Используя этот онлайн калькулятор с дробями, вы сможете сложить, вычесть, умножить, разделить или возвести в степень обыкновенные дроби, смешанные числа (дроби с целой частью), десятичные дроби и целые числа, соответственно найти их сумму, разность, произведение или частное.
Воспользовавшись онлайн калькулятором дробей, вы получите детальное пошаговое решение вашего примера, которое позволит понять алгоритм решения задач с дробями и закрепить пройденный на уроках материал.
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

…что я вам собственно вам пудрю мозги, занимаюсь тавтологией, лучше уж сразу предметно о том, что если мы имеем какое-то число, знаем часть от него выраженную в дроби, то мы всегда найдем и количественное значение. Именно об этом и будет моя статья. Об этом я напишу, расскажу, «разжую», а вот выводы останутся с вами! Начинаем!
Если у нас есть целое
Давайте наверное опять начну с аксиом (истин). Ведь строить выводы без догм (истин), это все равно, что дом без фундамента. Нам известно о том, что есть целое, то есть что-то единое, что мы привыкли считать по 1, применять к нему термин 100 процентов, представлять как нечто обособленное, отдельное если хотите.
Заметьте, что не смотря на то, что мы имеем что-то целое, это не значит, что его нельзя разобрать на части. Я думаю так делали многие дети, а в прошлом их родители, когда отрывали колесики от целой машинки или руки от пластиковых пупсиков… Ну, а опять же самый ходовой пример, это откусить часть от яблока.
И именно здесь пришло то самое время, дабы поговорить уже о частях целого!
Часть от целого
Итак, не смотря на то, что некоторые вещи мы привыкли видеть обособленно целыми, практически все можно разбить на части. Есть небольшие исключения для физического мира, о чем по программе начальной школы еще рано знать… А вот если чисто теоретически, то есть в математических подсчетах, то тут и вовсе без исключений! Любое из чисел можно всегда разбить на части, будь то 1, 100 или 25489.
Собственно именно для такого «расчленения», ладно скажу более умеренно, для разделения на части, и применяются наши дроби! Если вы уже знаете, что 1/2 это половина, а 1/3 это третья часть то замечательно! Ведь теперь самое время перейти к логике нахождения, сколько же будет в количественном значении эта часть в виде дроби от целого.
Как найти значение дроби (части) от целого
Теперь, когда мы понимаем, что дробь нам указывает на какую-то часть от целого, то есть 1/2 читается как одна вторая, а 23/56, — как двадцать три пятьдесят шестых, то нам хотелось бы манипулировать не просто понятиями как частями от целого, а именно их количественным значением. То есть скажем ваши родители, когда им говорят, что они получат премию в размере 2/3 от оклада всегда хотят знать, а сколько это в рублях, а именно не в частях.
Когда вы слышите от бабушек, что часть своей пенсии она потратит на ваши услады, всегда хотите больше знать не то, что это 1/10 часть, а то сколько это будет в рублях, ведь именно на них вы сможете купить мороженое и проиграть в игровых автоматах.
Так вот и в этом случае, находим конечную часть именно выраженную в тех же значениях, что и целое. То есть если это были рубли в виде целого оклада, то нам интересны именно рубли, а не части. Если это была вишня в кг, то лучше знать сколько это именно килограммов вишни, а не часть от того. что было. Именно с такими знаниями и я бы сказал нашими хотелками, ладно желаниями, мы и подходим к апогею нашей статьи. Так как же посчитать значение части выраженной в дроби от целого!
Смотрите, опять к нашим яблокам. У нас есть корзинка с яблоками, и это условно целое, то есть корзинка это наша «полная часть». И нам скажем необходимо найти 2/5 от нее.
При этом мы знаем, что в корзине 20 яблок или это можно сказать как 5 частей по 4 яблока. Все это показано на рисунке. Однако нам надо найти лишь 2 части из 5, те которые подчеркнуты красной линией. Вы визуально можете уже посчитать, что это будет 8 яблок. Однако как же это можно было найти не столь наглядным образом, а именно исходя из расчетов? Легко!
Необходимо было наше целое, то есть 20 яблок, разделить на 5 частей, так как мы ищем значение именно из 5 частей и умножить на 2, так как именно две части нас интересуют.То есть 2/5 от 20 это 20/5*2=8 яблок.
Мне кажется все понятно. Теперь немного практики, в виде задачи, а потом перейдем к наглядным обучающим пособиям в виде онлайн — калькулятора для нахождения значения части в виде дроби от какого-то числа условно нашего целого.
Задачи на нахождение значения дроби от числа
Первую задачу можно сказать мы уже разобрали выше. Это с корзинкой и яблоками. Теперь давайте другую.
Задача:
Туристы за 2 дня прошли 25 км по маршруту, при этом в первый день они прошли 3/5 пути. Сколько км туристы прошли в первый день?
Решение:
25:5*3=5*3=15 (км) — прошли туристы в первый день.
Ответ: 15 км.
Онлайн калькулятор нахождения значения дроби от числа
Хорошо, очень надеюсь, что вы поняли о чем я вам объяснял. Теперь же хочу представить вам онлайн калькулятор, который поможет вам очень быстро исходя из значения исходного числа и из его части в виде дроби, найти эту самую часть в виде значений эквивалентных исходному числу! Пробуем!
Введите значения дроби для вычисления ее в виде части от исходного:
Дробь
Находим то число, где дробь часть от «исходного числа»
Находим то число, где известно, что его часть равна дроби, а дробь по количественному значению -«исходному числу»
Калькулятор дробей
- Главная
- /
- Математика
- /
- Арифметика
- /
- Калькулятор дробей
Если вам необходимо произвести математические операции с дробями воспользуйтесь нашим онлайн калькулятором:
Просто заполните необходимые поля и получите ответ и подробное решение.
Данный калькулятор может работать как с положительными, так и с отрицательными дробями.
При этом нужно помнить, что:
− ac = a− c = − ac
Всегда нужно использовать только последний вариант.
Сложение дробей
С одинаковыми знаменателями
При сложении дробей с одинаковыми знаменателями складываются только числители, а знаменатель остаётся прежним.
Формула
ac + bc = a + bc
Пример
Для примера сложим следующие дроби с равными знаменателями:
27 + 47 = 2 + 47 = 67
С разными знаменателями
При сложении дробей с разными знаменателями для начала необходимо привести дроби к общему знаменателю. А затем сложить числители.
Формула (универсальная)
ac + bd = a⋅d + b⋅cc⋅d
Пример №1
Для примера сложим следующие дроби с разными знаменателями:
12+13=1⋅32⋅3+1⋅23⋅2=36+26=3+26=56
Пример №2
Существуют также частные случаи, когда знаменатель одной дроби можно привести к знаменателю второй. Например:
12+14=1⋅22⋅2+14=24+14=2+14=34
Этот же пример можно решить и применяя вышеуказанную универсальную формулу:
12+14=1⋅42⋅4+1⋅24⋅2=48+28=4+28=68=34
Обратите внимание, что мы сократили дробь:
68=3 ⋅ 24 ⋅ 2=34
Сложение смешанных чисел
Смешанные числа — это такие числа, у которых есть как дробная часть, так и целая.
Преобразуя в неправильную дробь
Для начала смешанное число (дробь) нужно преобразовать в неправильную дробь, а потом можно складывать как в предыдущих примерах.
Формула
a bc + d ef = b + a ⋅ cc + e + d ⋅ ff
Пример
Для примера сложим два смешанных числа:
312+123=1+3⋅22+2+1⋅33=72+53=7⋅32⋅3+5⋅23⋅2=216+106=21+106=316=5⋅6+16=5⋅66 + 16=516
Обратите внимание, что из полученной неправильной дроби мы выделили целую часть:
316=5⋅6+16=5⋅66 + 16=516
Складывая целую и дробную части отдельно
Целую и дробную части смешанных чисел можно складывать по отдельности.
Формула
a bc + d ef = (a + d) + (bc + ef)
Пример
Решим предыдущий пример этим способом:
3 12 + 1 23 = (3+1)+(12+23) = 4+1⋅32⋅3+2⋅23⋅2=4+36+46=4+3+46=4+76=4+116 = 516
Вычитание дробей
Вычитание дробей происходит по тем же принципам, что и сложение.
С одинаковыми знаменателями
Формула
ac − bc = a − bc
Пример
Для примера вычтем одну дробь из другой с равными знаменателями:
35−25=3−25=15
С разными знаменателями
Тут также, как и при сложении, дроби нужно подвести под общий знаменатель, а затем вычитать.
Формула
ac − bd = a⋅d − b⋅cc⋅d
Пример
Для примера вычтем одну дробь из другой, с разными знаменателями:
34−13=3⋅34⋅3−1⋅43⋅4=912−412=9−412=512
Вычитание смешанных чисел
Для начала смешанные числа преобразуем в неправильные дроби, потом приводим полученные дроби к общему знаменателю, а затем вычтем одну из другой. Далее выделяем целую часть если она есть.
Формула
a bc − d ef = b + a ⋅ cc − e + d ⋅ ff
Пример
312−123=1+3⋅22−2+1⋅33=72−53=7⋅32⋅3−5⋅23⋅2=216−106=21−106=116=1⋅6+56=1⋅66 + 56=156
Умножение дробей
При умножении дробей неважно одинаковые или разные у них знаменатели. Числитель одной дроби умножается на числитель другой, а знаменатели тоже перемножаются между собой.
Формула
ac ⋅ be = a ⋅ bc ⋅ e
Давайте рассмотрим несколько примеров:
Пример №1
Умножим дроби с одинаковыми знаменателями:
13⋅23=1⋅23⋅3=29
Пример №2
Умножим дроби с разными знаменателями:
13⋅24=1⋅23⋅4=212=1⋅26⋅2=16
Пример №3
Умножим смешанные числа:
112⋅223=1+1⋅22⋅2+2⋅33=32⋅83=3⋅82⋅3=246=4
Деление дробей
При делении одной дроби на другую также неважно одинаковые или разные у них знаменатели. Чтобы разделить одну дробь на другую нужно перемножить числитель первой дроби и знаменатель второй, а знаменатель первой умножить на числитель второй.
Формула
ac : be = a ⋅ ec ⋅ b
Давайте рассмотрим несколько примеров:
Пример №1
Разделим одну дробь на другую с таким же знаменателем:
23:13=23⋅31=2⋅33⋅1=63=2
Пример №2
Делим дроби с разными знаменателями:
12:23=12⋅32=1⋅32⋅2=34
Пример №3
Деление смешанных чисел:
412:223=1+4⋅22:2+2⋅33=92:83=92⋅38=9⋅32⋅8=2716=1⋅16+1116=1⋅1616 + 1116=11116
См. также
Калькулятор дробей
Онлайн калькулятор дробей позволяет производить простейшие арифметические операции с дробями: сложение дробей, вычитание дробей, умножение дробей, деление дробей. Чтобы произвести вычисления, заполните поля соответствующие числителям и знаменателям двух дробей. Если дробь имеет вид «смешанной дроби», то также заполните поле, соответствующее целой части дроби. Если у дроби нет целой части, т.е. дробь имеет вид «простой дроби», то оставьте данное поле пустым. Затем нажмите кнопку «Вычислить».
Вид дроби:
простые дроби
смешанные дроби
| Дробь 1 | Дробь 2 | Результат | ||||||||
| = | ||||||||||
| +/− | +/− |
Вычислить
Дробью в математике называется число, представляющее часть единицы или несколько её частей. Обыкновенная дробь записывается в виде двух чисел, разделенных обычно горизонтальной чертой, обозначающей знак деления. Число, располагающееся над чертой, называется числителем. Число, располагающееся под чертой, называется знаменателем. Знаменатель дроби показывает количество равных частей, на которое разделено целое, а числитель дроби — количество взятых этих частей целого.
Дроби бывают правильными и неправильными. Правильной называется дробь, у которой числитель меньше знаменателя. Если у дроби числитель больше знаменателя, то такая дробь называется неправильной. Смешанной называется дробь, записанная в виде целого числа и правильной дроби, и понимается как сумма этого числа и дробной части. Соответственно, дробь, не имеющая целую часть,называется простой дробью. Любая смешанная дробь может быть преобразована в неправильную простую дробь (см. пример ниже).
- Категория: Математика

Разберем на примере задачи нахождение дроби от числа.
От дома до школы 560 м. Саша прошел 2/5 этого пути. Сколько метров прошел Саша?
Весь путь — это 5 частей или одно целое (5/5). Найдем одну часть:
1) 560 : 5 = 112 (м) — составляет одна часть Сашиного пути. А он прошел 2 таких части
2) 112 * 2 = 224 (м) — составляет 2/5 пути.
Ответ: 224 м.
А теперь ту же задачу превратим в нахождение числа по его дроби.
Саша прошел 224 м, что составляет 2/5 всего пути от дома до школы. Найди расстояние от дома до школы?
224 м — это часть пути, значит весь путь будет больше. Эта информация нужна для самопроверки. Найдем сначала 1/5 пути
1) 224 : 2 = 112 (м) — составляет 1/5 пути
2) 112 * 5 = 560 (м) — составляет весь путь
Ответ: 560 м.
Проверим себя. При нахождении дроби от числа результат будет меньше этого числа, если у нас правильная дробь, и больше, если неправильная (то есть целое + еще какая-то часть).
При нахождении числа от дроби — все наоборот, результат будет больше этого числа, если у нас правильная дробь, и меньше, если неправильная.


