Примечание. Текст задачи взят с форума.
Задача.
| Катеты прямоугольного треугольника АВС равны 9 и 12 см. Через середину гипотенузы (точку О) провели перпендикуляр к плоскости треугольника, равный 6см. Найти расстояние от концов перпендикуляра до катетов. | Катети прямокутного трикутника АВС дорівнюють 9 і 12 см Через середину гіпотенузи (точку О) провели перпендикуляр до площини трикутника, рівний 6см. Знайти відстань від кінців перпендикуляра до катетів. |
Решение.
Отобразим условие задачи на рисунке
Обратим внимание на то, что ON и OM являются перпендикулярами к катетам прямоугольного треугольника, поскольку нам необходимо найти расстояние KN и KM.
Рассмотрим отрезок NO. Он является перпендикуляром к CB. Угол ACB также вляется прямым по условию задачи. Таким образом, треугольники ABC и OBN — подобны по признаку равенства углов (см. подобие треугольников). Угол В — общий, а, поскольку CA и NO являются перпендикулярами к CB — то остальные углы также равны (один прямой, второй равен 180 градусов минус сумма остальных углов, равенство которых мы уже доказали).
Коэффициент подобия треугольников равен соотношению BO к BA. Поскольку точка О — точка касания медианы прямоугольного треугольника к гипотенузе, то есть AO = OB, то коэффициент подобия будет равен 1:2.
Откуда ON = CA / 2 = 9 / 2 = 4,5
Расстояние же KN найдем по теореме Пифагора.
KN = √(4,52 + 62 ) = 7,5 см
Аналогично, найдем расстояние до второго катета:
OM = CB / 2 = 12 / 2 = 6
KN = √( 62 + 62 ) = √72 = 6√2 см
Ответ: 7,5 см, 6√2 см
0
Перпендикуляр к квадрату |
Описание курса
| Призма. Параллелепипед. Куб. Решение задач
Как найти перпендикуляр в треугольнике
В геометрии одна задача может скрывать в себе множество подзадач, требующих от решающего их человека наличия большого количества знаний. Так для операций с треугольниками, нужно знать о соотношениях между медианами, биссектрисами и сторонами, уметь разными способами вычислять площадь фигур, а также находить перпендикуляр.

Инструкция
Обратите внимание на то, что перпендикуляр в треугольнике необязательно должен лежать внутри фигуры. Высота, опущенная на основание, может оказаться и на продолжении стороны, как это происходит в том случае, если один из углов больше девяноста градусов, или совпадать со стороной, если треугольник прямоугольный.
Воспользуйтесь формулой для вычисления высоты треугольника, если задача содержит все требуемые для этого данные. Для нахождения перпендикуляра составьте дробь, в числителе которой удвоенный квадратный корень из следующего произведения: р*(р-а)(р-в)(р-с), где а, в и с – стороны треугольника, а р – его полупериметр. В знаменателе дроби должна стоять длина того основания, на которое опущен перпендикуляр.
Найдите высоту треугольника, воспользовавшись формулой для вычисления площади этой фигуры: для этого достаточно удвоенную площадь поделить на длину основания. Для нахождения площади используйте другие формулы: например, найти эту величину можно через полупроизведение двух сторон треугольника на синус угла между ними.
Запомните основное соотношение между высотами треугольника: оно обратно пропорционально отношению оснований. Также выучите стандартные формулы, позволяющие быстро найти перпендикуляр в равностороннем и равнобедренном треугольнике. В первом случае высота являет собой произведение стороны треугольника на синус угла в 60 градусов (как следствие формулы для вычисления площади), во втором – удвоенному корню из разности квадрата двойной длины боковой стороны и квадрата основания.
Посчитайте перпендикуляр треугольника, введя данные в графы онлайн-калькулятора. Для этого вам необходимо знать длины сторон данной фигуры, так как расчет проводится по первой указанной выше формуле, использующей полупериметр.
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Определить натуральную величину перпендикуляра к плоскости треугольника
Определить натуральную величину перпендикуляра к плоскости треугольника можно
заменой плоскостей проекций или непосредственным построением перпендикуляра.
Замена плоскостей
В плоскости треугольника построена фронталь и перпендикулярно фронтали определена плоскость заменяющая горизонтальную
проекцию. Так как относительно новой плоскости, плоскость треугольника занимает проецирующее положение, то эта
плоскость проецируется в прямую и любой перпендикуляр к плоскости будет проецироваться в натуральную величину под
прямым углом к проекции треугольника.
Определение в исходных проекциях
В плоскости треугольника построены фронталь и горизонталь.
Из условия проецирования прямого угла в натуральную величину если следует, что перпендикуляр
к плоскости должен определяться своей горизонтальной проекцией перпендикулярно к горизонтальной проекции горизонтали и
фронтальной проекцией&nbps;- перпендикулярно к фронтальной проекции фронтали.
Пересечение прямой и плоскости определено с помощью горизонтально проецирующей плоскости посредницы α, которая проведена
через перпендикуляр и пересекает плоскость треугольника по 12. Так как 12 лежит в плоскости, которая содержит
перпендикуляр, то 12 и перпендикуляр пересекаются и точка их пересечения N определяется по пересечению фронтальных проекций.
Одновременно, 12 лежит в плоскости треугольника, следовательно N принадлежит плоскости и перпендикуляру, т.е. это точка
пересечения.
Натуральная величина построенного перпендикуляра определена
методом прямоугольного треугольника.
Построить натуральную величину сечения заданной фигуры плоскостью.
Определение натуральной величины отрезка прямой в начертательной геометрии.
Определение натуральной величины.
Решение задач по начертательной геометрии.
Содержание:
Я думаю, что мы еще никогда не жили в такой геометрический период. Все вокруг — геометрия. Ле Корбюзье
Перпендикулярность прямых в пространстве
В модуле 3 мы рассматривали взаимное расположение прямых в пространстве.
Естественно, что пересекающиеся прямые
образуют углы. Углом между прямыми является меньший из двух смежных. Например, на рисунке 5.1 изображены две пересекающиеся прямые
Две прямые в пространстве называются перпендикулярными, если они пересекаются под прямым углом.
Свойства перпендикулярных прямых пространства выражают теоремы 1-4.
Теорема 1
Через произвольную точку прямой в пространстве можно провести перпендикулярную ей прямую.
Доказательство:
Пусть 








Теорема 2
Если две пересекающиеся прямые соответственно параллельны двум перпендикулярным прямым, то они также перпендикулярны.
Доказательство:
Пусть 























Четырехугольники 










Итак, четырехугольник 








Теорема 3
Через любую точку пространства, не принадлежащую прямой, можно провести прямую, перпендикулярную данной (рис. 5.4, а).
Теорема 4
Если прямая перпендикулярна одной из двух параллельных прямых и лежит с ними в одной плоскости, то она перпендикулярна и второй прямой (рис. 5.4, б).
Доказательство теорем 3 и 4 выполните самостоятельно.
Расположение трех прямых в пространстве, когда они между собой попарно перпендикулярны и имеют общую точку, является особым случаем (рис. 5.4, в).
Отметим, что в пространстве существует множество плоскостей, которые можно провести через одну и ту же прямую. Выбирая точку А вне прямой, мы попадем на одну из этих плоскостей и в выбранной плоскости к данной прямой через точку А проводим прямую, перпендикулярную данной.
Итак, в пространстве к прямой можно провести сколь угодно много перпендикулярных прямых, проходящих через данную точку этой прямой.
Пример №1
Прямые 



Дано: 
Найти:
Решение:
Из 




Из 


Ответ. 6,5 см
Почему именно так?
Каждая пара данных прямых 







: известны катет и гипотенуза, неизвестна сторона, являющаяся вторым катетом.
— сторона
.
: один катет известен по условию, второй — найден из
; неизвестной является третья сторона — гипотенуза. По теореме Пифагора составляем выражение и выполняем вычисление длины отрезка
.
Перпендикулярность прямой и плоскости в пространстве
Мы уже рассматривали взаимное расположение прямой и плоскости, детально ознакомились со случаем, когда прямая не пересекает плоскость. В этом параграфе мы рассмотрим случай, когда прямая пересекает плоскость и, кроме того, образует с произвольной прямой этой плоскости, проходящей через точку пересечения, прямой угол. Такую прямую называют перпендикулярной плоскости. Все другие неперпендикулярные прямые, пересекающие плоскость, называют наклонными.
Моделью прямой, перпендикулярной плоскости, может быть установленная вышка, столб, вкопанный в землю, гвоздь, вбитый в стену, и т.п.
Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна произвольной прямой, которая лежит на этой плоскости и проходит через их точку пересечения.
Чтобы определить, будет ли прямая 



Теорема 5 (признак перпендикулярности прямой и плоскости)
Если прямая перпендикулярна двум пересекающимся прямым этой плоскости, то она перпендикулярна и данной плоскости.
Доказательство:
Пусть 











Для этого выполним дополнительное построение:
- отложим в разных полупространствах на прямой
от точки
равные отрезки
и
;
- обозначим на прямой
некоторую точку
, а на прямой
— точку
; соединим точки:
с
,
с
,
с
,
с
и
с
;
- проведем через точку
произвольную прямую
, которая пересечет
в точке
, и также соединим ее с
и
.
Рассмотрим образованные при этом треугольники.
— медиана и высота;
по построению;
— общая сторона треугольников
и
;
. Итак,
по двум сторонам и углу между ними. Отсюда
.
. Равенство отрезков
и
доказывается аналогично, как и равенство отрезков
и
.
, поскольку
и
-общая сторона. Отсюда вытекает равенство соответствующих углов:
.
по двум сторонам и углу между ними:
— общая сторона;
по доказательству выше. Итак,
, т.е.
— равнобедренный:
— основание треугольника,
— середина
, поэтому
— медиана
. В равнобедренном треугольнике медиана является высотой, т.е.
, а это означает, что
. Поскольку прямая
— произвольная прямая плоскости
, проходит через точку пересечения прямой
и плоскости
, перпендикулярна прямой
, то
.
Теорема доказана.
Отметим, что вы впервые столкнулись с таким громоздким доказательством. Доказательство не следует заучивать наизусть или запоминать шаги, необходимо понять его и последовательно, опираясь на известные факты, изложить рассуждения. Для этого важно спланировать последовательность логических шагов и не допускать ошибок.
Итак, для установления перпендикулярности прямой и плоскости достаточно проверить перпендикулярность прямой двум прямым плоскости, проходящим через точку их пересечения (по признаку).
Из данной теоремы вытекают два следствия.
Следствие 1. Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и второй прямой.
Доказательство:
Пусть 
























Следствие 2. Две прямые, перпендикулярные одной плоскости, параллельны.
Доказательство:
Пусть 




















Пример №2
Докажите, что через любую точку А можно провести прямую, перпендикулярную данной плоскости.
Доказательство:
Рассмотрим два случая.
Первый случай. Пусть точка 













Тогда в плоскости 







Второй случай. Пусть точка 












Перпендикуляр и наклонная. Теорема о трех перпендикулярах
Рассмотрим изображение прямой а, перпендикулярной плоскости 

Отрезок называется перпендикулярным плоскости, если он лежит на прямой, перпендикулярной плоскости.
Итак, на прямой 


На рисунке 5.21 изображены различные случаи расположения перпендикулярного плоскости отрезка:
- отрезок
лежит по одну сторону от плоскости
и не пересекает ее (рис. 5.21, а);
- отрезок
пересекает плоскость
(концы отрезка находятся в разных полупространствах) (рис. 5.21, б);
- отрезок
лежит по одну сторону от плоскости
и точка
— конец отрезка — принадлежит плоскости
(рис. 5.21, в).
Чаще всего на практике встречается третий случай. Такой отрезок 
Перпендикуляром, проведенным из данной точки к данной плоскости, называется отрезок, который соединяет данную точку с точкой плоскости и лежит на прямой, перпендикулярной этой плоскости (рис. 5.21, в). Конец отрезка, лежащий на плоскости, называется основанием перпендикуляра.
Наклонной, проведенной из данной точки к данной плоскости, называется любой отрезок, который соединяет данную точку с точкой плоскости и не является перпендикуляром к плоскости. Конец отрезка, лежащий на плоскости, называется основанием наклонной. Отрезок, который соединяет основание перпендикуляра и основание наклонной, проведенных из одной и той же точки, называется проекцией наклонной.
На рисунке 5.22 отрезок 















Углом между наклонной и плоскостью называется угол между наклонной и проекцией этой наклонной на плоскость.
Свойства перпендикуляра и наклонных
Если из одной точки вне плоскости провести к ней перпендикуляр и наклонные, то:
- из точки, не принадлежащей плоскости, можно провести один и только один перпендикуляр и множество наклонных;
- длина перпендикуляра меньше длины любой наклонной;
- наклонные, имеющие равные проекции, равны между собой, и наоборот, равные наклонные имеют равные проекции;
- из двух наклонных большую длину имеет та, которая имеет большую проекцию, и наоборот, большая наклонная имеет большую проекцию.
Докажите эти свойства самостоятельно.
Широко используется свойство прямой, перпендикулярной проекции наклонной или наклонной, которое называют теоремой о трех перпендикулярах.
Теорема 6 (о трех перпендикулярах)
Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна и наклонной. И наоборот, если прямая, проведенная на плоскости через основание наклонной, перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.
Дано:
Доказать: прямая 
Доказательство:
Докажем вторую часть теоремы. Пусть 



















Пример №3
Из точки к плоскости проведены две наклонные. Найдите длины наклонных, если одна из них на 26 см больше другой, а проекции наклонных равны 12 см и 40 см.
Дано: 






Найти: 

Решение:
Пусть 







В 






Из (1) и (2) имеем: 

Ответ. 15 см и 41 см.
Почему именно так?




Алгебраический метод решения упрощает процесс поиска решения. Находим общий катет для 


Отсюда имеем равенство: 
Перпендикулярность плоскостей
Две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым (рис. 5.31).
Если 
Моделями перпендикулярных плоскостей в окружающем мире являются различные конфигурации предметов. Например, шкатулка с крышкой, двери, окна, которые открываются, и т.д. Принцип «открывания» частей моделей основывается на перпендикулярности прямых, проведенных перпендикулярно прямой пересечения (линии крепления) (рис. 5.32).
Перпендикулярные плоскости обладают такими свойствами:
- Любая плоскость, перпендикулярная линии пересечения перпендикулярных плоскостей, пересекает их по перпендикулярным прямым. И наоборот, плоскость, перпендикулярная двум пересекающимся плоскостям, перпендикулярна линии их пересечения.
- Если две плоскости взаимно перпендикулярны, то любая прямая, лежащая в одной из них и перпендикулярная их линии пересечения, перпендикулярна другой плоскости.
- Если две плоскости взаимно перпендикулярны и из произвольной точки одной из них опущен перпендикуляр на вторую, то этот перпендикуляр лежит в первой плоскости.
Рассмотрим их несколько позднее. Докажем сначала признак перпендикулярности двух плоскостей.
Теорема 7 (признак перпендикулярности плоскостей)
Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
Дано: 


Доказательство:
Построим произвольную плоскость 






























Теорема доказана.
Теперь вернемся к свойствам перпендикулярных прямых и плоскостей и докажем некоторые из них.
Теорема 8
Если две плоскости взаимно перпендикулярны, то любая прямая, лежащая в одной из них и перпендикулярная линии их пересечения, перпендикулярна второй плоскости.
Дано:
Доказать:
Доказательство:
Пусть плоскости 





Проведем через точку 









Теорема 9
Если две плоскости взаимно перпендикулярны и из некоторой точки одной из них опущен перпендикуляр на вторую, то этот перпендикуляр лежит в первой плоскости.
Дано:
Доказать:
Доказательство:
Пусть плоскости 





Итак, дано 














Теорема доказана.
Остальные свойства докажите самостоятельно.
Пример №4
Из точек 








Дано:
Найти:
Решение:
Поскольку 









Из 






Отсюда, учитывая что 

Ответ. 11 см.
Почему именно так?
Для каждой геометрической задачи важно построить цепочку логических рассуждений. В этой задаче важно видеть не только прямоугольные треугольники на плоскостях 








Перпендикулярность прямой и плоскости
А) Напомним, что перпендикулярными называют прямые, угол между которыми равен 90°. Перпендикулярные прямые могут быть пересекающимися и могут быть скрещивающимися. На рисунке 210 перпендикулярные прямые 



Прямая называется перпендикулярной плоскости, если она перпендикулярна каждой прямой этой плоскости.
Перпендикулярность прямой 




Прямая 






Окружающее пространство даёт много примеров, иллюстрирующих перпендикулярность прямой и плоскости. Столбы с осветительными лампами и колонны устанавливают перпендикулярно горизонтальной поверхности земли (рис. 211).
Из теоремы 6 параграфа 5 следует, что при определении угла между прямыми эти прямые можно заменять параллельными прямыми. Поэтому если одна из параллельных прямых перпендикулярна плоскости, то и другая также перпендикулярна этой плоскости. Верно и обратное утверждение.
Теорема 1. Если две прямые перпендикулярны плоскости, то они параллельны друг другу.
Доказательство: Пусть прямые 




Через какую-либо точку 

















Пусть имеются плоскость 





Следующая теорема устанавливает признак перпендикулярности прямой и плоскости.
Теорема 2. Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна этой плоскости.
Доказательство: Пусть прямая 








Проведём через точку 






























Следствие 1. Если прямая перпендикулярна одной из параллельных плоскостей, то она перпендикулярна и другой плоскости.
Пусть плоскости 


















Следствие 2. Если одной прямой перпендикулярны две плоскости, то они параллельны.
Проведите самостоятельно обоснование этого утверждения, используя рисунок 216
Б) Теорема 3. Через каждую точку пространства проходит единственная плоскость, перпендикулярная данной прямой.
Доказательство: Пусть даны прямая 












В случае, когда точка 









Докажем теперь, что построенная плоскость а единственная. Допустим, что это не так. Пусть через точку 























Теорема 4. Через каждую точку пространства проходит единственная прямая, перпендикулярная данной плоскости.
Доказательство: Пусть даны точка 



















Прямая 







Следствие 3. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.
Пусть 










Пример №5
Докажите, что если рёбра 






Решение:



Поскольку 

Поскольку 





Используя рисунок 226, докажите самостоятельно обратное утверждение: «Если отрезки 






Пример №6
В правильной треугольной пирамиде 



Решение:











Пример №7
Докажите, что диагональ 


Решение:














Используя рисунок 228, установите, в какой точке прямая 
Пространственное моделирование
При выполнении задания на определение вертикальности столба для забора (рис. 240) ученик проверил вертикальность первого из столбов, а дальше, измерив высоту первого и второго столбов и расстояние между ними снизу и сверху, сделал вывод о том, что и второй столб тоже вертикальный. Определите, обеспечивают ли полученные учеником сведения правильность его вывода. Ответ обоснуйте.
Расстояния
А) Пусть даны плоскость 









Соединим точку 






Свойства перпендикуляра и наклонных
Если из одной точки вне плоскости проведены к этой плоскости две наклонные (рис. 242), то:
- а) наклонные, имеющие равные проекции, равны между собой;
- б) та наклонная больше, проекция которой больше;
- в) равные наклонные имеют равные проекции;
- г) большая наклонная имеет большую проекцию.
Свойства перпендикуляров и наклонных докажите самостоятельно, используя рисунок.
Теорема 5. Перпендикуляр к плоскости, проведённый из некоторой точки, меньше любой наклонной к этой плоскости, проведённой из той же точки.
Доказательство: Пусть отрезок 



В соответствии с утверждением теоремы 5, из всех расстояний от данной точки до различных точек данной плоскости наименьшим является расстояние, измеренное по перпендикуляру.
Б) Расстоянием от точки до плоскости называется длина перпендикуляра, проведённого из этой точки к плоскости.
Когда мы говорим, например, что уличный фонарь находится на высоте 8 м от земли, то подразумеваем, что расстояние от фонаря до поверхности земли, измеренное по перпендикуляру, проведённому от фонаря к плоскости земли, составляет 8 м (рис. 244).
Теорема 6. Расстояние от любой точки одной из параллельных плоскостей к другой плоскости одно и то же и равно длине их общего перпендикуляра.
Доказательство: Пусть даны параллельные плоскости 

























Расстоянием между параллельными плоскостями называется длина перпендикуляра, проведённого из какой-либо точки одной плоскости к другой плоскости.
Все точки одной стены комнаты находятся на одинаковом расстоянии от противоположной стены (рис. 246). Это расстояние и есть ширина комнаты.
Теорема 7. Расстояние от любой точки прямой, параллельной плоскости, до этой плоскости одно и то же и равно перпендикуляру, проведённому из какой-либо точки прямой к плоскости.
Используя рисунок 247, проведите доказательство теоремы самостоятельно.
Расстоянием между прямой и параллельной ей плоскостью называется длина перпендикуляра, проведённого из какой-либо точки прямой к плоскости.
Все точки края стола находятся на одном расстоянии от пола (рис. 248).
Теорема 8. Две скрещивающиеся прямые имеют единственный общий перпендикуляр.
Доказательство: Пусть даны скрещивающиеся прямые 





Пусть 


























Этим самым существование общего перпендикуляра скрещивающихся прямых обосновано. Докажем теперь его единственность.
Пусть скрещивающиеся прямые 






Точки 














Расстоянием между скрещивающимися прямыми называется длина их общего перпендикуляра.
Из доказательства теоремы 8 следует, что расстояние между скрещивающимися прямыми равно расстоянию от любой точки одной из них до плоскости, содержащей другую прямую и параллельную первой.
Чтобы найти расстояние между скрещивающимися прямыми, можно действовать по-разному.
а) Можно построить отрезок с концами на этих прямых, перпендикулярный им обеим, и найти его длину.
Пример №8
Найдём расстояние между прямыми, которые содержат ребро куба длиной 
Решение:
Пусть нужно найти расстояние между прямыми 






б) Можно построить плоскость, которая содержит одну из прямых и параллельна другой. Тогда искомое расстояние будет равно расстоянию от этой плоскости до другой прямой.
Пример №9
В правильной четырёхугольной пирамиде 




Решение:
Пусть 









Пусть 










Теперь
в) Можно построить две параллельные плоскости, каждая из которых содержит одну из скрещивающихся прямых и параллельна другой. Тогда искомое расстояние будет равно расстоянию между этими плоскостями.
Пример №10
Найдём расстояние между прямыми, содержащими непересекающиеся диагонали двух смежных граней куба с ребром
Решение:
Пусть нужно найти расстояние между прямыми 













Диагональ 








Плоскость 






















Ответ:
Диагональ куба делится плоскостью треугольника, сторонами которого служат диагонали граней куба, имеющие с рассматриваемой диагональю куба общую точку, в отношении 1 : 2.
г) Можно построить плоскость, перпендикулярную одной из скрещивающихся прямых, и построить проекцию на неё другой прямой. Тогда искомое расстояние будет равно длине перпендикуляра, опущенного из точки, являющейся проекцией первой прямой на построенную плоскость, на проекцию другой прямой.
Пример №11
В четырёхугольной пирамиде 



Решение:
Из теоремы 8 следует, что на прямых 






Пусть 









Определим, в какие точки спроектируются точки 





Поскольку точки 








Длину 


Получим 
Ответ:
Пример №12
Точка 


Решение:







Тогда
Ответ: 20 см.
Пример №13
Из вершины 







Решение:

















Угол между прямой и плоскостью
А) С помощью чисел, выражающих расстояние между двумя прямыми и величину угла между ними, можно описать взаимное расположение этих прямых в пространстве. Если прямые 









Теорема 9. Если прямая плоскости перпендикулярна проекции наклонной на эту плоскость, то она перпендикулярна и самой наклонной, а если прямая плоскости перпендикулярна наклонной к плоскости, то она перпендикулярна и проекции этой наклонной.
Доказательство: Пусть отрезки 



Пусть прямая 


Прямая 







Пусть прямая 




Прямая 




Теорема 9 называется теоремой о трёх перпендикулярах, потому что в ней идёт речь об отношении перпендикулярности между тремя прямыми. Приведём примеры использования этой теоремы.
Пример №14
Из вершины 




Решение:
Искомое расстояние — длина перпендикуляра, опущенного из точки 










Найдём сначала высоту 


Треугольник 

Ответ: 36,6.
Пример №15
Докажем, что если данная точка пространства равноудалена от сторон многоугольника, то в этот многоугольник можно вписать окружность, центр которой совпадает с основанием перпендикуляра, опущенного из данной точки на плоскость многоугольника.
Доказательство: Пусть точка 







Соединим точку 






Треугольники 




Пример №16
Если данная точка пространства равноудалена от вершин многоугольника, то около этого многоугольника можно описать окружность, центр которой совпадает с основанием перпендикуляра, опущенного из данной точки на плоскость многоугольника.
Используя рисунок 272, проведите доказательство этого утверждения самостоятельно.
Б) Теперь введём понятие угла между прямой и плоскостью. Пусть дана плоскость 






Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной ей, называется угол между прямой и её проекцией на плоскость.
Угол между прямой и плоскостью — наименьший из углов, которые образует эта прямая со всеми прямыми плоскости. Докажите утверждение самостоятельно.
Если прямая 



Если прямая 



Пример №17
В треугольной пирамиде 


Решение:
Пусть 







Искомый угол между медианой 



тогда
Значит,
Ответ:
При вычислении угла между скрещивающимися прямыми бывает полезной следующая теорема о трёх косинусах.
Угол 








Доказательство: Пусть точка 










Пусть 







и
Пример №18
В треугольной пирамиде 





Решение:
Используем теорему о трёх косинусах, учитывая, что угол 






Поскольку 
то 

Ответ:
Пример №19
Основанием треугольной пирамиды 








Решение:











Ответ: 5 см.
Пример №20
Докажите, что если луч 






Решение:
Пусть 











Пространственное моделирование
Определим, как при движении на эскалаторе можно оценить глубину расположения станции метро, длину эскалатора (рис. 289).
Обратим внимание на то, что при спуске или подъёме на эскалаторе мы проезжаем вдоль ряда ламп, расположенных на равных расстояниях друг от друга. Нормативами задаётся освещённость тоннеля, исходя из которой устанавливается и расстояние между соседними лампами. Также учтём, что оптимальный угол наклона линии эскалатора к плоскости земли равен 30°.
Будем рассматривать эскалатор как наклонную к плоскости земли. Тогда глубину расположения станции можно интерпретировать как длину перпендикуляра к плоскости земли.
Для ответа на вопрос достаточно рассмотреть прямоугольный треугольник 


- а) Подсчитайте длину эскалатора, учитывая, что расстояние между лампами равно а.
- б) Составьте формулу для нахождения глубины закладки станции метро.
Перпендикулярность плоскостей
А) Два луча на плоскости с общим началом разделяют эту плоскость на две части, каждая из которых называется углом.
Аналогично две полуплоскости с общей границей разделяют пространство на две части (рис. 290). Каждую из этих частей вместе с полуплоскостями называют двугранным углом. Полуплоскости, ограничивающие двугранный угол, называют гранями угла, а общую прямую — ребром двугранного угла (рис. 291).
Обычно рассматривают меньший из двугранных углов с данными гранями (рис. 292). Точки угла, не лежащие на его гранях, составляют внутреннюю область двугранного угла (рис. 293).
Двугранный угол обычно обозначают по ребру: 




Моделью двугранного угла может служить двускатная крыша (рис. 295), стена вместе с открытой дверью (рис. 296), полураскрытая книга (рис. 297).
Для измерения двугранных углов вводится понятие линейного угла. Выберем на ребре 














Понятно, что двугранный угол имеет бесконечно много линейных углов (рис. 299).
Теорема 10. Все линейные углы двугранного угла равны друг другу.
Доказательство: Пусть 


Отложим на сторонах углов 














Измерение двугранных углов связывается с измерением их линейных углов. В зависимости от того, каким — острым, прямым, тупым, развёрнутым — является линейный угол двугранного угла, отличают острые, прямые, тупые, развёрнутые двугранные углы. Двугранный угол, изображённый на рисунке 301, — острый, на рисунке 302 — прямой, на рисунке 303 — тупой.
Две пересекающиеся плоскости разделяют пространство на четыре двугранных угла с общим ребром (рис. 304). Если один из них равен 

Если один из двугранных углов, образовавшихся при пересечении двух плоскостей, прямой, то три остальных также прямые (рис. 305).
Б) Плоскости, при пересечении которых образуются прямые двугранные углы, называются перпендикулярными плоскостями.
Для обозначения перпендикулярности плоскостей, как и для обозначения перпендикулярности прямых, используют знак
Моделями перпендикулярных плоскостей могут служить столешница и боковина стола (рис. 306), пол в комнате и дверь в неё (рис. 307).
Теорема 11. Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то такие плоскости перпендикулярны.
Доказательство: Пусть через прямую 



Плоскости 





В плоскости 










Теорема 11 выражает признак перпендикулярности плоскостей.
Следствие. Плоскость, перпендикулярная линии пересечения двух данных плоскостей, перпендикулярна каждой из них (рис. 309).
Докажем теперь утверждение, обратное утверждению теоремы 11.
Теорема 12. Если через точку одной из перпендикулярных плоскостей провести прямую, перпендикулярную другой плоскости, то эта прямая принадлежит первой плоскости.
Доказательство: Пусть две перпендикулярные плоскости 






Через точку 
















Пример №21
Точка 



Решение:
Прямая 








Следствие. Если две пересекающиеся плоскости перпендикулярны третьей плоскости, то их линия пересечения перпендикулярна той же плоскости (рис. 312).
Пример №22
В правильной треугольной пирамиде 


Решение:
Пусть 



Из равенства треугольников 



Из прямоугольных треугольников 



Поэтому
Ответ:
В) При вычислениях бывает полезной теорема о трёх синусах.
Теорема 13. Линейный угол 


Доказательство: Пусть прямая 


















Следствие 1. Если точка 







Пример №23
Стороны 








Решение:
Пусть искомый угол равен 







Следствие 2. Пусть рёбра 




Пример №24
Плоскости правильных треугольника 


Решение:








Тогда по теореме Пифагора
Ответ:
Пример №25
Из точек 







Решение:
Пусть 















Тогда по теореме Пифагора
Из треугольника
Поэтому
Ответ:
Пространственное моделирование
Отдельным видом параллельного проектирования, применяемого в геометрии для изображения пространственных фигур, является ортогональное проектирование.
Ортогональной проекцией точки на плоскость 
Ортогональной проекцией фигуры на плоскость называется множество ортогональных проекций всех точек этой фигуры на плоскость.
Если 


«…Разум заключается не только в знаниях, но и в умении применять знания на деле…»
(Аристотель).
- Ортогональное проецирование
- Декартовы координаты на плоскости
- Декартовы координаты в пространстве
- Геометрические преобразования в геометрии
- Теорема синусов и теорема косинусов
- Параллельность прямых и плоскостей
- Перпендикулярность прямой и плоскости
- Взаимное расположение прямых в пространстве, прямой и плоскости
РЕШЕНИЕ: Расстояние от точки до плоскости определяется длиной отрезка перпендикуляра, проведенного из заданной точки к заданной плоскости.
Далее приводится поэтапное графическое решение варианта №17 из данного списка вариантов.
Задачу решаем в следующей последовательности:
|
Рис.1 |
Строим плоскость треугольника АВС и точку D по заданным координатам варианта №17 (см. рис.1): A (70, 45, 60), Построить свой треугольник онлайн можно перейдя по ссылке. |
|
Рис.2 |
Затем строим в плоскости треугольника АВС фронталь и горизонталь (см. рис.2).
Фронталь это линия, которая параллельна оси ОХ на горизонтальной плоскости проекции (нижняя часть).
Данные линии проводятся через вершины треугольника (через точки А, B, C). |
|
Рис.3 |
После того как мы построили фронталь и горизонталь, необходимо из точки D провести перпендикуляр к треугольнику АВС(см. рис.3).
При этом горизонтальная проекция перпендикуляра (от точки D1) должна быть перпендикулярна к горизонтальной проекции А фронтальная проекция (от точки D2) перпендикулярна к фронтальной проекции фронтали A2F2; |
|
Рис.4 |
Теперь необходимо определить точку пересечения перпендикуляра с данной плоскостью, Перпендикуляр через точку D1 заключаем во вспомогательную плоскость частного положения ∑1
Примечание: необязательно это делать через точку D1,
После того как мы провели вспомогательную плоскость ∑1
Потом находим точку пересечения линии M2P2 вспомогательной плоскости |
|
Рис.5 |
После того как мы провели перпендикуляр DK, осталось определить его действительную величину
Определяем расстояние по вертикали от точки D до точки K на какой-либо плоскости проекций. Примечание: доказательство того что расстояние от точки до плоскости можно определить на любой из плоскостей приекции представлено
Откладываем это расстояние перпендикулярно отрезку DK
Расстояние от точки D0 до точки K2 |
|
Рис.6 |
Найдя расстояние от точки до плоскости треугольника АВС,
Симметричная точка подразумевает собой точку, которая отстоит от плоскости треугольника АВС
Рассмотрим полученный нами отрезок D0K2. |
|
Рис.7 |
Затем проводим перпендикуляр к линии пенпендикуляра от точки D на рассматриваемой плоскости проекции (см. рис.7).
В нашем случае на фронтальной плоскости проекции к удлиненной линии D2K2. Линии D2K2 и К2Е2 так же равны между собой. |
|
Рис.8 |
Строим проекцию полученной точки на противоположную плоскость проекции так же на линию перепендикуляра (см. рис.8).
В нашем случае проецируем полученную точку Е2 на горизонтальную плоскость проекции |















: известны катет и гипотенуза, неизвестна сторона, являющаяся вторым катетом.
— сторона
.
: один катет известен по условию, второй — найден из
; неизвестной является третья сторона — гипотенуза. По теореме Пифагора составляем выражение и выполняем вычисление длины отрезка
.


от точки
равные отрезки
и
;
некоторую точку
, а на прямой
— точку
; соединим точки:
с
,
с
,
с
,
и
произвольную прямую
, которая пересечет
в точке
— медиана и высота;
по построению;
— общая сторона треугольников
и
; 
. Итак,
по двум сторонам и углу между ними. Отсюда
.
. Равенство отрезков
и
доказывается аналогично, как и равенство отрезков
и
.
, поскольку
и
-общая сторона. Отсюда вытекает равенство соответствующих углов:
.
по двум сторонам и углу между ними:
— общая сторона;
по доказательству выше. Итак,
, т.е.
— равнобедренный:
— основание треугольника,
— середина
, поэтому
— медиана
. В равнобедренном треугольнике медиана является высотой, т.е.
, а это означает, что
. Поскольку прямая
— произвольная прямая плоскости
, проходит через точку пересечения прямой
и плоскости
, перпендикулярна прямой
, то
.



лежит по одну сторону от плоскости
и не пересекает ее (рис. 5.21, а);
пересекает плоскость
(концы отрезка находятся в разных полупространствах) (рис. 5.21, б);
лежит по одну сторону от плоскости
и точка
— конец отрезка — принадлежит плоскости
(рис. 5.21, в).






















































































































































































































