками, называют противоположно направленными:
Пишут:
Нулевой вектор
Единичные векторы

Обратный вектор
Арифметические операции над векторами
- Вектор можно умножать на число. Вектор
, умноженный на число, записывается как k*
. Вектор будет сонаправлен (противоположно направлен) с вектором
, если k — положительное (отрицательное) число. Вектор k*
будет иметь длину |k|*|
|:
|k*

k* 

k* 

|k * 
Т.е. в результате нормализации мы получаем единичный вектор, сонаправленный с исходным вектором 
Важно: нулевой вектор НЕЛЬЗЯ нормализовать, так как для любого числа k:
|k*

Итак, как же найти это число k?
Распишем |k * 
|k * 


Здесь мы убрали с k знак модуля, так как по определению k > 0.
Итак:
k * |
Из этого следует, что:
k = 1 / |
Т.е. чтобы нормализовать произвольный ненулевой вектор, нам нужно разделить вектор на его длину.
Координаты вектора
Вроде бы из примера, приведенного в начале статьи, все понятно: координаты вектора — разность координат конца и начала направленного отрезка, представляющего вектор.
Но это не так. Действительно, значения координат вектора численно равны этой разности. Но определение координат вектора в корне отличается от определения координат точки.
Разложение вектора по 2 неколлинеарным векторам
В геометрии доказывается следующий факт.
Ecли мы возьмем 2 неколлинеарных вектора 

то для каждого вектора 


Теперь возьмем в качестве таких неколлинеарных векторов 

Векторы 

Определение координат вектора


то пара чисел (x, y) будет называться координатами вектора 
Часто пишут:

Эта запись означает, что вектор 
Арифметические операции над координатами векторов
— 
Координаты вектора, умноженного на число, равны координатам исходного вектора, умноженными на это число:
k* 
Пусть у нас есть 2 произвольных вектора 

- кoординаты суммы 2 векторов равны сумме x- и y-координат векторов:
+
= (ax + bx, ay + by)
- как следствие из предыдущих свойств, координаты разности 2 векторов равны разности координат этих векторов:
—
= (ax — bx, ay — by)
Т.е. арифметика для координат векторов – такая же, как и для обычных чисел, только все считается покоординатно.
Радиус-вектор
Можно доказать, что численные значения координат точки совпадают со значения координат ее радиус-вектора. Здесь примем это как факт: 
где (Ax, Ay) — координаты точки A
Связь между координатами вектора и координатами концов отрезка
если 


(x, y) = (Bx — Ax, By — Ay)
где (Ax, Ay), (Bx, By) — координаты точек А и B соответственно.
Докажем это.
Мы можем записать простое равенство для произвольного вектора 


Заметим, что 

Из равенства значений координат точки и радиус-вектора и предыдущей формулы следует, что:
(x, y) = (Bx — Ax, By — Ay)
Нахождение длины вектора по его координатам
Пусть у нас есть вектор 


Чтобы найти длину вектора 


По теореме Пифагора:
AC = |
СB = |
то в итоге получаем равенство:
Заключение
Применению векторов в реальных задачах игровой разработки будет посвящена следующая моя статья. В ней практически не будет математики и будет много программирования.
Здесь же я описал то, что будет необходимо для понимания практических приемов использования векторов.
Если не иметь представления, как связаны координаты точек и координаты векторов, очень сложно понять, как работают алгоритмы определения расстояний от точки до геометрической фигуры, алгоритмы обнаружения столкновений и т.д.
Так что не жалейте, если вы (о ужас!) кое-что запомнили из «всей этой математики». Все это вам пригодится очень скоро, обещаю.
Литература
Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. «Геометрия», 7-9 классы»
Главы: «Векторы», «Метод координат».
PS: корректность определения вектора в статье
Вся хитрость в том, что существует несколько определений вектора даже в рамках геометрии.
Направленный отрезок – тоже вектор, так называемый фиксированный вектор. Но нужно учитывать один важный факт – 2 фиксированных вектора равны тогда и только тогда, когда их концы и начала совпадают. А это не то определение равенства 2 векторов, что дает учебник геометрии.
Определение вектора, данное в этой статье – определение так называемого свободного вектора.
Каждый свободный вектор – это множество фиксированных векторов, которые имеют равную длину и одинаковое направление.
Именно это определение учебник геометрии и пытается дать в неявном виде, когда вводит понятие равенства векторов. Но здесь возникает нестыковка – учебник объясняет, как работать со свободными векторами, изначально дав определение фиксированного вектора.
Надеюсь, вышесказанное объясняет, почему я привел в данной статье «свое» определение вектора.
http://ru.onlinemschool.com/math/library/vector/vector-definition/
http://gamedev.ru/code/articles/geometry_for_beginners_1

Онлайн калькуляторы
На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник
Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение
Не можете решить контрольную?!
Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!
Единичный вектор
Чтобы найти единичный вектор , коллинеарный с заданным вектором
, необходимо вектор
поделить на его длину:
Операция получения из вектора единичного вектора называется нормированием вектора
.
| Понравился сайт? Расскажи друзьям! | |
Единичный вектор
находится:

где– модуль вектора.
Находим
тогда
Ответ:

Примечание.
Координаты единичного вектора должны
быть не больше единицы.
6.3. Найти длину
и направляющие косинусы вектора
.
Сравните с ответом в предыдущем пункте.
Сделайте выводы.
Длина вектора –
это есть его модуль:
,
а направляющие косинусы мы можем найти
по формуле одного из способов задания
векторов:
Из полученного мы
видим, что направляющие косинусы это и
есть координаты единичного вектора.
Ответ:
,
,
,
.
6.4. Найти
.
Необходимо выполнить
действия умножения вектора на число,
сложения и модуль.
Почленно перемножаем
координаты векторов на число.
Почленно складываем
координаты векторов.
Находим модуль
вектора.
Ответ:
6.5. Определить
координаты вектора
,
коллинеарного вектору,
зная, чтои он направлен в сторону, противоположную
вектору.
Вектор
коллинеарен вектору
,
значит, его единичный вектор равен
единичному векторутолько со знаком минус, т.к. направлен
в противоположную сторону.
Единичный вектор
имеет длину равную 1, значит, если его
умножить на 5, то его длинна будет равна
пяти.
Находим
Ответ:
6.6. Вычислить
скалярные произведения
и
.
Перпендикулярны ли векторыи
,
и
между собой?
Выполним скалярное
произведение векторов.
Если вектора
перпендикулярны, их скалярное произведение
равно нулю.
М
видим, что в нашем случае вектораи
перпендикулярны.
Ответ:
,
,
векторы не перпендикулярны.
Примечание.
Геометрический смысл скалярного
произведения малоприменим на практике,
но все-таки существует. Результат такого
действия можно изобразить и вычислить
геометрически.
6.7. Найти работу,
совершённую материальной точкой к
которой приложена сила
,
при перемещении её из точки B в точку С.
Физический смысл
скалярного произведения – это работа.
Вектор силы здесь
,
вектор перемещения – это.
А произведение этих векторов и будет
искомой работой.
Находим работу
Ответ: -3.
6.8. Найти
внутренний угол при вершине A
и внешний угол при вершине C
треугольника ABC.
Из определения,
скалярного произведения векторов
получим формулу нахождения угла:

Далее, нам нужно
определить вектора, между которыми
будем искать угол.
В
угол будем искать как угол между
векторами, выходящими из одной точки.
Для нахождения
внешнего угла нужно совмещать вектора,
таким образом, чтоб они выходили из
одной точки. Рисунок это поясняет.
Стоит заметить,
что
,
только имеют разные начальные координаты.
Находим необходимые
вектора и углы
Ответ: внутренний
угол при вершине А =
,
внешний угол при вершине В =.
6.9. Найти проекции векторов: и
Вспомним вектора-орты:
,
,
.
Проекция находится
также из скалярного произведения

на a.
Ранее полученные
нами вектора
,
,
Находим проекцию
Находим вторую
проекцию
Ответ:

Примечание.
Знак минуса при нахождении проекции
означает то, что проекция опускается
не на сам вектор, а в противоположную
сторону, на линию на которой лежит этот
вектор.
6.10. Вычислить
.
Выполним векторное
произведение векторов
Найдем модуль
Синус угла между
векторами найдём из определения
векторного произведения векторов
Ответ:
,
,

6.11. Найти площадь
треугольника ABC
и длину высоты, опушенной из точки С.
Геометрический
смысл модуля векторного произведения
состоит в том, что это площадь
параллелограмма, образованного этими
векторами. А площадь треугольника равна
половине площади параллелограмма.
Площадь треугольника
также можно найти как произведение
высоты, на основание, делённое на два,
из этого можно вывести формулу нахождения
высоты.
Таким образом,
найдём высоту
Ответ:
,
.
6.12. Найти
единичный вектор, перпендикулярный
векторам
и
.
Результатом
скалярного произведения есть вектор,
который перпендикулярный двум исходным.
А единичный вектор – это вектор, делённый
на его длину.
Ранее, нами было
найдено:
,
Ответ:

6.13. Определить
величину и направляющие косинусы момента
силы
,
приложенной к А относительно точки С.
Физический смысл
векторного произведения – это момент
силы. Приведём иллюстрацию к данному
заданию.
Находим момент
силы
Ответ:
.
6.14. Лежат ли
векторы
,
и
в одной плоскости? Могут ли эти векторы
образовывать базис пространства? Почему?
Если могут, разложите по этому базису
вектор.
Чтобы проверить
лежат ли вектора в одной плоскости
необходимо выполнить смешанное
произведение этих векторов.
Смешанное
произведение не равно нулю, следовательно,
вектора не лежат в одной плоскости (не
компланарные) и могут образовывать
базис. Разложим
по этому базису.
Разложим по базису,
решив уравнение
Ответ: Векторы
,
и
не лежат в одной плоскости.

6.15. Найти
.
Чему равен объём пирамиды с вершинами
A, B, C, D и её высота, опущенная из точки A
на основание BCD.
Г
смысл смешанного произведения в том,
что это объём параллелепипеда образованного
этими векторами.
Объём же пирамиды
в шесть раз меньше объёма параллелепипеда.
Объём пирамиды,
ещё можно найти так:
Получим формулу
нахождения высоты
Находим
Находим высоту
Ответ: объём = 2.5,
высота =.
6.16. Вычислить
и
.
–над этим заданием
предлагаем вам подумать самим.
–выполним
произведение.
Ранее было получено
Ответ:
.
6.17. Вычислить
Выполним действия
по частям
1)

3)
4)
5)
Суммируем полученные
значения
Ответ:
.
6.18. Найти вектор
,
зная, что он перпендикулярен векторами
,
а его проекция на векторравна 5.
Разобьем данную
задачу на две подзадачи
1) Найдём вектор,
перпендикулярный векторам
и
произвольной длинны.
Перпендикулярный
вектор мы получим в результате векторного
произведения
Ранее, нами было
найдено:
Искомый вектор
отличается лишь длинной, от полученного
2) Найдем
через уравнение
Ответ:
6.19. Найти вектор
,
удовлетворяющий условиям,
,
.
Рассмотрим более
детально данные условия.
Это система линейных
уравнений. Составим и решим данную
систему.
Ответ:
6.20. Определить
координаты какого-либо вектора
,
компланарного с векторамии
,
и перпендикулярного вектору.
В данном задании
два условия: компланарность векторов
и перпендикулярность, выполним сначала
первое условие, а потом второе.
1) Если вектора
компланарны, значит их смешанное
произведение равно нулю.

получим некоторую зависимость координат
вектора
Найдем вектор
.
2) Если вектора
перпендикулярны, значит их скалярное
произведение равно нулю
Мы получили вторую
зависимость координат искомого вектора
Для любого значения
вектор будет удовлетворять условиям.
Подставим.
Ответ:
.
Аналитическая
геометрия
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
03.03.2016959.94 Кб5PT.pdf
- #
Содержание:
Система координат на плоскости позволяет установить взаимно однозначное соответствие между точками плоскости и упорядоченными парами чисел (рис. 331). Координаты вы широко использовали для графического представления зависимостей, при решении систем уравнений, а также в геометрии, чтобы геометрическую задачу свести к задаче алгебраической.
Декартова система координат в пространстве
Чтобы ввести декартову систему координат в пространстве, выберем точку
Б) Вы знаете, что по координатам концов 


Аналогичная формула выражает длину отрезка 

Чтобы доказать эту формулу, рассмотрим плоскости, которые проходят через точки 


и 
Ранее вы доказывали, что координаты середины отрезка равны средним арифметическим соответствующих координат его концов. Это утверждение остаётся истинным и в случае пространства (см. пример 2 в § 6): если 


Пример:
На оси ординат найдём точку, равноудалённую от точек 
Решение:
Пусть 


или 
Ответ:
Пример:
Найдём условие, задающее геометрическое место точек, равноудалённых от начала координат и от точки
Решение:
Согласно геометрическим соображениям искомое множество состоит из всех тех точек, размещённых на серединных перпендикулярах к отрезку 




Ответ: Искомое геометрическое место точек есть плоскость, которая задаётся уравнением
Пример:
Найдём условие, которому удовлетворяют координаты точек плоскости 


Решение:
Пусть 


Поскольку


Ответ:
Вектор. Действия над векторами
А) С векторами вы встречались в курсе физики девятого класса, когда знакомились с векторными величинами. Физическая величина является векторной, если она характеризуется не только числовым значением, но и направлением. Такие величины, как сила, скорость и другие, обозначают направленными отрезками. Длина направленного отрезка (стрелки) характеризует числовое значение векторной величины (её модуль).
Особенностью понятия вектор является то, что все основные определения и свойства, связанные с этим понятием, формулируются почти одинаково как в планиметрии, так и в стереометрии.
Вектор в геометрии представляется направленным отрезком (рис. 336), начало которого считается началом вектора, а конец — концом вектора.
Расстояние между началом направленного отрезка и его концом считается длиной вектора.
Направленные отрезки 








Это напоминает ситуацию с дробями: определённое число может представляться разными дробями, например, дроби 


Если вектор 


Вектор, представленный направленным отрезком 



Если ненулевые векторы 






Ненулевые векторы 



Векторы можно складывать и умножать на число. Чтобы сложить векторы 

и тогда сумма векторов представляется направленным отрезком 
Сложение векторов имеет переместительное свойство, т. е. 




Произведением вектора 














С действием умножения вектора на число связываются два распределительных свойства— 
Б) Если векторы 




Для любых двух векторов существует плоскость, которой они параллельны. Векторы, параллельные одной плоскости, называют компланарными. Если векторы 





Истинно и обратное утверждение: если векторы 


Действительно, если векторы 





Теорема 1. Если векторы 



Доказательство: Сначала докажем существование нужных чисел. Представим векторы 




















Поэтому
Теперь докажем единственность представления. Допустим, что существуют две разные упорядоченные тройки чисел 




Поскольку тройки чисел 





Следствие 1. Из четырёх любых векторов пространства один может быть выражен через три других.
Действительно, если среди данных четырёх векторов пространства есть три некомпланарных, то четвёртый вектор можно через эти три выразить. Далее, если среди данных четырёх векторов пространства любые три компланарны, то может найтись среди них два неколлинеарных, или любых два вектора коллинеарны. В первом случае через эти два неколлинеарных вектора можно выразить третий и к полученному выражению прибавить четвёртый, умноженный на ноль. Во втором случае один из векторов можно выразить через другой и потом прибавить к этому выражению два оставшихся вектора, умноженных на ноль.
Таким образом, теперь вы знаете, что из двух коллинеарных векторов один может быть выражен через другой, из трёх компланарных векторов один может быть выражен через два других, а из четырёх любых векторов один может быть выражен через три других.
Пример №1
На кронштейне, состоящем из подкоса 



Решение:
Сила тяжести выражается вектором 






Поскольку углы 










Ответ. Под воздействием груза подкос сжимается с силой 
Пример №2
В правильной четырёхугольной пирамиде 









Решение:
Поскольку 























Имеем:
Поэтому
Учтём теперь то, что через некомпланарные векторы 






В) Пусть в пространстве выбрана декартова система координат 



Будем говорить, что вектор 





Теорема 2. Если 
Доказательство: Пусть задана декартова система координат 




Поскольку 


Середина отрезка 



Отсюда:

Теорема 3. Если 
Доказательство: Пусть задана декартова система координат 




Поэтому

Значит, вектор 
Докажем второе утверждение теоремы 3. Пусть сначала 













Если же 

Следствие 2. Если 
Пример №3
Дан параллелепипед 




а) векторы 


б) векторы 


Решение:
а) Имеем:
б) Будем рассматривать полученные равенства —





Теперь из последнего равенства выразим 

Далее можно последовательно выразить 


Пример №4
Через диагональ 






Решение:
Векторы 


Учтём, что 


Аналогично, существует такое число 


Значит,
Из условия следует, что векторы 


Поскольку 

Ответ:
Скалярное произведение векторов
А) Скалярным произведением векторов 



Скалярное произведение векторов имеет переместительное свойство 


У нулевого вектора направление не определено, поэтому удобно считать, что нулевой вектор перпендикулярен любому другому вектору.
С учётом этого получается следующее полезное утверждение: два вектора перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю.
Теорема 1. Скалярное произведение векторов 

равенством
Доказательство: Поскольку 
Находим далее:
Аналогично,
Поэтому
Пример №5
Найдём длину вектора
Имеем: 
Пример №6
Найдём угол 

Имеем:
Поэтому:
Пример №7
Найдём длину вектора 




Имеем:
Поскольку
Поэтому
Б) Вы знаете, что плоскость в пространстве можно задать тремя точками, не лежащими на одной прямой. Поскольку существует единственная плоскость, проходящая через данную точку перпендикулярно данной прямой, то плоскость можно задавать указанием одной из её точек и вектора, ей перпендикулярного.
Теорема 2. Если плоскость проходит через точку 



Доказательство: Если 
проходящей через точку 
то векторы 

Истинно и обратное утверждение.
Теорема 3. Уравнению 

Доказательство: Если есть уравнение 








Поскольку 








Пример №8
Найдём уравнение плоскости, проходящей через точки А(2; 1; 3), В(4; 1, 2) и С(5; 2; 1).
Решение:
Найдём координаты векторов 



Чтобы записать уравнение плоскости 






Теперь можно записать уравнение плоскости, которая проходит через точку

В) Теорема 4. Если плоскость имеет уравнение 

Доказательство: Пусть из точки 




вектором 
или 180°, то 
Находим
поскольку координаты точки 


Пример №9
Найдём расстояние от точки 
Решение:
Используя теорему 4, получаем:
Ответ: 5.
Применение векторов и координат
А) В ряде задач условие содержит сведения о параллельности некоторых прямых или об их точках пересечения, об отношениях длин параллельных отрезков. Для решения таких задач может быть полезным применение векторов, как это было при решении примера 3 из параграфа 12. При решении таких задач достаточно использовать действия сложения векторов и умножения вектора на число. Рассмотрим ещё один пример.
Пример №10
Пусть 





Решение. Выберем в пространстве точку 
следует, что 


векторами
Чтобы доказать, что середины отрезков 

Находим:
А поскольку

то выражения в двух последних скобках принимают одинаковые значения. Требуемое утверждение доказано.
Б) При решении других задач целесообразно пользоваться скалярным умножением векторов. Такими являются задачи, в которых нужно использовать или определять некоторые расстояния или углы.
Пример №11
Найдём угол между скрещивающимися диагоналями соседних боковых граней правильной шестиугольной призмы, у которой боковые грани — квадраты.
Решение:
Пусть нужно найти угол между прямыми 


Выразим векторы 



А поскольку

Ответ:
Скалярное произведение векторов можно использовать и для нахождения угла между плоскостями. Как и при определении угла между прямыми, так и при определении угла 


Пример №12
У правильной шестиугольной призмы 

Решение:
Для получения ответа нужно определить векторы 




Используем прямоугольную декартову систему координат, начало которой находится в центре 











Поскольку 

удовлетворяют условиям 



Для нахождения вектора 






Используем равенство 






Находим:
Ответ:
Для нахождения угла между прямой и плоскостью также можно использовать векторы, из которых один параллелен прямой, а другой перпендикулярен плоскости. Угол 


Пример №13
На рёбрах 







Решение:
Примем точку 

По теореме 3 из параграфа 13 уравнение плоскости 






Прямой 

и
Ответ:
В) В предыдущем параграфе обсуждалось использование координат для вычисления расстояния от точки до прямой. Рассмотрим решение ещё двух задач на нахождение расстояний: от точки до прямой и расстояния между скрещивающимися прямыми.
Пример №14
В правильной шестиугольной пирамиде 








Решение:
Пусть 





Используем прямоугольную декартову систему координат, начало которой находится в центре 















Искомое расстояние есть длина перпендикуляра, опущенного из точки 





то
Теперь находим:
Ответ:
Пример №15
Измерения 









Решение:
Расстояние между скрещивающимися прямыми 




Примем точку 















Теперь запишем уравнение плоскости 



Ответ:
Векторы в пространстве
Это интересно!
Основоположниками аналитической геометрии являются знаменитые ученые Декарт и Ферма. Однако Декарт свои исследования опубликовал первым. А исследования Ферма увидели свет намного позже, после его смерти. Интересно, что подойдя к проблеме с разных сторон, они пришли к одинаковым выводам. Декарт искал уравнение исследуемой кривой, а Ферма для заданного уравнения искал соответствующую кривую.
Применение правил алгебры к геометрии привело к возникновению аналитической геометрии. В последствии аналитическая геометрия была усовершенствована основателем математического анализа Исааком Ньютоном, который писал » … я смог пойти дальше Декарта, только потому, что стоял на плечах гигантов»
Прямоугольная система координат в пространстве
Пусть мяч ударился о пол и отскочил вертикально вверх. Координаты мяча в точке на полу можно определить относительно длины и ширины комнаты двумя значениями. Однако когда мяч отскочил от пола, то его положение уже невозможно определить двумя координатами. Если положение мяча на полу определяется как 
Прямоугольная система координат в пространстве. В пространстве возьмем произвольную точку 







Координатные плоскости обозначаются как и
Каждая координатная плоскость делит пространство на два полупространства и, таким образом, три координатные плоскости вместе делят пространство на восемь частей, каждая из которых называется октантом:
Пусть точка 






Координаты точки в пространстве
1) Плоскость, проходящая через точку 


2) Плоскость, проходящая через точку 


3) Плоскость, проходящая через точку 


Значит, каждой точке 

Упорядоченная тройка 








1) Начало координат:
2) Точка, расположенная на оси
Точка, расположенная на оси
Точка, расположенная на оси
3) Точка, расположенная на плоскости
Точка, расположенная на плоскости
Точка, расположенная на плоскости
Точка 





Знаки координат точки
Знак координаты точки зависит от того, в каком октанте расположена точка. В следующей таблице показаны знаки координат точек в различных октантах.
В первом октанте все знаки координат положительны, в седьмом октанте все знаки отрицательны.
Пример №16
В прямоугольной системе координат в пространстве постройте точки:
Решение: а) для построения точки 







b) для построения точки 







Пример №17
От точки 

Решение: для точки основания перпендикуляра, проведенного из точки 





Пример №18
От точки 




Решение: координата 





Расстояние между двумя точками в пространстве
Расстояние между точками 

Доказательство. Пусть 







Учитывая, что
получаем,
Расстояние от начала координат
В прямоугольной системе координат в пространстве расстояние от точки 

Пример №19
Точки, расположенные на одной прямой, называются коллинеарными точками.
Докажите, что точки 

Решение:
Так как 


Пример №20
Найдите координаты точки, расположенной на оси абсцисс и равноудаленной от точек 
Решение: если точка 






Значит, точка 

Координаты точки, делящей отрезок в некотором отношении
Координаты точки 
и 

Доказательство: пусть точка 











На основе теоремы о пропорциональных отрезках имеем:
Аналогично, используя перпендикуляры к осям 


Координаты середины отрезка
Координаты середины отрезка, соединяющих точки 

Координаты центра тяжести треугольника
Координаты центра тяжести треугольника (точка пересечения медиан) с вершинами в точках 


Пример №21
Даны точки 

координаты точки 

Решение: пусть точка 



точки, делящей отрезок в заданном отношении, получаем:
Пример №22
Даны координаты двух вершин треугольника 

Решение: так как центр тяжести находится в начале координат, то:
Отсюда,
Значит, третьей вершиной треугольника является точка
Векторы в пространстве
Векторной величиной или вектором называется величина, которая определяется не только значением, но и направлением. Изображается вектор направленным отрезком. Длина отрезка, образующего вектор, называется длиной вектора или его модулем.
Вектор можно изобразить в одномерной, двухмерной и трехмерной системе координат.
Вектор, у которого начальная и конечная точки совпадают, называется нулевым вектором. Направление нулевого вектора не определено. Местоположение любой точки (объекта) в пространстве изображается вектором, начало которого совпадает с началом координат, а конец — с данной точкой. Например, на рисунке изображен вектор, показывающий положение мяча в пространстве, который брошен на высоту 3 м на игровой площадке, длина которой равна 4 м, а ширина 2 м.
В пространстве вектор, который определяет место (положение, позицию) точки и соединяет начальную и заданную точку, называется позиционным вектором или радиус — вектором. Каждой точке пространства соответствует единственный позиционный вектор. Положение точки 

Два вектора называются равными если они имеют равные модули и одинаково направлены. Равные векторы, при помощи параллельного переноса, можно расположить друг на друге. Например, на рисунке векторы 






В пространстве, как и на плоскости, можно геометрически построить сумму и разность векторов, и произведение вектора на число.
Найти компоненты и длину вектора, а также выполнить действия над векторами в пространственной Декартовой системе координат можно но правилам, аналогичным для прямоугольной системы координат на плоскости.
Длина вектора
Модуль вектора можно найти, используя формулу нахождения расстояния между двумя точками.
Теорема. Если начало вектора расположено в точке 


Следствие. Длина радиус-вектора равна 
Сложение и вычитание векторов
Сложение и вычитание векторов: суммой (разностью) векторов 



Пример №23
Найдите сумму и разность векторов 
Решение:
Умножение вектора на число
Умножение вектора на число: произведение вектора 

Пример №24
Для вектора 

Решение:
Коллинеарные векторы
Если направленные отрезки, которыми изображены векторы, параллельны или лежат на одной прямой, то вектора называются коллинеарными. Если векторы 





При 
Пример №25
Определите, являются ли расположенные в пространстве векторы 

Решение: так как 


Пример №26
Постройте радиус-вектор, равный вектору
Решение: в _соответствии с правилом треугольника 



По правилу сложения векторов на плоскости 
Пример №27
В трехмерной системе координат задан вектор 



Решение: а)
b) Обозначим вектор, равный вектору 

соответствует радиус-вектор 

радиус-вектор
Так как 
Пример №28
Установите справедливость равенства 

Решение:
Из равенства соответствующих компонентов следует
Векторы, расположенные на одной плоскости или на параллельных плоскостях, называются компланарными векторами. Например, векторы, расположенные на противолежащих гранях куба, компланарны, а векторы, направленные по трем ребрам выходящим из одной вершины, некомпланарны.
Единичный вектор — вектор, длина которого равна единице.
Для любого, отличного от нуля вектора 

Пример №29
Для вектора 



Решение: обозначим единичный вектор через 
Проверим, действительно ли длина этого вектора равна единице:
b) чтобы определить вектор, сонаправленный с вектором 
В прямоугольной системе координат в пространстве векторы, направленные вдоль положительных направлений координатных осей 



— некомпланарны.
Любой позиционный вектор и на плоскости, и в пространстве, можно выразить через орт вектора. На плоскости точке 




Теорема. Любой вектор 

Пример №30
Вектор 


Решение: зная, что 
Пример №31
Запишите разложение вектора 
Решение: по теореме разложения вектора по орт векторам имеем:
Пример №32
а) Запишите в виде 
b) Запишите вектор 
Решение: а) начало позиционного вектора совпадает с началом координат 

Пример №33
Найдите сумму и разность векторов.
Решение:
Скалярное произведение двух векторов
Тележка переместилась на расстояние 








Работа, совершаемая при перемещении груза на расстояние 

Работа является скалярной величиной, однако ее значение зависит от угла между силой, действующей на тело, и вектором перемещения.
Скалярное произведение двух векторов
Углом между любыми двумя ненулевыми векторами 


Скалярное произведение двух ненулевых векторов 

Скалярное произведение записывается как:
Значит,
Свойство скалярного произведения
• Для любого вектора 

Переместительное свойство скалярного произведения.
Для любых векторов 

Свойство группировки скалярного произведения. Для любых векторов 


Распределительное свойство скалярного произведения:
1) Для любых векторов




В частном случае, для скалярного произведения орт векторов получим:
Пример №34
По данным на рисунке найдите скалярное произведение векторов 
Решение:
Пример №35
Упростите выражение 
Решение:
Скалярное произведение двух векторов на координатной плоскости можно найти при помощи координат.
Пусть даны векторы 

Из 
По теореме косинусов получаем

Таким образом, скалярное произведение двух векторов 

Аналогичным образом, скалярное произведение двух векторов 


Пример №36
Зная, что 
Решение:
Угол между двумя векторами
Угол между двумя ненулевыми векторами находится из соотношения 
Пример №37
Найдите косинус угла между векторами 
Решение:
Вывод: два ненулевых вектора перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю:
Пример №38
При каком значении 


Решение: 

Общее уравнение прямой
В системе координат на плоскости уравнение прямой имеет вид 






Так как векторы 

Если ввести обозначение 

Частные случаи:
• 
• 
• 
Пример №39
Запишите уравнение прямой 

Решение: на координатной плоскости построим вектор 

Способ 1.
Пусть точка 








Таким образом,
Способ 2.
Зная нормаль 




Пример №40
Найдите угол между прямыми, заданными уравнениями 
Решение: угол между прямыми можно найти как угол между их нормалями.
Для угла 


Отсюда
Пример №41
Найдите расстояние от точки 
Решение: пусть точка 
Так как векторы 








Отсюда 
Уравнение плоскости
Исследование. Какому множеству точек соответствует одно и тоже уравнение, например 
1. В одномерной системе координат, т.е. на числовой оси, уравнению 
2. В двухмерной системе координат уравнению 


3. В трехмерной системе координат уравнению 





4. В трехмерной системе координат представьте множество точек, удовлетворяющих уравнениям 



Уравнение прямой в двухмерной системе координат имеет вид
Например, уравнение 


В трехмерной системе координат мы можем написать это уравнение в виде: 







Плоскость может быть определена различными способами.
- тремя неколлинеарными точками
- прямой и точкой, не принадлежащей этой прямой
- двумя пересекающимися прямыми
- двумя параллельными прямыми
- точкой и перпендикуляром в этой точке в заданном направлении
Используя последний способ, которым можно задать плоскость, покажем, что уравнение плоскости имеет вид 






А это значит, что 


Обозначим 
Внимание! Три коэффициента при переменных в уравнении плоскости являются компонентами нормали и
Пример №42
Плоскость с нормалью 

Решение: задание можно выполнить двумя способами.
1-ый способ. Возьмем произвольную точку 






Умножим обе части уравнения на 
2-ой способ. Известно, что уравнение плоскости имеет вид 








Пример №43
Дано уравнение плоскости
a) Определите, принадлежат ли точки 
b) Определите координаты точки пересечения плоскости с осями
c) Запишите координаты какой-либо другой точки, принадлежащей данной плоскости.
Решение:
а) Проверка:
Принадлежит плоскости
Принадлежит плоскости
Не принадлежит плоскости
b) Координаты точек пересечения с осями
в точке пересечения с осью 


в точке пересечения с осью 


в точке пересечения с осью 


c) Для определения координаты другой точки на заданной плоскости задайте любые значения двум переменным и найдите третью координату.
Например, при 



- Заказать решение задач по высшей математике
Пример №44
Найдите расстояние от точки 
Решение: пусть точка 









Отсюда 
Это говорит о том, что расстояние от заданной точки 
Взаимное расположение плоскостей
Плоскости 

Плоскости 

Пример №45
Определение параллельности или перпендикулярности плоскостей но уравнению.
a) плоскость 



b) плоскость 



Решение: для того чтобы плоскости 





Значит, плоскости 

Нормали плоскостей 



Уравнение сферы
Определение. Сферой называется множество всех точек, расположенных на расстоянии 



Если точка 
Это уравнение сферы с центром в точке 
Если центр сферы находится в начале координат, то уравнение сферы радиуса 
Как видно из рисунка, пересечение этой сферы с координатной плоскостью 
Пример №46
Запишите уравнение сферы, радиус которой равен г а центр расположен в точке
Решение:
Пример №47
Представьте фигуру, которая получается при пересечении сферы 
Решение: радиус сферы 


Плоскость, имеющая со сферой только одну общую точку, называется плоскостью, касательной к сфере.
Например, плоскость 

Плоскость, касательная к сфере, в точке касания перпендикулярна радиусу сферы.
Преобразования на плоскости и в пространстве
Ремесленники и художники создают узоры, заполняя некоторую площадь без пробела рисунком при помощи преобразований (параллельный перенос, поворот, отображение) или увеличения или уменьшения этого рисунка (гомотетия).
Это знать интересно. Великий голландский художник Эшер, объединив такие разделы математики как симметрия, комбинаторика, стереометрия и топология, создал динамические рисунки, заполняя плоскости цветовыми оттенками. Не имея специального математического образования, Эшер создавал свои произведения, опираясь на интуицию и визуальные представления. Ряду работ, построенных на параллельном переносе, он дал название «Правильное движение плоскости».
https://en.wikipedia.org/wiki/M._C._Escher
Если каждой точке 






Параллельный перенос является движением. Каждому параллельному переносу соответствует один вектор. Справедливо и обратное.
Пример №48
В какую точку переходит точка 
Решение: по определению при данном преобразовании, координаты точки 



Симметрия. В пространстве симметрии относительно точки и прямой дается такое же определение как и на плоскости. В пространстве также рассматривается симметрия относительно плоскости.
Для точки 
Пример №49
Найдите точку, симметричную точке 
Решение: точка 







Поворот. Поворотом фигуры в пространстве вокруг прямой 






Ниже на рисунках представлены примеры различных изображений поворота куба вокруг оси 
Гомотетия
Аналогичным образом в пространстве вводится понятие преобразования подобия. Если при преобразовании фигуры расстояние между двумя точками 


Если для любой точки 








Пример №50
Пусть дана сфера с центром в точке 
Решение: позиционный вектор, соответствующий точке 








Предел
Это интересно!
Предел (лимит) от латинского слова «limes», что означает цель.
Понятие предела независимо друг от друга было введено английским математиком Исааком Ньютоном (1642-1727) и немецким математиком Готфридом Лейбницом (1646-1716). Однако ни Ни Ныотон, ни Лейбниц не смогли полностью объяснить вводимые ими понятия. Точное определение предела было дано французским математиком Коши. А работы немецкого ученого » Вейерштрасса наконец завершили создание этой серьезной теории.
Координаты и векторы в пространстве
В этом параграфе вы ознакомитесь с прямоугольной системой координат в пространстве, научитесь находить координаты точек в пространстве, длину отрезка и координаты его середины. Вы обобщите и расширите свои знания о векторах.
Декартовы координаты точки в пространстве
В предыдущих классах вы ознакомились с прямоугольной (декартовой) системой координат на плоскости — это две перпендикулярные координатные прямые с общим началом отсчета (рис. 38.1).

Систему координат можно ввести и в пространстве. Прямоугольной (декартовой) системой координат в пространстве называют три попарно перпендикулярные координатные прямые с общим началом отсчета (рис. 38.2). Точку, в которой пересекаются три координатные прямые, обозначают буквой О. Ее называют началом координат. Координатные прямые обозначают буквами 

Плоскости, проходящие через пары координатных прямых 


Пространство, в котором задана система координат, называют координатным пространством. Если оси координат обозначены буквами 



Аналогично каждой точке М координатного пространства ставится в соответствие упорядоченная тройка чисел 











Полученную упорядоченную тройку чисел 







Если точка принадлежит координатной плоскости или координатной оси, то некоторые ее координаты равны нулю. Например, точка 


Теорема 38.1. Расстояние между двумя точками 

Теорема 38.2. Каждая координата середины отрезка равна полусумме соответствующих координат его концов, то есть серединой отрезка с концами в точках 
Доказательства теорем 38.1 и 38.2 аналогичны тому, как были доказаны соответствующие теоремы в курсе планиметрии. Например, серединой отрезка с концами в точках 


В таком случае говорят, что точки А и В симметричны относительно начала координат.
Векторы в пространстве
В курсе планиметрии вы изучали векторы на плоскости. Теперь вы начинаете изучать векторы в пространстве. Многие понятия и свойства, связанные с векторами на плоскости, можно почти дословно отнести к векторам в пространстве. Доказательства такого рода утверждений о векторах в пространстве аналогичны доказательствам соответствующих утверждений о векторах на плоскости.
Рассмотрим отрезок АВ. Если мы договоримся точку А считать началом отрезка, а точку В — его концом, то такой отрезок будет характеризоваться не только длиной, но и направлением от точки А до точки В. Если указано, какая точка является началом отрезка, а какая точка — его концом, то такой отрезок называют направленным отрезком или вектором.
Вектор с началом в точке А и концом в точке В обозначают так: 
В отличие от отрезка, концы которого — различные точки, у вектора начало и конец могут совпадать.
Договорились называть вектор, начало и конец которого — одна и та же точка, нулевым вектором или нуль-вектором и обозначать 




Определение. Два ненулевых вектора называют коллинеарными, если они лежат на параллельных прямых или на одной прямой. Нулевой вектор считают коллинеарным любому вектору.
На рисунке 39.2 изображена четырехугольная призма 



Записывают:
Ненулевые коллинеарные векторы бывают сонаправленными и противоположно направленными. Например, на рисунке 39.2 векторы 



Определение. Два ненулевых вектора называют равны ми, если их модули равны и они сонаправлены. Любые два нулевых вектора равны. На рисунке 39.2
Часто, говоря о векторах, мы не конкретизируем, какая точка является началом вектора. Так, на рисунке 39.3, 




На рисунке 39.3, 





Рассмотрим в координатном пространстве вектор 





Равные векторы имеют равные соответствующие координаты, и наоборот, если соответствующие координаты векторов равны, то равны и сами векторы.
Теорем а 39.1. Если точки 







Сложение и вычитание векторов
Пусть в пространстве даны векторы 


Далее от точки В отложим вектор 




Можно показать, что сумма 

Свойства сложения векторов аналогичны свойствам сложения чисел. Для любых векторов 
Сумму трех и большего количества векторов находят так: вначале складывают первый и второй векторы, потом к полученной сумме прибавляют третий вектор и т. д. Например, 

Для сложения двух неколлинеарных векторов 
Отложим от произвольной точки А вектор 





Рассмотрим векторы 
Построим параллелепипед так, чтобы отрезки ОА, ОВ и ОС были его ребрами (рис. 40.5). Отрезок OD является диагональю этого параллелепипеда. Докажем, что 





Описанный способ сложения трех векторов, отложенных от одной точки и не лежащих в одной плоскости, называют правилом параллелепипеда.
Определение. Разностью векторов 



Записывают: 
Покажем, как построить вектор, равный разности векторов 








Отметим, что для любых трех точек О, А и В выполняется равенство 
Теорема 40.1. Если координаты векторов 





Умножение вектора на число
Определение. Произведением ненулевого вектора 


1)
2) если 
Записывают: 







Теорема 41.1. Для любых векторов 
Эта теорема позволяет свести вычитание векторов к сложению: чтобы из вектора 










Теорема 41.2. Если векторы 


Теорема 41.3. Если координаты вектора 



Умножение вектора на число обладает следующими свойствами.
Для любых чисел 


Эти свойства позволяют преобразовывать выражения, содержащие сумму векторов, их разность и произведение вектора на число, аналогично тому, как мы преобразовываем алгебраические выражения. Например,
Скалярное произведение векторов
Пусть 


Угол между векторами 





Если 




Векторы 
На рисунке 42.3 изображена треугольная призма, основанием которой является правильный треугольник, а боковое ребро перпендикулярно плоскости основания.
Имеем:
Определение. Скалярным произведением двух векторов называют произведение их модулей и косинуса угла между ними.
Скалярное произведение векторов 

Если хотя бы один из векторов 




Скалярный квадрат вектора равен квадрату его модуля, то есть 
Теорема 42.1. Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны. Например, для векторов, изображенных на рисунке 42.3, имеем:
Теорема 42.2. Скалярное произведение векторов 

Теорема 42.3. Косинус угла между ненулевыми векторами 
Некоторые свойства скалярного произведения векторов аналогичны соответствующим свойствам произведения чисел. Например, для любых векторов 

Эти свойства вместе со свойствами сложения векторов и умножения вектора на число позволяют преобразовывать выражения, содержащие скалярное произведение векторов, по правилам преобразования алгебраических выражений. Например,
Пример №51
Основанием призмы является равнобедренный треугольник АВС (АВ =АС). Боковое ребро 

Решение:
Пусть 


Запишем:
Поскольку 
Напомню:
Расстояние между точками
Расстояние между двумя точками 
Координаты середины отрезка
Каждая координата середины отрезка равна полусумме соответствующих координат его концов.
Взаимное расположение двух векторов
Два ненулевых вектора называют коллинеарными, если они лежат на параллельных прямых или на одной прямой. Нулевой вектор считают коллинеарным любому вектору.
Равенство векторов
Два ненулевых вектора называют равными, если их модули равны и они сонаправлены. Любые два нулевых вектора равны.
Координаты вектора
Если точки 


Модуль вектора
Если вектор 
Действия над векторами
Для любых трех точек А , В и С выполняется равенство
Разностью векторов 



Для любых трех точек О, А и В выполняется равенство 





Если векторы 






Скалярным произведением двух векторов называют произведение их модулей и косинуса угла между ними. Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны. Если координаты векторов 

- Множества
- Рациональные уравнения
- Рациональные неравенства и их системы
- Геометрические задачи и методы их решения
- Предел и непрерывность числовой функции одной переменной
- Функции, их свойства и графики
- Параллельность в пространстве
- Перпендикулярность в пространстве





































































































































































































































































































































































































































































































