
Василий
Средней линией четырёхугольника называется отрезок, соединяющий середины его противоположных сторон. (Параллелограмм — четырехугольник)
Найти?
Она равна стороне параллелограмма, параллельной этой линии.
Формула длины средней линии параллелограмма. Как найти среднюю линию трапеции
Понятие средней линии треугольника
Введем понятие средней линии треугольника.
Определение 1
Это отрезок, соединяющий середины двух сторон треугольника (Рис. 1).
Рисунок 1. Средняя линия треугольника
Теорема о средней линии треугольника
Теорема 1
Средняя линия треугольника параллельна одной из его сторон и равна её половине.
Доказательство.
Пусть нам дан треугольник $ABC$. $MN$ — средняя линия (как на рисунке 2).
Рисунок 2. Иллюстрация теоремы 1
Так как $frac{AM}{AB}=frac{BN}{BC}=frac{1}{2}$, то треугольники $ABC$ и $MBN$ подобны по второму признаку подобия треугольников. Значит
Также, отсюда следует, что $angle A=angle BMN$, значит $MN||AC$.
Теорема доказана.
Следствия из теоремы о средней линии треугольника
Следствие 1:
Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении $2:1$ начиная с вершины.
Доказательство.
Рассмотрим треугольник $ABC$, где ${AA}_1, {BB}_1, {CC}_1$ его медианы. Так как медианы делят стороны пополам. Рассмотрим среднюю линию $A_1B_1$ (Рис. 3).
Рисунок 3. Иллюстрация следствия 1
По теореме 1, $AB||A_1B_1$ и $AB=2A_1B_1$, следовательно, $angle ABB_1=angle BB_1A_1, angle BAA_1=angle AA_1B_1$. Значит треугольники $ABM$ и $A_1B_1M$ подобны по первому признаку подобия треугольников. Тогда
Аналогично доказывается, что
Теорема доказана.
Следствие 2:
Три средние линии треугольника делят его на 4 треугольника, подобных исходному треугольнику с коэффициентом подобия $k=frac{1}{2}$.
Доказательство.
Рассмотрим треугольник $ABC$ со средними линиями $A_1B_1, { A}_1C_1, B_1C_1$ (рис. 4)
Рисунок 4. Иллюстрация следствия 2
Рассмотрим треугольник $A_1B_1C$. Так как $A_1B_1$ — средняя линия, то
Угол $C$ — общий угол этих треугольников. Следовательно, треугольники $A_1B_1C$ и $ABC$ подобны по второму признаку подобия треугольников с коэффициентом подобия $k=frac{1}{2}$.
Аналогично доказывается, что треугольники $A_1C_1B$ и $ABC$, и треугольники $C_1B_1A$ и $ABC$ подобны с коэффициентом подобия $k=frac{1}{2}$.
Рассмотрим треугольник $A_1B_1C_1$. Так как $A_1B_1, { A}_1C_1, B_1C_1$ — средние линии треугольника, то
Следовательно, по третьему признаку подобия треугольников, треугольники $A_1B_1C_1$ и $ABC$ подобны с коэффициентом подобия $k=frac{1}{2}$.
Теорема доказана.
Примеры задачи на понятие средней линии треугольника
Пример 1
Дан треугольник со сторонами $16$ см, $10$ см и $14$ см. Найти периметр треугольника , вершины которого лежат в серединах сторон данного треугольника.
Решение.
Так как вершины искомого треугольника лежат в серединах сторон данного треугольника, то его стороны — средние линии исходного треугольника. По следствию 2, получим, что стороны искомого треугольника равны $8$ см, $5$ см и $7$ см.
Ответ:
$20$ см.
Пример 2
Дан треугольник $ABC$. Точки $N и M$ — середины сторон $BC$ и $AB$ соответственно (Рис. 5).
Рисунок 5.
Периметр треугольника $BMN=14$ см. Найти периметр треугольника $ABC$.
Решение.
Так как $N и M$ — середины сторон $BC$ и $AB$, то $MN$ — средняя линия. Значит
По теореме 1, $AC=2MN$. Получаем:
Понятие средней линии треугольника
Введем понятие средней линии треугольника.
Определение 1
Это отрезок, соединяющий середины двух сторон треугольника (Рис. 1).
Рисунок 1. Средняя линия треугольника
Теорема о средней линии треугольника
Теорема 1
Средняя линия треугольника параллельна одной из его сторон и равна её половине.
Доказательство.
Пусть нам дан треугольник $ABC$. $MN$ — средняя линия (как на рисунке 2).
Рисунок 2. Иллюстрация теоремы 1
Так как $frac{AM}{AB}=frac{BN}{BC}=frac{1}{2}$, то треугольники $ABC$ и $MBN$ подобны по второму признаку подобия треугольников. Значит
Также, отсюда следует, что $angle A=angle BMN$, значит $MN||AC$.
Теорема доказана.
Следствия из теоремы о средней линии треугольника
Следствие 1:
Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении $2:1$ начиная с вершины.
Доказательство.
Рассмотрим треугольник $ABC$, где ${AA}_1, {BB}_1, {CC}_1$ его медианы. Так как медианы делят стороны пополам. Рассмотрим среднюю линию $A_1B_1$ (Рис. 3).
Рисунок 3. Иллюстрация следствия 1
По теореме 1, $AB||A_1B_1$ и $AB=2A_1B_1$, следовательно, $angle ABB_1=angle BB_1A_1, angle BAA_1=angle AA_1B_1$. Значит треугольники $ABM$ и $A_1B_1M$ подобны по первому признаку подобия треугольников. Тогда
Аналогично доказывается, что
Теорема доказана.
Следствие 2:
Три средние линии треугольника делят его на 4 треугольника, подобных исходному треугольнику с коэффициентом подобия $k=frac{1}{2}$.
Доказательство.
Рассмотрим треугольник $ABC$ со средними линиями $A_1B_1, { A}_1C_1, B_1C_1$ (рис. 4)
Рисунок 4. Иллюстрация следствия 2
Рассмотрим треугольник $A_1B_1C$. Так как $A_1B_1$ — средняя линия, то
Угол $C$ — общий угол этих треугольников. Следовательно, треугольники $A_1B_1C$ и $ABC$ подобны по второму признаку подобия треугольников с коэффициентом подобия $k=frac{1}{2}$.
Аналогично доказывается, что треугольники $A_1C_1B$ и $ABC$, и треугольники $C_1B_1A$ и $ABC$ подобны с коэффициентом подобия $k=frac{1}{2}$.
Рассмотрим треугольник $A_1B_1C_1$. Так как $A_1B_1, { A}_1C_1, B_1C_1$ — средние линии треугольника, то
Следовательно, по третьему признаку подобия треугольников, треугольники $A_1B_1C_1$ и $ABC$ подобны с коэффициентом подобия $k=frac{1}{2}$.
Теорема доказана.
Примеры задачи на понятие средней линии треугольника
Пример 1
Дан треугольник со сторонами $16$ см, $10$ см и $14$ см. Найти периметр треугольника , вершины которого лежат в серединах сторон данного треугольника.
Решение.
Так как вершины искомого треугольника лежат в серединах сторон данного треугольника, то его стороны — средние линии исходного треугольника. По следствию 2, получим, что стороны искомого треугольника равны $8$ см, $5$ см и $7$ см.
Ответ:
$20$ см.
Пример 2
Дан треугольник $ABC$. Точки $N и M$ — середины сторон $BC$ и $AB$ соответственно (Рис. 5).
Рисунок 5.
Периметр треугольника $BMN=14$ см. Найти периметр треугольника $ABC$.
Решение.
Так как $N и M$ — середины сторон $BC$ и $AB$, то $MN$ — средняя линия. Значит
По теореме 1, $AC=2MN$. Получаем:
Понятие средней линии треугольника
Введем понятие средней линии треугольника.
Определение 1
Это отрезок, соединяющий середины двух сторон треугольника (Рис. 1).
Рисунок 1. Средняя линия треугольника
Теорема о средней линии треугольника
Теорема 1
Средняя линия треугольника параллельна одной из его сторон и равна её половине.
Доказательство.
Пусть нам дан треугольник $ABC$. $MN$ — средняя линия (как на рисунке 2).
Рисунок 2. Иллюстрация теоремы 1
Так как $frac{AM}{AB}=frac{BN}{BC}=frac{1}{2}$, то треугольники $ABC$ и $MBN$ подобны по второму признаку подобия треугольников. Значит
Также, отсюда следует, что $angle A=angle BMN$, значит $MN||AC$.
Теорема доказана.
Следствия из теоремы о средней линии треугольника
Следствие 1:
Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении $2:1$ начиная с вершины.
Доказательство.
Рассмотрим треугольник $ABC$, где ${AA}_1, {BB}_1, {CC}_1$ его медианы. Так как медианы делят стороны пополам. Рассмотрим среднюю линию $A_1B_1$ (Рис. 3).
Рисунок 3. Иллюстрация следствия 1
По теореме 1, $AB||A_1B_1$ и $AB=2A_1B_1$, следовательно, $angle ABB_1=angle BB_1A_1, angle BAA_1=angle AA_1B_1$. Значит треугольники $ABM$ и $A_1B_1M$ подобны по первому признаку подобия треугольников. Тогда
Аналогично доказывается, что
Теорема доказана.
Следствие 2:
Три средние линии треугольника делят его на 4 треугольника, подобных исходному треугольнику с коэффициентом подобия $k=frac{1}{2}$.
Доказательство.
Рассмотрим треугольник $ABC$ со средними линиями $A_1B_1, { A}_1C_1, B_1C_1$ (рис. 4)
Рисунок 4. Иллюстрация следствия 2
Рассмотрим треугольник $A_1B_1C$. Так как $A_1B_1$ — средняя линия, то
Угол $C$ — общий угол этих треугольников. Следовательно, треугольники $A_1B_1C$ и $ABC$ подобны по второму признаку подобия треугольников с коэффициентом подобия $k=frac{1}{2}$.
Аналогично доказывается, что треугольники $A_1C_1B$ и $ABC$, и треугольники $C_1B_1A$ и $ABC$ подобны с коэффициентом подобия $k=frac{1}{2}$.
Рассмотрим треугольник $A_1B_1C_1$. Так как $A_1B_1, { A}_1C_1, B_1C_1$ — средние линии треугольника, то
Следовательно, по третьему признаку подобия треугольников, треугольники $A_1B_1C_1$ и $ABC$ подобны с коэффициентом подобия $k=frac{1}{2}$.
Теорема доказана.
Примеры задачи на понятие средней линии треугольника
Пример 1
Дан треугольник со сторонами $16$ см, $10$ см и $14$ см. Найти периметр треугольника , вершины которого лежат в серединах сторон данного треугольника.
Решение.
Так как вершины искомого треугольника лежат в серединах сторон данного треугольника, то его стороны — средние линии исходного треугольника. По следствию 2, получим, что стороны искомого треугольника равны $8$ см, $5$ см и $7$ см.
Ответ:
$20$ см.
Пример 2
Дан треугольник $ABC$. Точки $N и M$ — середины сторон $BC$ и $AB$ соответственно (Рис. 5).
Рисунок 5.
Периметр треугольника $BMN=14$ см. Найти периметр треугольника $ABC$.
Решение.
Так как $N и M$ — середины сторон $BC$ и $AB$, то $MN$ — средняя линия. Значит
По теореме 1, $AC=2MN$. Получаем:
Перед тем как перейти к нахождению средней линии треугольника нужно вспомнить второй признак подобия треугольников и свойства параллельности прямых.
Как найти среднюю линию треугольника – второй признак подобия треугольников
На рисунке 1 показаны два треугольника. Треугольник ABC подобен треугольнику A1B1C1. И прилежащие стороны пропорциональны, то есть AB относится к A1B1 также как AC относится к A1C1. Их этих двух условий и следует подобие треугольников.
Как найти среднюю линию треугольника – признак параллельности прямых
На рисунке 2 показаны прямые a и b, секущая c. При этом образуются 8 углов. Углы 1 и 5 соответственные, если прямые параллельны, то соответственные углы равны, и наоборот.
Как найти среднюю линию треугольника
На рисунке 3, M середина AB, а N середина AC, BC основание. Отрезок MN – называется средней линии треугольника. Сама же теорема гласит – Средняя линия треугольника параллельная основанию и равна его половине.
Для того чтобы доказать, что MN – средняя линия треугольника, нам понадобится второй признак подобия треугольников и признак параллельности прямых.
Треугольник AMN подобен треугольнику ABC, по второму признаку. В подобных треугольниках соответственные углы равны, угол 1 равен углу 2, а эти углы являются соответственными при пересечении двух прямых секущей, следовательно, прямые параллельны, MN параллельно BC. Угол A общий, AM/AB = AN/AC = ½
Коэффициент подобия этих треугольников ½, из этого следует что ½ = MN/BC, MN = ½ BC
Вот мы и нашли среднюю линию треугольника, и доказали теорему о средней линии треугольника, если вам до сих пор не понятно, как найти среднюю линию, смотрите видео ниже.
Средняя линия треугольника
Свойства
- средняя линия треугольника параллельна третьей стороне и равна её половине.
- при проведении всех трёх средних линий образуются 4 равных треугольника, подобных (даже гомотетичных) исходному с коэффициентом 1/2.
- средняя линия отсекает треугольник, который подобен данному, а его площадь равна одной четверти площади исходного треугольника.
Средняя линия четырехугольника
Средняя линия четырехугольника
— отрезок, соединяющий середины противолежащих сторон четырехугольника.
Свойства
Первая линия соединяет 2 противоположные стороны. Вторая соединяет 2 другие противоположные стороны. Третья соединяет центры двух диагоналей (не во всех четырехугольниках центры пересекаются)
- Если в выпуклом четырехугольнике средняя линия образует равные углы с диагоналями четырехугольника, то диагонали равны.
- Длина средней линии четырехугольника меньше полусуммы двух других сторон или равна ей, если эти стороны параллельны, и только в этом случае.
- Середины сторон произвольного четырёхугольника — вершины параллелограмма . Его площадь равна половине площади четырехугольника, а его центр лежит на точке пересечения средних линий. Этот параллелограмм называется параллелограммом Вариньона ;
- Точка пересечения средних линий четырехугольника является их общей серединой и делит пополам отрезок, соединяющий середины диагоналей. Кроме того, она является центроидом вершин четырехугольника.
- В произвольном четырёхугольнике вектор средней линии равен полусумме векторов оснований.
Средняя линия трапеции
Средняя линия трапеции
— отрезок, соединяющий середины боковых сторон этой трапеции. Отрезок, соединяющий середины оснований трапеции, называют второй средней линией трапеции.
Свойства
- средняя линия параллельна основаниям и равна их полусумме.
См. также
Примечания
Wikimedia Foundation
.
2010
.
Смотреть что такое «Средняя линия» в других словарях:
СРЕДНЯЯ ЛИНИЯ
— (1) трапеции отрезок, соединяющий середины боковых сторон трапеции. Средняя линия трапеции параллельна её основаниям и равна их полусумме; (2) треугольника отрезок, соединяющий середины двух сторон этого треугольника: третья сторона при этом… … Большая политехническая энциклопедия
Треугольника (трапеции) отрезок, соединяющий середины двух сторон треугольника (боковых сторон трапеции) … Большой Энциклопедический словарь
средняя линия
— 24 средняя линия: Воображаемая линия, проходящая через профиль резьбы так, что толщина выступа равна ширине канавки. Источник … Словарь-справочник терминов нормативно-технической документации
Треугольника (трапеции), отрезок, соединяющий середины двух сторон треугольника (боковых сторон трапеции). * * * СРЕДНЯЯ ЛИНИЯ СРЕДНЯЯ ЛИНИЯ треугольника (трапеции), отрезок, соединяющий середины двух сторон треугольника (боковых сторон трапеции) … Энциклопедический словарь
средняя линия
— vidurio linija statusas T sritis Kūno kultūra ir sportas apibrėžtis 3 mm linija, dalijanti teniso stalo paviršių išilgai pusiau. atitikmenys: angl. centre line; midtrack line vok. Mittellinie, f rus. средняя линия … Sporto terminų žodynas
средняя линия
— vidurio linija statusas T sritis Kūno kultūra ir sportas apibrėžtis Linija, dalijanti fechtavimosi kovos takelį į dvi lygias dalis. atitikmenys: angl. centre line; midtrack line vok. Mittellinie, f rus. средняя линия … Sporto terminų žodynas
средняя линия
— vidurio linija statusas T sritis Kūno kultūra ir sportas apibrėžtis Linija, dalijanti sporto aikšt(el)ę pusiau. atitikmenys: angl. centre line; midtrack line vok. Mittellinie, f rus. средняя линия … Sporto terminų žodynas
1) С. л. треугольника, отрезок, соединяющий середины двух сторон треугольника (третью сторону называют основанием). С. л. треугольника параллельна основанию и равна его половине; площади частей треугольника, на которые делит его с. л.,… … Большая советская энциклопедия
Треугольника отрезок, соединяющий середины двух сторон треугольника. Третья сторона треугольника при этом наз. основанием треугольника. С. л. треугольника параллельна основанию и равна половине его длины. Во всяком треугольнике С. л. отсекает от… … Математическая энциклопедия
Треугольника (трапеции), отрезок, соединяющий середины двух сторон треугольника (боковых сторон трапеции) … Естествознание. Энциклопедический словарь
Книги
- Ручка шариковая «Jotter Luxe K177 West M» (синяя) (1953203) , . Шариковая ручка в подарочной упаковке. Цвет письма: синий. Линия: средняя. Произведено во Франции…
Содержание:
С четырехугольником вы уже знакомились на уроках математики. Дадим строгое определение этой фигуры.
Определение четырехугольника:
Четырехугольником называется фигура, состоящая из четырех точек (вершин четырехугольника) и четырех отрезков, которые их последовательно соединяют (сторон четырехугольника). При этом никакие три его вершины не лежат на одной прямой и никакие две стороны не пересекаются.
На рисунке 1 изображен четырехугольник с вершинами
Говорят, что две вершины четырехугольника являются соседними вершинами, если они соединены одной стороной; вершины, которые не являются соседними, называют противолежащими вершинами. Аналогично стороны четырехугольника, имеющие общую вершину, являются соседними сторонами, а стороны, не имеющие общих точек,— противолежащими сторонами. На рисунке 1 стороны 






Четырехугольник обозначают, последовательно указывая все его вершины, причем буквы, которые стоят рядом, должны обозначать соседние вершины. Например, четырехугольник на рисунке 1 можно обозначить 

Определение
Диагональю четырехугольника называется отрезок, соединяющий две противолежащие вершины.
В четырехугольнике 

Определение
Периметром четырехугольника называется сумма длин всех его сторон. Периметр четырехугольника (как и треугольника) обозначают буквой
Любой четырехугольник ограничивает конечную часть плоскости, которую называют внутренней областью этого четырехугольника (на рис. 3, а, б она закрашена).
На рисунке 3 изображены два четырехугольника и проведены прямые, на которых лежат стороны этих четырехугольников. В четырехугольнике 


Определение
Четырехугольник называется выпуклым, если он лежит по одну сторону от любой прямой, содержащей его сторону.
Действительно, четырехугольник 

выпуклые четырехугольники (другие случаи будут оговорены отдельно).
Определение
Углом (внутренним углом) выпуклого четырехугольника 

Угол, смежный с внутренним углом четырехугольника при данной вершине, называют внешним углом четырехугольника при данной вершине.
Углы, вершины которых являются соседними, называют соседними углами, а углы, вершины которых являются противолежащими,— противолежащими углами четырехугольника.
Теорема (о сумме углов четырехугольника)
Сумма углов четырехугольника равна
Доказательство:
В данном четырехугольнике 





Пример:
Углы четырехугольника 



Решение:
Углами, соседними с углом 











Ответ:
Определение параллелограмма
Определение параллелограмма
Рассмотрим на плоскости две параллельные прямые, пересеченные двумя другими параллельными прямыми (рис. 7).
В результате такого пересечения образуется четырехугольник, который имеет специальное название — параллелограмм.
Определение
Параллелограммом называется четырехугольник, противолежащие стороны которого попарно параллельны.
На рисунке 7 изображен параллелограмм 
Пример:
На рисунке 8 

Решение:
Из равенства треугольников 








Как и в треугольнике, в параллелограмме можно провести высоты (рис. 9).
Определение
Высотой параллелограмма называется перпендикуляр, проведенный из точки одной стороны к прямой, которая содержит противолежащую сторону.
Очевидно, что к одной стороне параллелограмма можно провести бесконечно много высот (рис. 9, а),— все они будут равны как расстояния между параллельными прямыми, а из одной вершины параллелограмма можно провести две высоты к разным сторонам (рис. 9, б). Часто, говоря «высота параллелограмма», имеют в виду ее длину.
Свойства параллелограмма
Непосредственно из определения параллелограмма следует, что любые два его соседних угла являются внутренними односторонними при параллельных прямых, которые содержат противолежащие стороны. Это означает, что сумма двух соседних углов параллелограмма равна
Докажем еще несколько важных свойств сторон, углов и диагоналей параллелограмма.
Теорема (свойства параллелограмма)
В параллелограмме:
- противолежащие стороны равны;
- противолежащие углы равны;
- диагонали точкой пересечения делятся пополам.
Свойства 1 и 2 иллюстрирует рисунок 10, а, а свойство 3 — рисунок 10, б.
Доказательство:
Проведем в параллелограмме 


У них сторона 










Для доказательства свойства 3 проведем в параллелограмме 


Рассмотрим треугольники 











Пример №1
Сумма двух углов параллелограмма равна 
Решение:
Пусть дан параллелограмм 




Ответ:
Пример №2
В параллелограмме 


Решение:
Пусть в параллелограмме 













Ответ: 36 см.
Признаки параллелограмма
Теоремы о признаках параллелограмма
Для того чтобы использовать свойства параллелограмма, во многих случаях необходимо сначала убедиться, что данный четырехугольник действительно является параллелограммом. Это можно доказать либо по определению (см. задачу в п. 2.1), либо по признакам — условиям, гарантирующим, что данный четырехугольник — параллелограмм. Докажем признаки параллелограмма, которые чаще всего применяются на практике.
Теорема (признаки параллелограмма)
- Если две противолежащие стороны четырехугольника параллельны и равны, то этот четырехугольник — параллелограмм.
- Если противолежащие стороны четырехугольника попарно равны, то этот четырехугольник — параллелограмм.
- Если диагонали четырехугольника точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Доказательство:
1) Пусть в четырехугольнике 
Проведем диагональ 












2) Пусть в четырехугольнике 

Снова проведем диагональ 











3) Пусть в четырехугольнике 









Теорема доказана полностью.
Пример №3
В параллелограмме 



Решение:
Рассмотрим четырехугольник 








Попробуйте самостоятельно найти другие способы решения этой задачи, основанные на применении других признаков и определения параллелограмма.
Необходимые и достаточные условия
Каждый из признаков параллелограмма указывает на определенную особенность, наличия которой в четырехугольнике достаточно для того, чтобы утверждать, что он является параллелограммом. Вообще в математике признаки иначе называют достаточными условиями. Например, перпендикулярность двух прямых третьей — достаточное условие параллельности данных двух прямых.
В отличие от признаков, свойства параллелограмма указывают на ту особенность, которую обязательно имеет любой параллелограмм. Свойства иначе называют необходимыми условиями. Поясним такое название примером: равенство двух углов необходимо для того, чтобы углы были вертикальными, ведь если этого равенства нет, вертикальными такие углы быть не могут.
В случае верности теоремы «Если 





Таким образом, необходимые условия (свойства) параллелограмма следуют из того, что данный четырехугольник — параллелограмм; из достаточных условий (признаков) следует то, что данный четырехугольник — параллелограмм.
Сравнивая свойства и признаки параллелограмма, нетрудно заметить, что одно и то же условие (например, попарное равенство противолежащих сторон) является и свойством, и признаком параллелограмма. В таком случае говорят, что условие является необходимым и достаточным. Необходимое и достаточное условие иначе называют критерием. Например, равенство двух углов треугольника — критерий равнобедренного треугольника.
Немало примеров необходимых и достаточных условий можно найти в других науках и в повседневной жизни. Все мы знаем, что воздух — необходимое условие для жизни человека, но не достаточное (человеку для жизни нужно еще много чего, среди прочего — пища). Выигрыш в лотерею — достаточное условие для материального обогащения человека, но оно не является необходимым — ведь улучшить свое финансовое положение можно и другим способом. Попробуйте самостоятельно найти несколько примеров необходимых и достаточных условий.
Виды параллелограммов
Прямоугольник
Определение
Прямоугольником называется параллелограмм, у которого все углы прямые.
На рисунке 28 изображен прямоугольник
Поскольку прямоугольник является частным случаем параллелограмма, он имеет все свойства параллелограмма: противолежащие стороны прямоугольника параллельны и равны, противолежащие углы равны, диагонали точкой пересечения делятся пополам и т.д. Однако прямоугольник имеет некоторые особые свойства. Докажем одно из них.
Теорема (свойство прямоугольника)
Диагонали прямоугольника равны.
Доказательство:
Пусть дан прямоугольник 






Имеет место и обратное утверждение (признак прямоугольника): если диагонали параллелограмма равны, то этот параллелограмм является прямоугольником. Докажите это утверждение самостоятельно. Таким образом, можно утверждать, что равенство диагоналей параллелограмма — необходимое и достаточное условие (критерий) прямоугольника.
Опорная задача
Если все углы четырехугольника прямые, то этот четырехугольник — прямоугольник. Докажите.
Решение:
Пусть в четырехугольнике 








Ромб
Определение
Ромбом называется параллелограмм, у которого все стороны равны.
На рисунке 30 изображен ромб
Он обладает всеми свойствами параллелограмма, а также некоторыми дополнительными свойствами, которые мы сейчас докажем.
Теорема (свойства ромба)
Диагонали ромба перпендикулярны и делят его углы пополам.
Эти свойства ромба иллюстрируются рисунком 31.
Доказательство:
Пусть диагонали ромба 








Аналогично доказываем, что диагонали ромба являются биссектрисами и других его углов. Теорема доказана.
Опорная задача
Если все стороны четырехугольника равны, то этот четырехугольник — ромб. Докажите.
Решение:
Очевидно, что в четырехугольнике, все стороны которого равны, попарно равными являются и противолежащие стороны. Следовательно, по признаку параллелограмма такой четырехугольник — параллелограмм, а по определению ромба параллелограмм, у которого все стороны равны, является ромбом.
Решая задачи, помещенные в конце этого параграфа, вы докажете другие признаки прямоугольника и ромба.
Квадрат
На рисунке 33 изображен еще один вид параллелограмма — квадрат.
Определение
Квадратом называется прямоугольник, у которого все стороны равны.
Иначе можно сказать, что квадрат — это прямоугольник, который является ромбом. Действительно, поскольку квадрат является прямоугольником и ромбом и, конечно же, произвольным параллелограммом, то:
- все стороны квадрата равны, а противолежащие стороны параллельны;
- все углы квадрата прямые;
- диагонали квадрата равны, перпендикулярны, делят углы квадрата пополам и делятся точкой пересечения пополам.
Связь между отдельными видами параллелограммов. Равносильные утверждения
Исходя из определений произвольного параллелограмма и его отдельных видов, мы можем схематически отобразить связь между ними (рис. 34).
На схеме представлены множества параллелограммов, прямоугольников и ромбов. Такой способ наглядного представления множеств называют диаграммами Эйлера — Венна. Диаграмма Эйлера — Венна для параллелограммов демонстрирует, что множества прямоугольников и ромбов являются частями (подмножествами) множества параллелограммов, а множество квадратов — общей частью (пересечением) множеств прямоугольников и ромбов. Диаграммы Эйлера — Венна часто используют для подтверждения или проверки правильности логических рассуждений.
Подытоживая материал этого параграфа, обратим также внимание на то, что возможно и другое определение квадрата: квадратом называется ромб с прямыми углами. В самом деле, оба приведенных определения описывают одну и ту же фигуру. Такие определения называют равносильными. Вообще два утверждения называются равносильными, если они или оба выполняются, или оба не выполняются. Например, равносильными являются утверждения «В треугольнике две стороны равны» и «В треугольнике два угла равны», ведь оба они верны, если рассматривается равнобедренный треугольник, и оба ложны, если речь идет о разностороннем треугольнике.
Равносильность двух утверждений также означает, что любое из них является необходимым и достаточным условием для другого. В самом деле, рассмотрим равносильные утверждения «Диагонали параллелограмма равны» и «Параллелограмм имеет прямые углы». Из того, что диагонали параллелограмма равны, следует, что он является прямоугольником, т.е. имеет прямые углы, и наоборот: параллелограмм с прямыми углами является прямоугольником, т.е. имеет равные диагонали. На этом примере легко проследить логические шаги перехода от признаков фигуры к ее определению и далее — к свойствам. Такой переход довольно часто приходится выполнять в процессе решения задач.
Трапеция
Как известно, любой параллелограмм имеет две пары параллельных сторон. Рассмотрим теперь четырехугольник, который имеет только одну пару параллельных сторон.
Определение
Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие не параллельны.
Параллельные стороны трапеции называют ее основаниями, а непараллельные стороны — боковыми сторонами. На рисунке 37 в трапеции 


Углы, прилежащие к одной боковой стороне, являются внутренними односторонними при параллельных прямых, на которых лежат основания трапеции. По теореме о свойстве параллельных прямых из этого следует, что сумма углов трапеции, прилежащих к боковой стороне, равна 
Определение
Высотой трапеции называется перпендикуляр, проведенный из точки одного основания к прямой, содержащей другое основание.
Очевидно, что в трапеции можно провести бесконечно много высот (рис. 38),— все они равны как расстояния между параллельными прямыми.
Чаще всего в процессе решения задач высоты проводят из вершин углов при меньшем основании трапеции.
Частные случаи трапеций
Как среди треугольников и параллелограммов, так и среди трапеций выделяются отдельные виды, обладающие дополнительными свойствами.
Определение
Прямоугольной трапецией называется трапеция, в которой одна из боковых сторон перпендикулярна основаниям.
На рисунке 39 изображена прямоугольная трапеция. У нее два прямых угла при меньшей боковой стороне. Эта сторона одновременно является и высотой трапеции.
Определение
Равнобедренной трапецией называется трапеция, в которой боковые стороны равны.
На рисунке 40 изображена равнобедренная трапеция 


У равнобедренной трапеции так же, как и у равнобедренного треугольника, углы при основании равны. Докажем это в следующей теореме.
Теорема (свойство равнобедренной трапеции)
В равнобедренной трапеции углы при основании равны.
Доказательство:
Пусть 
Перед началом доказательства заметим, что этой теоремой утверждается равенство углов при каждом из двух оснований трапеции, т. е. необходимо доказать, что
Проведем высоты 







Теорема доказана.
Имеет место также обратное утверждение (признак равнобедренной трапеции):
- если в трапеции углы при основании равны, то такая трапеция является равнобедренной.
Докажите этот факт самостоятельно.
Пример №4
Меньшее основание равнобедренной трапеции равно боковой стороне, а диагональ перпендикулярна боковой стороне. Найдите углы трапеции.
Решение:
Пусть дана равнобедренная трапеция 











Ответ:
Построение параллелограммов и трапеций
Задачи на построение параллелограммов и трапеций часто решают методом вспомогательного треугольника. Напомним, что для этого необходимо выделить в искомой фигуре треугольник, который можно построить по имеющимся данным. Построив его, получаем две или три вершины искомого четырехугольника, а остальные вершины находим по данным задачи.
Пример №5
Постройте параллелограмм по двум диагоналям и углу между ними.
Решение:
Пусть 

Пусть параллелограмм 
Треугольник 
Таким образом, мы получим вершины 
Вершины 
Построение
1. Разделим отрезки 
2. Построим треугольник 
3. На лучах 

4. Последовательно соединим точки
Доказательство:
Четырехугольник 


Исследование
Задача имеет единственное решение при любых значениях
В некоторых случаях для построения вспомогательного треугольника на рисунке-эскизе необходимо провести дополнительные линии.
Пример №6
Постройте трапецию по четырем сторонам.
Решение:
Пусть 

Анализ
Пусть искомая трапеция 
Проведем через вершину 











Построение
1. Построим отрезок
2. Построим треугольник 
3. Построим луч, проходящий через точку 


4. На луче 



5. Соединим точки
Доказательство:
По построению 




Исследование
Задача имеет единственное решение, если числа 
Теорема Фалеса
Для дальнейшего изучения свойств трапеции докажем важную теорему.
Теорема (Фалеса)
Параллельные прямые, которые пересекают стороны угла и отсекают на одной из них равные отрезки, отсекают равные отрезки и на другой стороне.
Доказательство:
Пусть 



Проведем через точку 


Четырехугольники 

Рассмотрим треугольники 






Теорема доказана.
Заметим, что в условии данной теоремы вместо сторон угла можно рассматривать две произвольные прямые, поэтому теорема Фалеса может формулироваться и следующим образом: параллельные прямые, которые пересекают две данные прямые и отсекают на одной из них равные отрезки, отсекают равные отрезки и на другой прямой.
Пример №7
Разделите данный отрезок на 
Решение:
Решим задачу для 

Для этого проведем из точки 





Средняя линия треугольника
Теорема Фалеса помогает исследовать еще одну важную линию в треугольнике.
Определение
Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.
На рисунке 49, а отрезок 

Теорема (свойство средней линии треугольника)
Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.
Доказательство:
Пусть 






Проведем теперь среднюю линию 





Теорема доказана.
Опорная задача (теорема Вариньона) Середины сторон четырехугольника являются вершинами параллелограмма. Докажите.
Решение:
Пусть точки 






Средняя линия трапеции
Определение
Средней линией трапеции называется отрезок, соединяющий середины боковых сторон трапеции.
На рисунке 52 отрезок 
Теорема (свойство средней линии трапеции) Средняя линия трапеции параллельна основаниям и равна их полусумме.
Доказательство:
Пусть 


Проведем прямую 


















Теорема доказана.
Пример №8
Через точки, делящие боковую сторону трапеции на три равные части, проведены прямые, параллельные основаниям трапеции. Найдите длины отрезков этих прямых, заключенных внутри трапеции, если ее основания равны 2 м и 5 м.
Решение:
Пусть в трапеции 
По теореме Фалеса параллельные прямые, которые проходят через точки 






Ответ: 3 м и 4 м.
Вписанные углы
Градусная мера дуги
В седьмом классе изучение свойств треугольников завершалось рассмотрением описанной и вписанной окружностей. Но перед тем как рассмотреть описанную и вписанную окружности для четырехугольника, нам необходимо остановиться на дополнительных свойствах углов.
До сих пор мы изучали только те углы, градусная мера которых не превышала 
На рисунке 58 угол 
Используем понятие плоского угла для определения центрального угла в окружности.
Определение
Центральным углом в окружности называется плоский угол с вершиной в центре окружности.
На рисунке 59, а, б стороны угла с вершиной в центре окружности 



Для того чтобы уточнить, какой из двух плоских углов со сторонами 
На рисунке 59, а центральному углу 




Определение
Градусной мерой дуги окружности называется градусная мера соответствующего центрального угла.
Градусную меру дуги, как и саму дугу, обозначают так: 


Концы хорды 

Вписанный угол
Определение
Вписанным углом называется угол, вершина которого лежит на окружности, а стороны пересекают эту окружность.
На рисунке 60 изображен вписанный угол 






Теорема (о вписанном угле)
Вписанный угол измеряется половиной дуги, на которую он опирается.
Доказательство:
Пусть в окружности с центром 



1) Пусть центр окружности лежит на одной из сторон данного угла (рис. 61, а). В этом случае центральный угол 



т.е.
2) Пусть центр окружности лежит внутри угла 



3) Аналогично в случае, когда центр окружности лежит вне вписанного угла (рис. 60, б),
Теорема доказана.
Только что доказанную теорему можно сформулировать иначе.
Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.
Пример №9
Найдите угол 

Решение:
Для того чтобы найти угол 







Ответ:
Следствия теоремы о вписанном угле
По количеству и значимости следствий теорема о вписанном угле является одной из «богатейших» геометрических теорем. Сформулируем наиболее важные из этих следствий.
Следствие 1
Вписанные углы, опирающиеся на одну и ту же дугу, равны.
Действительно, по теореме о вписанном угле градусная мера каждого из вписанных углов на рисунке 63 равна половине дуги
Следствие 2
Вписанный угол, опирающийся на полуокружность,— прямой, и наоборот: любой прямой вписанный угол опирается на полуокружность.
Действительно, поскольку градусная мера полуокружности равна 


Следствие 3
Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы. Медиана прямоугольного треугольника, проведенная из вершины прямого угла, равна половине гипотенузы.
Первое из приведенных утверждений вытекает из следствия 2. Если в треугольнике 


Тогда гипотенуза 
Отметим еще один интересный факт: медиана прямоугольного треугольника, проведенная к гипотенузе, делит данный треугольник на два равнобедренных треугольника с общей боковой стороной. Из этого, в частности, следует, что углы, на которые медиана делит прямой угол, равны острым углам треугольника (рис. 65, б).
В качестве примера применения следствий теоремы о вписанном угле приведем другое решение задачи, которую мы рассмотрели в п. 7.2.
Пример №10
Найдите угол 

Решение:
Проведем хорду 
Поскольку вписанный угол 






Ответ:
Вписанные четырехугольники
Определение
Четырехугольник называется вписанным в окружность, если все его вершины лежат на этой окружности.
Четырехугольник 
Как известно, около любого треугольника можно описать окружность. Для четырехугольника это можно сделать не всегда. Докажем свойство и признак вписанного четырехугольника.
Теорема (овписанном четырехугольнике)
- Сумма противолежащих углов вписанного четырехугольника равна
(свойство вписанного четырехугольника).
- Если сумма противолежащих углов четырехугольника равна
то около него можно описать окружность (признак вписанного четырехугольника).
Доказательство:
1) Свойство. Пусть четырехугольник 
Следовательно,
Аналогично доказываем, что
2) Признак. Пусть в четырехугольнике 






Тогда четырехугольник 











Теорема доказана.
Следствие 1
Около любого прямоугольника можно описать окружность.
Если параллелограмм вписан в окружность, то он является прямоугольником
Прямоугольник, вписанный в окружность, изображен на рисунке 74.
Центр описанной окружности является точкой пересечения диагоналей прямоугольника (см. задачу 255).
Следствие 2
Около равнобедренной трапеции можно описать окружность.
Если трапеция вписана в окружность, то она равнобедренная.
Равнобедренная трапеция, вписанная в окружность, изображена на рисунке 75.
Описанные четырехугольники
Определение
Четырехугольник называется описанным около окружности, если все его стороны касаются этой окружности.
Четырехугольник 
Оказывается, что не в любой четырехугольник можно вписать окружность. Докажем соответствующие свойство и признак.
Теорема (об описанном четырехугольнике)
- В описанном четырехугольнике суммы противолежащих сторон равны (свойство описанного четырехугольника).
- Если в четырехугольнике суммы противолежащих сторон равны, то в него можно вписать окружность (признак описанного четырехугольника).
Доказательство:
1) Свойство. Пусть стороны четырехугольника 

По свойству отрезков касательных 
2) Признак. Пусть в четырехугольнике 





Предположим, что это не так. Тогда прямая 







Таким образом, наше предположение неверно. Аналогично можно доказать, что прямая 


Замечание. Напомним, что в данной теореме рассматриваются только выпуклые четырехугольники.
Следствие
В любой ромб можно вписать окружность. Если в параллелограмм вписана окружность, то он является ромбом
Ромб, описанный около окружности, изображен на рисунке 78. Центр вписанной окружности является точкой пересечения диагоналей ромба (см. задачу 265, а).
Пример №11
В равнобедренную трапецию с боковой стороной 6 см вписана окружность. Найдите среднюю линию трапеции.
Решение:
Пусть 



Ответ: 6 см
Геометрические софизмы
Многим из вас, наверное, известна древнегреческая история об Ахиллесе, который никак не может догнать черепаху. История математики знает немало примеров того, как ложные утверждения и ошибочные результаты выдавались за истинные, а их опровержение давало толчок настоящим математическим открытиям. Но даже ошибки и неудачи могут принести пользу математикам. Эти ошибки остались в учебниках и пособиях в виде софизмов — заведомо ложных утверждений, доказательства которых на первый взгляд кажутся правильными, но на самом деле таковыми не являются. Поиск и анализ ошибок, содержащихся в этих доказательствах, часто позволяют определить причины ошибок в решении других задач. Поэтому в процессе изучения геометрии софизмы иногда даже более поучительны и полезны, чем «безошибочные» задачи и доказательства.
Рассмотрим пример геометрического софизма, связанного с четырехугольниками, вписанными в окружность.
Окружность имеет два центра.
Доказательство:
Обозначим на сторонах произвольного угла 


Эти перпендикуляры должны пересекаться (ведь если бы они были параллельны, то параллельными были бы и стороны данного угла — обоснуйте это самостоятельно). Обозначим точку 
Через точки 







Ошибка этого «доказательства» заключается в неправильности построений на рисунке 79. В четырехугольнике 




Среди задач к этому и следующим параграфам вы найдете и другие примеры геометрических софизмов и сможете самостоятельно потренироваться в их опровержении. Надеемся, что опыт, который вы при этом приобретете, поможет в дальнейшем избежать подобных ошибок при решении задач.
Четырехугольник и окружность в задачах. Метод вспомогательной окружности
При решении задач об окружностях и четырехугольниках иногда следует использовать специальные подходы. Один из них заключается в рассмотрении вписанного треугольника, вершины которого являются вершинами данного вписанного четырехугольника.
Пример №12
Найдите периметр равнобедренной трапеции, диагональ которой перпендикулярна боковой стороне и образует с основанием угол 
Решение:
Пусть дана вписанная трапеция 
Заметим, что окружность, описанная около трапеции, описана также и около прямоугольного треугольника 












Ответ: 40 см.
Особенно интересным и нестандартным является применение окружности (как описанной, так и вписанной) при решении задач, в условиях которых окружность вообще не упоминается.
Пример №13
Из точки 




Решение:
В четырехугольнике 

Метод решения задач с помощью дополнительного построения описанной или вписанной окружности называют методом вспомогательной окружности.
Замечательные точки треугольника
Точка пересечения медиан
В седьмом классе в ходе изучения вписанной и описанной окружностей треугольника рассматривались две его замечательные точки — точка пересечения биссектрис (иначе ее называют инцентром треугольника) и точка пересечения серединных перпендикуляров к сторонам.
Рассмотрим еще две замечательные точки треугольника.
Теорема (о точке пересечения медиан треугольника)
Медианы треугольника пересекаются в одной точке и делятся ею в отношении 2:1, начиная от вершины треугольника.
Доказательство:
Пусть в треугольнике 

Докажем, что они пересекаются в некоторой точке 
Пусть 

















Аналогично доказываем, что и третья медиана 

Точку пересечения медиан треугольника иначе называют центроидом или центром масс треугольника. В уместности такого названия вы можете убедиться, проведя эксперимент: вырежьте из картона треугольник произвольной формы, проведите в нем медианы и попробуйте удержать его в равновесии, положив на иглу или острый карандаш в точке пересечения медиан (рис. 86).
Пример №14
Если в треугольнике две медианы равны, то он равнобедренный. Докажите.
Решение:
Пусть в треугольнике 


Рассмотрим треугольники 






Но по определению медианы эти отрезки — половины сторон 


Точка пересечения высот
Теорема (о точке пересечения высот треугольника)
Высоты треугольника (или их продолжения) пересекаются в одной точке.
Доказательство:
Пусть 

Проведя через вершины треугольника прямые, параллельные противолежащим сторонам, получим треугольник 







Таким образом, высоты 

Точку пересечения высот (или их продолжений) иначе называют ортоцентром треугольника.
Таким образом, замечательными точками треугольника являются:
- точка пересечения биссектрис — центр окружности, вписанной в треугольник;
- точка пересечения серединных перпендикуляров к сторонам — центр окружности, описанной около треугольника;
- точка пересечения медиан — делит каждую из медиан в отношении 2:1, начиная от вершины треугольника;
- точка пересечения высот (или их продолжений).
ИТОГОВЫЙ ОБЗОР ГЛАВЫ I
ЧЕТЫРЕХУГОЛЬНИК
Теорема о сумме углов четырехугольника.
Сумма углов четырехугольника равна
Справочный материал по параллелограмму
Параллелограммом называется четырехугольник, противолежащие стороны которого попарно параллельны
Признаки параллелограмма
Если две противолежащие стороны четырехугольника параллельны и равны, то этот четырехугольник — параллелограмм
Если противолежащие стороны четырехугольника попарно равны, то этот четырехугольник- параллелограм.

Противолежащие углы параллелограмма равны.
Диагонали параллелограмма точкой пересечения делятся пополам
Если противолежащие углы четырехугольника попарно равны, то этот четырехугольник — параллелограмм
Если диагонали четырехугольника точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм
Виды параллелограммов
Прямоугольником называется параллелограм у которого все углы прямые
Ромбом называется параллелограмм, у которого все стороны равны
Квадратом называется прямоугольник, у которого все стороны равны
Свойство прямоугольника
Диагонали прямоугольника равны
Признак прямоугольника
Если все углы четырехугольника равны, то этот четырехугольник является прямоугольником
Свойства ромба
Диагонали ромба перпендикулярны и делят его углы пополам
Признак ромба
Если все стороны четырехугольника равны, то этот четырехугольник является ромбом
Свойства квадрата

Все стороны квадрата равны, а противолежащие стороны параллельны
Все углы квадрата прямые
Диагонали квадрата равны, перпендикулярны, делят углы квадрата пополам и точкой пересечения делятся пополам
Трапеция
Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие непараллельны
Прямоугольной трапецией называется трапеция, у которой одна из боковых сторон перпендикулярна основаниям
Равнобедренной трапецией называется трапеция, у которой боковые стороны равны.
Свойство равнобедренной
В равнобедренной трапеции углы при основании равны.
Признак равнобедренной
Если в трапеции углы при основании равны, то такая трапеция равнобедренная
Теорема Фалеса
Параллельные прямые, которые пересекают стороны угла и отсекают на одной из них равные отрезки, отсекают равные отрезки и на другой стороне
Средние линии треугольника и трапеции
Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.
Средней линией трапеции называется отрезок, соединяющий середины боковых сторон трапеции
Свойство средней линии треугольника
Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны
Свойство средней линии трапеции
Средняя линия трапеции параллельна основаниям и равна их полусумме
Углы в окружности
Центральным углом в окружности называется плоский угол с вершиной в центре окружности
Градусной мерой дуги окружности называется градусная мера соответствующего центрального угла
Вписанным углом называется угол, вершина которого лежит на окружности, а стороны пересекают эту окружность
Теорема о вписанном угле Вписанный угол измеряется половиной дуги, на которую он опирается
Следствия теоремы о вписанном угле
Вписанные углы, опирающиеся на одну и ту же дугу, равны
Вписанный угол, опирающийся на полуокружность, прямой, и наоборот: любой прямой вписанный угол опирается на полуокружность
Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы. Медиана прямоугольного треугольника, проведенная из вершины прямого угла, равна половине гипотенузы
Вписанные четырехугольники
Четырехугольник называется вписанным в окружность, если все его вершины лежат на этой окружности
Признак вписанного четырехугольника
Если сумма противолежащих углов четырехугольника равна 
Около любого прямоугольника можно описать окружность
Около равнобедренной трапеции можно описать окружность
Свойство вписанного четырехугольника
- Сумма противолежащих углов вписанного четырехугольника равна
- Если параллелограмм вписан в окружность, то он является прямоугольником
- Если трапеция вписана в окружность, то она равнобедренная
Описанные четырехугольники
Четырехугольник называется описанным около окружности, если все его стороны касаются этой окружности
Признак описанного четырехугольника
Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можно вписать окружность
В любой ромб можно вписать окружность
Свойство описанного четырехугольника
- В описанном четырехугольнике суммы противолежащих сторон равны
- Если в параллелограмм вписана окружность, то он является ромбом
Замечательные точки треугольника
Теорема о точке пересечения медиан треугольника Медианы треугольника пересекаются в одной точке и делятся ею в отношении 2:1, начиная от вершины треугольника
Теорема о точке пересечения высот треугольника Высоты треугольника (или их продолжения) пересекаются в одной точке
Историческая справка
Большая часть теоретических положений, связанных с четырехугольником, была известна еще в Древней Греции. Например, параллелограмм упоминается в работах Евклида под названием «параллельно-линейная площадь». Основные свойства четырехугольников были установлены на практике и только со временем доказаны теоретически.
Одним из творцов идеи геометрического доказательства по праву признан древнегреческий ученый Фалес Милетский (ок. 625-547 гг. до н. э.). Его считали первым среди прославленных «семи мудрецов» Эллады. Механик и астроном, философ и общественный деятель, Фалес значительно обогатил науку своего времени. Именно он познакомил греков с достижениями египтян в геометрии и астрономии. По свидетельству историка Геродота, Фалес предсказал затмение Солнца, которое произошло 28 мая 585 г. до н. э. Он дал первые представления об электричестве и магнетизме. Достижения Фалеса в геометрии не ограничиваются теоремой, названной его именем. Считается, что Фалес открыл теорему о вертикальных углах, доказал равенство углов при основании равнобедренного треугольника, первым описал окружность около прямоугольного треугольника и обосновал, что угол, который опирается на полуокружность, прямой. Фалесу приписывают и доказательство второго признака равенства треугольников, на основании которого он создал дальномер для определения расстояния до кораблей на море.
В молодые годы Фалес побывал в Египте. Согласно легенде, он удивил египетских жрецов, измерив высоту пирамиды Хеопса с помощью подобия треугольников (о подобии треугольников — в следующей главе).
Изучая замечательные точки треугольника, нельзя не вспомнить имена еще нескольких ученых.
Теорему о пересечении высот треугольника доказал в XV в. немецкий математик Региомонтан (1436-1476) — в его честь эту теорему иногда называют задачей Региомонтана.
Выдающийся немецкий ученый Леонард Эйлер (1707-1783), который установил связь между замечательными точками треугольника, является уникальной исторической фигурой. Геометрия и механика, оптика и баллистика, астрономия и теория музыки, математическая физика и судостроение — вот далеко не полный перечень тех областей науки, которые он обогатил своими открытиями. Перу Эйлера принадлежит более 800 научных работ, причем, по статистическим подсчетам, он делал в среднем одно изобретение в неделю! Человек чрезвычайной широты интересов, Эйлер был академиком Берлинской, Петербургской и многих других академий наук, он существенным образом повлиял на развитие мировой науки. Недаром французский математик Пьер Лаплас, рассуждая об ученых своего поколения, утверждал, что Эйлер — «учитель всех нас».
Среди украинских математиков весомый вклад в исследование свойств четырехугольников внес Михаил Васильевич Остроградский (1801-1862). Этот выдающийся ученый, профессор Харьковского университета, получил мировое признание благодаря работам по математической физике, математическому анализу, аналитической механике. Талантливый педагог и методист, Остроградский создал «Учебник по элементарной геометрии», который, в частности, содержал ряд интересных и сложных задач на построение вписанных и описанных четырех. М. В. Остроградский угольников и вычисление их площадей.
- Теорема синусов и теорема косинусов
- Параллельность прямых и плоскостей
- Перпендикулярность прямой и плоскости
- Взаимное расположение прямых в пространстве, прямой и плоскости
- Центральные и вписанные углы
- Углы и расстояния в пространстве
- Подобие треугольников
- Решение прямоугольных треугольников






























































































































(свойство вписанного четырехугольника).





































































