Полный дифференциал функции
Как найти?
Постановка задачи
Найти полный дифференциал функции двух переменных $ z = f(x,y) $
План решения
Формула полного дифференциала функции записывается следующим образом:
$$ dz = f’_x (x,y) dx + f’_y (x,y) dy $$
- Находим первые частные производные функции $ z = f(x,y) $
- Подставляя полученные производные $ f’_x $ и $ f’_y $ в формулу, записываем ответ
Примеры решений
| Пример 1 |
| Найти полный дифференциал функции двух переменных $ z = 2x + 3y $ |
| Решение |
|
Находим частные производные первого порядка: $$ f’_x = 2 $$ $$ f’_y = 3 $$ Подставляем полученные выражения в формулу полного дифференциала и записываем ответ: $$ dz = 2dx + 3dy $$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
| Ответ |
| $$ dz = 2dx + 3dy $$ |
| Пример 2 |
| Найти полный дифференциал функции нескольких переменных $ u = xyz $ |
| Решение |
|
Так как функция состоит из трёх переменных, то в формуле полного дифференциала функции необходимо это учесть и добавить третье слагаемое $ f’_z dz $: $$ du = f’_x dx + f’_y dy + f’_z dz $$ Аналогично как и в случае функции двух переменных находим частные производные первого порядка: $$ u’_x = yz $$ $$ u’_y = xz $$ $$ u’_z = xy $$ Используя формулу записываем ответ: $$ du = yzdx + xzdy + xydz $$ |
| Ответ |
| $$ du = yzdx + xzdy + xydz $$ |
| Пример 3 |
| Вычислить значение полного дифференциала функции $ z = x^3+y^4 $, при $ x = 1 $, $ y = 2 $, $ dx = 0.03 $ и $ dy = -0.01 $ |
| Решение |
|
Берем частные производные первого порядка: $$ z’_x = 3x^2 $$ $$ z’_y = 4y^3 $$ Воспользовавшись формулой составляем полный дифференциал: $$ dz = 3x^2 dx + 4y^3 dy $$ Из условия задачи известны все переменные для вычисления значения дифференциала. Подставив их и вычислим значение: $$ dz = 3cdot 1^2 cdot 0.03 + 4 cdot 2^3 cdot (-0.01) = 0.09 — 0.32 = -0.23 $$ |
| Ответ |
| $$ dz = -0.23 $$ |
Содержание:
- Дифференциал функции
- Геометрическое содержание дифференциала
- Применение дифференциала к приблизительным вычислениям
- Дифференциал функции и функция
- Дифференциал функции и его определение
- Геометрический смысл дифференциала
- Основные свойства дифференциала
- Свойство инвариантности формы дифференциала
- Применение дифференциалов при приближенных вычислениях
- Дифференциал функции с примерами
- Справочные сведения
- Определение производной
- Правила вычисления производных, связанные с арифметическими действиями над функциями
- Формулы для производных основных элементарных функций
Дифференциал функции
Дифференциалом функции у=ƒ(х) в точке х называется главная часть ее приращения, равная произведению производной функции на приращение аргумента, и обозначается dу (или dƒ(х))
Понятие дифференциала функции:
С понятием производной тесно связано важное понятие математики — понятие дифференциала.
Пусть дана функция у = f(х), дифференцирования в точке х. Это означает, что существует
Следовательно, справедливо соотношение:
Отсюда:
Как видно, прирост функции складывается из двух слагаемых. Второе слагаемое 


Дифференциалом функции у = f(х) в точках х называют главную часть прироста функции 
При 


то есть дифференциал функции у = f(х) в точках х равен произведению производной в этой точке на дифференциал аргумента.
Отсюда, 
Геометрическое содержание дифференциала
Рассмотрим график непрерывной функции у = f(х) (рис. 1).
Производная функции при 

На рис. 1 видно, что касательная разбивает прирост функции KN на два отрезка: KP, который соответствует слагаемому 

Потому, что 


Следовательно, дифференциал функции у = f (х) геометрически изображается приростом ординаты касательной, проведённой в точке 


Пример 1. Найти дифференциал функции
Решение: Находим производную данной функции:
Умножаем производную на дифференциал аргумента, получаем дифференциал функции:
Ответ:
Пример 2. Найти дифференциал функции
Решение: Сначала найдём производную данной функции:
Умножим производную на дифференциал аргумента, получаем дифференциал функции:
Ответ:
Пример 3. Вычислить значение дифференциала функции 
Решение: Дифференциал вычислим согласно формулы
Прежде чем использовать эту формулу, найдём производную функции и её значение при
Отсюда,
Ответ:
Применение дифференциала к приблизительным вычислениям
Прирост функции и дифференциал функции отличаются один от другого на малую величину
то есть при малых приростах аргумента 
Учитывая, что 

Эти приближённые равенства используются для приближённых вычислений, так как вычисление дифференциала функции значительно проще, чем вычисление её прироста.
Пример4. Вычислить приближённое значение прироста функции 
Решение: Находим дифференциал аргумента 


Дифференциал функции вычислим по формуле: 
Точное значение прироста функции найдём по формуле:
Сравнив полученный результат с дифференциалом 
Такая точность почти всегда достаточна для прикладных вычислений, поэтому вместо прироста функции находят её дифференциал.
Ответ:
Пример 5. Вычислите приближённое значение функции
Решение: Найдём дифференциал аргумента 
Сначала найдём значение функции при х=2:
Дифференциал находим по формуле: 
Ответ:
Пример 6. Найти приближённое значение 
Решение: Нам необходимо найти приближённое значение функции 
Найдём дифференциал аргумента:
прирост аргумента малый, поэтому
Дифференциал находим по формуле: 
Ответ:
Пример 7. Найти приближённое значение
Решение: Как и предыдущем примере, имеем
Ответ:
Пример 8. Объём куба, ребро которого равно 4см., при нагревании увеличивается на 0,96см3. Как при этом увеличивается ребро куба?
Решение: Объём куба с ребром х вычисляется по формуле: V=х3. Поскольку
Дифференциал функции вычисляется по формуле 

Теперь находим
Ответ: Ребро куба увеличилось приблизительно на 0,02 см.
Дифференциал функции и функция
Дифференциал — главная часть прироста функции.
Дифференциал функции и его определение
Определение дифференциала
Если функция y = f (x) имеет в точке х производную, то 


где 

В формуле (4.3) второе слагаемое 


Определение. Главная линейная часть приращения функции, равная произведению производной на приращение независимой переменной, называется дифференциалом функции f (x).
Обозначается дифференциал символом dy или df(x). Итак,

Приращение 


Пример 1. Найти дифференциал функции y = 1 + ln x.
Решение.
Пример 2. Найти дифференциал функции 
Решение. Вычислим сначала производную y’, использовав правило дифференцирования сложной функции

Геометрический смысл дифференциала
Дифференциал функции имеет простое геометрическое толкование.
Пусть имеем график функции y = f (x). Возьмем на этой кривой точку М (х, у) и проведем в ней касательную к кривой.
Рис. 4.
Пусть 

Дадим х некоторое приращение 





С геометрической точки зрения дифференциал dy функции y = f (x) в данной точке есть приращение ординаты касательной к графику функции в этой точке, когда x получает приращение 
Основные свойства дифференциала
1) Дифференциал постоянной равна нулю dc = 0.
2) Дифференциал алгебраической суммы функций равен алгебраической сумме дифференциалов этих функций 
3) Дифференциал произведения двух функций равен сумме произведений каждой из функций на дифференциал второй функции
4) Дифференциал частного находится по формуле

Докажем свойство 3)

Свойство инвариантности формы дифференциала
Пусть дана сложная функция y = f (u), где 

Поскольку dy = d [f (x)] = f ‘(x) dx, то можем сделать вывод, если вместо независимой переменной х подставить произвольную функцию от х, то форма дифференциала не меняется. Это свойство носит название инвариантности формы дифференциала.
Применение дифференциалов при приближенных вычислениях
Дифференциалы используют при приближенных вычислениях значений функций, применяя примерное равенство 
Откуда значение функции 
Пример 1. Вычислить приближенно ln 1,02 с помощью дифференциала.
Решение. Число ln 1,02 является значением функции y = ln x при х = 1,02. Взяв 

Итак, ln 1,02 = ln 1 + 1⋅ 0,02 = 0,02.
Пример 2. Вычислить 
Решение. Запишем 
Будем рассматривать данное число как значение функции 
Взяв 


Дифференциал функции с примерами
Дифференциалом функции 











Из определения производной и дифференциала вытекает, что 









По этой ссылке вы найдёте полный курс лекций по высшей математике:
Примеры с решением
Пример 1.
Найти дифференциал функции 

Пример 2.
Найти дифференциал функции 

Пример 3.
Найти дифференциал функции 




Пример 4.
Вычислить значение дифференциала функции 



Пример 5.
Заменяя приращение функции дифференциалом, приближенно найти 




Возможно вам будут полезны данные страницы:
Справочные сведения
Определение производной
Предел отношения 











Вычисление производной называют дифференцированием.
Правила вычисления производных, связанные с арифметическими действиями над функциями
Если функции 










Формулы для производных основных элементарных функций
1) Степенная функция: 



2) Показательная функция. Если 


3) Логарифмическая функция. Если 

4) Тригонометрические функции: 
5) Обратные тригонометрические функции: 
6) Гиперболические функции: 
Дифференциал функции
Если приращение 





Таким образом, если равенство (5) верно, то
![]()
Дифференциалом, 






Эта формула позволяет вычислять дифференциалы функций, если известны их производные. Если функция 







Примеры с решениями
Пример 1.
Вычислить производную функции

Пример 2.
Вычислить производную функции 










Лекции:
- Объемы подобных фигур
- Алгебра логики
- Эластичность функции
- Разностные уравнения
- Случайная вероятность
- Тригонометрические комплексные числа
- Непрерывность функции
- Теорема о разложении на множители
- Экстремум функции многих переменных
- Пределы в математике
Содержание:
Пусть функция
Рассмотрим геометрический смысл дифференциала. На рис. 12.1 









Исходя из того, что 
С геометрической точки зрения, 


При нахождении дифференциала функции 

Это равенство справедливо для любой функции. В частности, для функции


Подставляя 

Найденное равенство является основанием для нахождения дифференциала функции.
Пример:
Найдите 
Решение:
Поскольку 
Обоснуем, например, правило 2: 





В этом равенстве первое слагаемое правой части является дифференциалом функции, следовательно,
Учитывая, что 




- Дифференциал функции
является главной частью приращения функции.
С геометрической точки зрения (см. рис. 12.1), при 







Последнее равенство используется для разных приближенных вычислений функций в тех случаях, когда 
Пример:
Пользуясь формулой (5), найдите приближенное значение
Решение:
Если рассмотреть функцию 





Комментарий:
При вычислении значения 








Понятие о дифференциале функции
Пусть имеем некоторую дифференцируемую функцию
Приращение 




где коэффициент пропорциональности k не зависит от 


будет бесконечно малым при 
называется дифференциалом функции у в точке х (здесь буква d — знак дифференциала). В этом случае, как следует из соотношения (1), справедливо равенство
где 

Иначе говоря,
Определение: Дифференциалом функции называется величина, пропорциональная приращению независимой переменной и отличающаяся от приращения функции на бесконечно малую функцию высшего порядка малости по сравнению с приращением независимой переменной.
Слагаемое k 
Пример:
Пусть функция 


Первое слагаемое суммы, стоящей в правой части последнего равенства, очевидно, является главной линейной частью приращения функции при 
На рис. 126 приращение 
Сформулируем теорему единственности дифференциала:
Теорема: Данная функция может иметь только один дифференциал.
Доказательство: В самом деле, пусть функция у = f(x) имеет два дифференциала: 
где 

и, следовательно, при 
Переходя к пределу при 
т. е. 
Из определения дифференциала непосредственно следует: дифференциал функции отличается от приращения этой функции на величину высшего порядка малости по сравнению с приращением независимой переменной. Этим обстоятельством часто пользуются при приближенных вычислениях.
Пример:
Пусть 


Решение:
Имеем 
Первое слагаемое, стоящее в правой части последнего равенства, очевидно, является главной линейной частью приращения функции. Следовательно,
Полагая х = 1, получим следующую таблицу:
Отсюда ясно видно, что доля дифференциала dy в приращении 

Подробное объяснение понятия дифференциала функции:
Пусть функция у = f(x) дифференцируема на отрезке 
Отношение 

Отсюда
Таким образом, приращение функции 
Так как в общем случае 


Второе слагаемое — величина бесконечно малая высшего порядка относительно 

Итак, если функция у = f(x) имеет производную 
Найдём дифференциал функции у = х.
Следовательно, производную 
Очевидно, что задача нахождения дифференциала равносильна задаче нахождения производной, поэтому большинство теорем и формул, относящихся к производным, сохраняют свою силу и для дифференциалов.
Свойства дифференциала:
- Дифференциал суммы двух дифференцируемых функций
равен сумме дифференциалов этих функций:
- Дифференциал произведения двух дифференцируемых функций
и
определяется формулой:
Пример:
Пример:
3. Дифференциал сложной функции. Пусть 

Форма дифференциала не зависит от того, является аргумент функции независимой переменной или функцией другого аргумента. Это важнейшее свойство дифференциала называется инвариантностью формы дифференциала.
Пример:
но
Дополнительный разбор дифференциала функции:
Пусть функция


На основании теоремы о связи бесконечно малых величин с пределами функций можно записать
где 

Таким образом, приращение функции 


(см. замечание в § 6.3)
Определение. Дифференциалом функции называется главная, линейная относительно Ах часть приращения функции, равная произведению производной на приращение независимой переменной
Пример:
Найти приращение и дифференциал функции
Решение:
Приращение функции





Пример:
Найти дифференциал функции
Решение:

т.е. дифференциал независимой переменной равен приращению этой переменной. ►
Поэтому формулу для дифференцирования функции можно записать в виде
откуда 


Определение дифференцируемости функции, её дифференциала. Геометрический и физический смысл дифференциала
Пусть функция y=f(x) определена на интервале (а, b) и 



Определение 12.1.1. Пусть функция y=f(x) определена в некоторой окрестности точки 

где А — постоянная величина, не зависящая от х, а 

Линейная функция 









Если





Если f дифференцируема в точке 




что противоречит определению, т.к. мы должны получить 

Для тождественной функции у = х: 


Связь между дифференцируемостью в точке и существованием производной в этой точке устанавливается следующей теоремой.
Теорема 12.1.1. Для того чтобы функция была дифференцируема в точке 

Доказательство. Необходимость. Пусть функция дифференцируема в точке 

виде

Считая 

Правая (и потому и левая) часть этого равенства имеет предел равный А при 


так как 




Итак, мы доказали, что если для функции f справедливо представление (12.1.4), то эта функция имеет в точке


Достаточность. Пусть существует конечная производная
Всякую функцию, имеющую предел в точке можно представить в виде суммы предела и бесконечно малой функции (п. 10.5):
Умножив это равенство на 


Из доказательства теоремы следует, что дифференцируемость определяется однозначно. Кроме того, производную 

Рассмотрим функцию





Формула (12.1.3) дает возможность вычислять дифференциалы, зная производные функций. Для этого достаточно производные функций умножить на dx.
Дифференциал, с геометрической точки зрения представляет собой приращение, которое мы получим, если в окрестности рассматриваемой точки 


Как видно из рисунка 


Мы знаем, что производная пути это величина мгновенной скорости, т.е. 


Пример №1
Дана функция 




Решение:
1). Для того чтобы найги дифференциал 


2). Поскольку 




Дифференциал сложной функции
Когда аргумент х дифференцируемой функции у = f(x) представляет собой независимую переменную, для дифференциала dy этой функции справедливо равенство 
Рассмотрим сложную функцию 

Определим dz, предполагая, что z зависит от х. По определению дифференциала будем иметь 

Следовательно,

Пример №2
Дана сложная функция
Решение:
Поскольку выражение дифференциала является универсальным. то 
Применение дифференциала в приближенных вычислениях
Из изложенного выше следует, что 




Чем меньше значение 
Пример №3
Вычислить приближенно:
Решение:
а) Получим вначале приближенную формулу для вычисления корней любой 




В данном примере
В качестве 




б) Полагая 



возьмем
Используя дифференциал, по формуле (9.5) легко получить формулы, часто используемые на практике при
С помощью дифференциала может быть решена задача определения абсолютной и относительной погрешностей функции по заданной погрешности нахождения (измерения) аргумента.
Пусть необходимо вычислить значение данной функции 





При этом относительная погрешность функции
может быть вычислена (при достаточно малых 
где 


Пример №4
Расход бензина 



Решение:
Найдем эластичность функции (по абсолютной величине).
и по формуле (9.6) относительная погрешность 
Пример №5
С какой точностью может быть вычислен объем шара, если его радиус измерен с точностью до 2%?
Решение. Объем шара радиуса 


Существенным недостатком применения дифференциала в приближенных вычислениях является невозможность вычисления значений функций с наперед заданной точностью. Этого недостатка лишено использование рядов в приближенных вычислениях (см. § 14.3).
Применение дифференциала в приближенных вычислениях и в экономических исследованиях:
Производные и дифференциалы принадлежат к числу основных научных понятий математического анализа и применяются очень часто в практических приложениях.
Применение дифференциала первого порядка основано на том, что разность между приращением функции и ее дифференциалом является бесконечно малой более высокого порядка малости, чем дифференциал (см. п. 12.1).
Действительно, из рис. 12.1.1 видно, что дифференциал dy сколь угодно мало отличается от приращения функции 




Указанное обстоятельство позволяет с большой степенью точности заменять приращение функции ее дифференциалом, т.е.
Отношение

Формула (12.3.1) позволяет вычислить приближенное значение функции, соответствующее приращенному значению аргумента, если известно её значение в некоторой точке и значение производной в этой точке, когда приращение аргумента является достаточно малым.
Так, например, для конкретных функций 

Пример №6
Найти приближенное значение

Вычислим производную функции
Её значение и значение функции в точке 
Подставив в формулу (12.3.1) значение функции, её производной и приращения аргумента, вычислим значение cos31°:
Подробное объяснение применение дифференциала в приближенных вычислениях:
Из рисунка 5.1 видно, что дифференциал функции f(х), равен приращению ординаты касательной к кривой у = f(х) в данной точке х.
Также видно, что величина дифференциала функции f(х) при 


т.е. 
Рисунок 5.1 — Геометрический смысл дифференциала
Пример №7
Вычислить арифметическое значение 








Точное (с точностью до 6 знаков после запятой) значение
Дополнительное объяснение применения дифференциала в приближенных вычислениях:
Рассмотрим формулу (6.2):
Откуда
Если пренебречь 


а это означает, что в достаточно малой окрестности точки 

проведенной к графику функции в этой точке.
Если 

Пример:







Пример №8
Вычислить приближенно 
Решение.
Рассмотрим функцию 


Ответ:
Дифференциалы высших порядков
Пусть функция y=f(x) дифференцируема на некотором интервале (а; b). Ее дифференциал


Для дифференциала n-ого порядка справедлива формула:
Докажем это. Для n=1 и n=2 эта формула доказана. Пусть эта формула справедлива для дифференциалов порядка n-1, т.е.
Тогда вычисляя дифференциал от дифференциала 
поскольку 
Заметим, что формула (12.4.1) справедлива, когда аргумент х является независимой переменной, тогда второй дифференциал независимой переменной равен нулю: 
Пример №9
Найти 
Решение:
Воспользуемся формулой (12.4.1) для


Дифференциалы высших порядков по зависимым переменным не удовлетворяют формуле (12.4.1).Так. для сложной функции
Видно, что полученная формула существенно отличается от формулы (12.4.1), т.к. 
Пример №10
Вычислить дифференциал второго порядка сложной функции
Решение:
Чтобы воспользоваться формулой (12.4.2) для дифференциала второго порядка сложной функции, перепишем её в виде

Подставив значения производных и дифференциалов, получим: 

Как определить дифференциал высшего порядка:
Пусть x — независимая переменная, у = f(x) — дифференцируемая функция. Согласно формуле (4) имеем
таким образом, дифференциал функции f(x) есть функция от двух аргументов: х и dx.
В дальнейшем мы будем предполагать, что dx — дифференциал независимой переменной х — имеет произвольное, но фиксированное значение, не зависящее от независимой переменной х и одно и то же для всех рассматриваемых функций.
Если dx фиксировано, то df(x) есть некоторая функция от х, пропорциональная производной f'(x), с коэффициентом пропорциональности, равным dx. Может случиться, что эта функция также имеет дифференциал в таком случае последний называется дифференциалом второго порядка (или вторым дифференциалом) функции f(x); а дифференциал, определяемый формулой (1), носит более точное название дифференциала первого порядка (или первого дифференциала).
Определение: Дифференциалом второго порядка (или вторым дифференциалом) d2f(x) функции f(x) называется дифференциал от дифференциала первого порядка этой функции, т. е.
Аналогично, дифференциалом третьего порядка (или третьим дифференциалом) d3f(x) функции f(x) называется дифференциал от дифференциала второго порядка этой функции, т.е.
Так последовательно определяются дифференциалы высших порядков.
Выведем теперь формулу для дифференциала второго порядка функции f(x) от независимой переменной х, предполагая, что эта функция дважды дифференцируема, т. е. имеет произврдную второго порядка. Так как
то вследствие формулы (2) имеем
Если х — независимая переменная, то dx, равный Ах, очевидно, не зависит от х, т. е. dx по отношению к переменной х играет роль постоянной. Поэтому в формуле (3) множитель dx можно вынести за знак дифференциала и мы получим
Так как f'(x) снова есть некоторая функция от х, то из формулы (1) следует
Отсюда окончательно находим
где
Таким образом, получаем теорему:
Дифференциал второго порядка от данной функции равен произведению производной второго порядка этой функции на квадрат дифференциала независимой переменной.
Замечание. Формула (4), вообще говоря, неверна, если х не является независимой переменной, так как здесь dx нельзя рассматривать как множитель, не зависящий от х.
Если положить f(x) = y, то формулу (4) можно переписать так: 
т. е. производная второго порядка от данной функции равна отношению дифференциала второго порядка этой функции к квадрату дифференциала независимой переменной.
Если х есть независимая переменная, то аналогично формуле (4) имеем
И т. д.
Положим теперь в формулах (4) и (5)
Тогда 
Получаем теорему:
Дифференциалы высших порядков от независимой переменной равны нулю.
Подробнее о дифференциалах высших порядков:
Если рассмотреть дифференциал первого порядка 
т. е.
Выполнив аналогичные действия можно получить дифференциал третьего порядка 

Следует заметить, что уже дифференциал второго порядка сложной функции не обладает свойством инвариантности формы.
Понятие о дифференциалах высших порядков:
Для дифференцируемой функции у = f(х) согласно (5.1) 
Полагаем, что дифференциал независимой переменной имеет произвольное, но фиксированное значение, не зависящее от х. В этом случае dy есть функция х, которая также может иметь дифференциал.
Дифференциалом второго порядка 
Аналогично дифференциалом n-го порядка 
Дифференциалы второго и более порядков не обладают свойством инвариантности формы в отличие от дифференциала первого порядка.
Геометрический смысл дифференциала
Возьмем на графике функции 





Проведем касательную к кривой 




т.е. в соответствии с (9.2)
Таким образом, дифференциал функции есть приращение ординаты касательной, проведенной к графику функции 


Не следует думать, что всегда 
Подробнее о геометрическом смысле дифференциала:
Выясним геометрический смысл дифференциала функции. Рассмотрим график функции у = f(x).
Пусть 


Но из геометрического смысла производной следует 
Таким образом, имеем теорему:
Дифференциал функции у = f(x) в данной точке х равен приращению ординаты касательной к графику функции в этой точке, когда х получает приращение
Замечание. Приращение функции 
1)если график функции вогнут вверх, то
2)если же график функции вогнут вниз, то
Свойства дифференциала
Свойства дифференциала в основном аналогичны свойствам производной. Приведем их без доказательства:
Остановимся теперь на важном свойстве, которым обладает дифференциал функции, но не обладает ее производная.
Рассмотрим теперь некоторые свойства дифференциала, аналогичные свойствам производной.
В дальнейших формулировках мы будем предполагать, не оговаривая этого каждый раз, что все рассматриваемые функции имеют производные, т. е. являются дифференцируемыми.
Дифференциал постоянной
Дифференциал постоянной равен нулю.
Полагая в формуле (4) из у = с и 
dc = 0.
Дифференциал суммы
Дифференциал алгебраической суммы нескольких дифференцируемых функций равен такой же алгебраической сумме дифференциалов этих функций.
В самом деле, если и, v и w — дифференцируемые функции от независимой переменной х, то, например, имеем
Умножая обе части на dx, получаем
Отсюда согласно формуле (4) из выводим
Если две дифференцируемые функции отличаются на постоянное слагаемое, то дифференциалы их равны между собой.
Имеем
Полагая здесь с постоянной и, следовательно, dc = 0, получим
Постоянный множитель может быть вынесен за знак дифференциала.
В самом деле, если с постоянно, то
Умножив обе части этого равенства на dx, получим
или
Дифференциал произведения
Дифференциал произведения двух сомножителей равен произведению первого сомножителя на дифференциал второго плюс произведение второго сомножителя на дифференциал первого.
В самом деле, если и и v — дифференцируемые функции от х, то имеем
Умножая обе части на dx, получаем
Дифференциал частного
Дифференциал дроби (частного) равен также дроби, числитель которой есть произведение знаменателя дроби на дифференциал числителя минус произведение числителя на дифференциал знаменателя, а знаменатель есть квадрат знаменателя дроби.
Мы имеем
Умножив обе части на dx, получим
Отсюда
Дифференциал сложной функции
Дифференциал сложной функции (функции от функции) равен произведению производной этой функции по промежуточному аргументу на дифференциал этого промежуточного аргумента (обе функции дифференцируемы).
Пусть 
Умножив обе части этого равенства на дифференциал dx независимой переменной х, получим
Но 
Замечание. Формула (2) по внешнему виду совпадает с формулой (4) из, но между ними есть принципиальное различие: в формуле (4) х естьлезависимая переменная и, следовательно, dx = 

Из формулы (2) следует такая теорема.
Независимость вида дифференциала от выбора независимой переменной
Дифференциал функции равен произведению производной этой функции на дифференциал аргумента, при этом безразлично, будет ли этот аргумент независимой переменной или дифференцируемой функцией от другой независимой переменной.
На основании формул для производных получаем соответствующую таблицу для дифференциалов, где и — произвольная дифференцируемая функция.
Инвариантность формы дифференциала
Рассматривая 







Тогда дифференциал функции
ибо по формуле (9.2) 
Последнее равенство означает, что формула дифференциала не изменяется, если вместо функции от независимой переменной 

Однако в содержании формул (9.3) и (9.4) все же есть различие: в формуле (9.3) дифференциал независимой переменной равен приращению этой переменной, т.е. 


Понятие о дифференциалах высших порядков
Для дифференцируемой функции 

Будем полагать, что дифференциал независимой переменной имеет произвольное, но фиксированное значение, не зависящее от 


Дифференциалом второго порядка (или вторым дифференциалом) 

Аналогично дифференциалом 




Найдем выражение для 





Итак,
где 
т.е. дифференциал второго (и вообще 


и вообще
В заключение отметим, что дифференциалы второго и более высоких порядков не обладают свойством инвариантности формы (или формулы) в отличие от дифференциала первого порядка.
Бесконечно малые величины
1.В этом параграфе чаще всего независимое переменное будем обозначать через 
О пределение. Бесконечно малой величиной вблизи 


Например, 




Бесконечно малые величины при условии, что независимое переменное стремится к нулю, будем называть «бесконечно малыми», не указывая, а только подразумевая условие 




Приведем примеры геометрического и физического содержания.
Пример:
Площадь 



Пример:
Объема 

Пример:
Объем 


Пример:
По закону Ома 



Пусть дана бесконечно малая величина 



Если этот предел существует и равен нулю,то бесконечно малая величина 

Если предел равен конечному числу 





* — этот предел может зависеть от других переменных, отличных от 
Пример:
Пусть 

Пример:
Пусть 


Пример:


Пример:




В заключение параграфа рассмотрим функцию 










Пример:
Пусть дана функция 











Если 








Если 



Что такое дифференциал
Пусть дана непрерывная функция 
Поэтому, если в правой части откинем знак предела, то получим ошибку, величина которой зависит и от 


Про ошибку 
Это следует из равенства (1). Значит, ошибка 


или
В левой части равенства (4) стоит приращение функции 


Очевидно, что первый член 






Определение дифференциала
Определение: Дифференциал есть та часть приращения функции 


Для симметрии записей вводится определение дифференциала независимого переменного.
Определение: Дифференциалом независимого переменного называется его приращение.
Дифференциал независимого переменного обозначается 
Операция нахождения дифференциала называется дифференцированием.
Пример №11
Найдем дифференциал функции 
Решение:
Так как 

Пример №12
Вычислим значение дифференциала функции 


Решение:
Так как 



Из определения дифференциала функции следует, что дифференциал функции одного переменного является функцией двух переменных. Из формул (5) и (6) следует, что 
С этого момента для обозначения производной будем пользоваться и знаком ( )’ и отношением дифференциалов.
Таблица дифференциалов
Таблица дифференциалов функции:
Применение к приближенным вычислениям
Перепишем формулу в следующем виде:
и для начала посмотрим на примере, как будут выглядеть отдельные ее члены при некоторых числовых значениях 

Пример №13
Пусть 


С другой стороны, применяя формулу (1) и зная, что 
Сравнивая формулы 






Если бы мы захотели вычислить 

Аналогично в общем случае формулу (1) заменяют приближенной формулой, откидывая бесконечно малую высшего порядка, т. е. член 
(знак ≈: обозначает приближенное равенство). Эту формулу имеет смысл употреблять только при малых значениях величины 
Приведем примеры применения формулы (2).
Пример:
Выведем приближенную формулу для вычисления кубического корня. Возьмем 

Если положить 
Отсюда видно, что если нам известен кубический корень из числа, то для близких чисел можно с удобством воспользоваться выведенной формулой.
Например, зная, что 


Сделаем проверку, возведя 10,01 в куб. Видим, что вместо 1003 получили число 1003,003001, т. е. ошибка меньше 0,005.
Пример:
Выведем приближенную формулу для вычисления тангенсов малых углов. Так как 
Зная, что 


Напоминаем, что здесь 


Дифференциал площади криволинейной трапеции
Определение: Криволинейной трапецией называется плоская фигура, ограниченная с трех сторон прямыми, а с четвертой стороны кривой. При этом две прямые параллельны между собой и перпендикулярны третьей, а кривая пересекается с любой прямой, параллельной боковым сторонам, в одной точке.
Не исключается случай, когда одна или обе боковые стороны обращаются в точку. На рис. 69, 70, 71 изображены криволинейные трапеции. Все плоские фигуры, с которыми нам придется встречаться, могут быть представлены как совокупность криволинейных трапеций. Например, на рис. 72 фигура разбита на четыре криволинейные трапеции.
Конечная наша цель — определить площадь криволинейной трапеции, но пока эту задачу мы еще не можем решить. Однако мы сумеем найти дифференциал площади криволинейной трапеции. Решим эту задачу, предполагая, что трапеция расположена определенным образом.
Пусть дана криволинейная трапеция 


Будем считать, что прямая 




Ясно, что площадь криволинейной трапеции 







При изменении независимого переменного от величины 








Рассмотрим прямоугольник с основанием 





Очевидно, что площадь второго прямоугольника 



Следовательно, приращение 




Величина 







Предварительно заметим, что, во-первых, всегда, т. е. при любых значениях 
и, во-вторых, если 











а это значит, что можно записать (см. начало § 2 этой главы)
где 

где 

Первый предел находим непосредственно [применяя (3)]:
Чтобы найти второй предел, найдем сначала [используя (4) и (5)]
Так как 

Таким образом, установлено, что и 



Учитывая все эти рассуждения и применяя равенство (4), можно переписать равенство (1) в виде
В правой части равенства (8) стоят три члена. Каждый из них является бесконечно малым относительно 

Применяя результаты, заключаем, что приращение площади криволинейной трапеции равно 


Этим результатом мы воспользуемся в следующих главах.
Пример:
Найдем дифференциал площади 




Применяя только что полученный результат, будем иметь
Пример №14
Найти производную от площади криволинейной трапеции, ограниченной осью 



Решение:
Находим дифференциал этой площади: 
Применение дифференциала к различным задачам
Рассуждения не только приводят к понятию дифференциала, но в некоторых случаях позволяют найти производную. Предположим, что приращение некоторой функции представлено в виде
где 

Тогда
откуда

т. е. 
Пример №15
Найти производную от функции 
- поверхностью
, полученной от вращения вокруг оси
дуги
, принадлежащей параболе
;
- плоскостью
перпендикулярной оси
и отстоящей от начала координат на расстояние
(рис. 74).
Решение:
Ясно, что объем зависит от величины 


















Рассмотрим два цилиндра: первый из них имеет основанием 




через 







Разность объемов 

Приращение 


где 
то член 







В этом примере следует обратить внимание на то, что функция 
Пример №16
Рассмотрим цилиндрическую трубу, у которой радиус внешней поверхности 



Решение:
Будем называть этот объем объемом цилиндрического слоя. Поскольку объем внешнего цилиндра равен 

или
Если стенка трубы тонкая, то 



или
Второй член, стоящий в правой части равенства 



Интересно отметить еще один способ получения этой формулы (рис. 79).
Если разрезать трубку вдоль ее образующей и развернуть на плоскость, то получим «почти» прямоугольный параллелепипед с измерениями 


Дифференциал функции и его свойства и геометрический смысл
Пусть функция 









Определение: Главная часть приращения функции, линейная относительно приращения аргумента 
Пример №17
Найти дифференциал функции,
Решение:
Используя определение, находим
Если 




Пример №18
Получить формулу производной от сложной функции
Решение:
Используя формулу для производной от функции, записанную в дифференциалах, найдем
Дифференциал функции обладает следующими свойствами:
Выясним геометрический смысл дифференциала функции (Рис. 73):
Рис. 73. Геометрический смысл дифференциала.
Из рисунка видно, что дифференциал функции с геометрической точки зрения описывает приращение касательной при приращении аргумента
Применение дифференциала функции
Пусть дана функция у = f(x), тогда при приращении аргумента 

Замечание: Полученное приближенное равенство тем точнее дает значение функции в приращенной точке, чем меньше приращение аргумента.
Пример №19
Вычислить
Решение:
В данном примере задана функция 




Пример №20
Вычислить
Решение:
В этом примере 
Дифференциалы и производные высших порядков
Пусть дана функция 


Определение: Дифференциал от первого дифференциала функции называется вторым дифференциалом функции:
Определение: Производная от первой производной функции называется второй производной функции, т.е.
Пример №21
Вывести формулу второй производной от параметрически заданной функции.
Решение:
Воспользуемся формулой:



Замечание: Отметим, что обозначение производной, начиная с четвертой, берется в скобки.
Замечание: Производные высших порядков могут быть записаны в виде 
Пример №22
Найти второй дифференциал функции
Решение:
Используя формулу для второго дифференциала, найдем вторую производную от заданной функции
Пример №23
Найти n-ую производную от функции
Вычислим последовательно первую 


Определение: Произведение чисел от 1 до n, равное n!, называется факториалом.
Пример №24
Найти n-ую производную от функции
Решение:
Вычислим последовательно первую 



Основные теоремы дифференциального исчисления
Теорема Ферма
Рассмотрим ряд важных теорем, которые полезны при исследовании функции.
Теорема 12.5.1. (теорема Ферма). Пусть функция f(x) определена на некотором интервале (а. b) ив точке 


Доказательство: Пусть для определенности функция f принимает в точке 


Предположим, что в точке
Тогда из неравенства (12.5.1) следует, что производная справа 



Геометрически, теорема Ферма означает, что если в точке

Заметим, что если функция f определена на отрезке
Например, функция у=х на отрезке [0, 1] достигает наибольшего и наименьшего значений в точке х=1 и х=0 (рис. 12.3) и в этих двух точках производная не обращается в нуль, хотя производная в этих I очках существует.
Теорема Ролля
Теорема: Пусть дана функция f(х), которая
- непрерывна на сегменте [a; b];
- дифференцируема на открытом интервале (a; b);
- на концах сегмента принимает равные значения
Тогда существует хотя бы одна точка 
Доказательство: Геометрический смысл теоремы Ролля состоит в том, что внутри сегмента 

Рис. 74. Геометрический смысл теоремы Ролля.
В силу того, что функция f(х) непрерывна на сегменте 
Вычисляя пределы от полученных неравенств при 
Так как производная функции в точке с не может быть одновременно и положительной, и отрицательной, то в этой точке она равна нулю, т.е. 
Замечание: Для выполнения теоремы Ролля важны все три вышеперечисленных условия. Приведем примеры нарушения одного из условий теоремы Ролля
Рис. 75. Примеры нарушения одного из условий теоремы Ролля. В случае а) значения функции на концах не равны между собой; в случае б) функция терпит разрыв первого рода в точке с; в случае в) функция не дифференцируема в точке с.
Определение: Точки, в которых первая производная функции равна нулю, называются критическими (стационарными или подозрительными на экстремум).
Теорема: (теорема Ферма). Необходимым условием существования экстремума в точке л- функции f(х), которая непрерывна на сегменте [a; b] и дифференцируема на открытом интервале (a; b), является обращение в нуль в этой точке первой производной функции,
- Заказать решение задач по высшей математике
Дополнительное объяснение теоремы Ролля:
Теорема 12.6.1. (теорема Ролля) Пусть функция f(x) непрерывна на отрезке
=f(b). Тогда внутри отрезка найдется точка , такая, что значение производной в этой точке равно нулю:
Доказательство. Согласно теореме 10.9.2 непрерывная на отрезке 


В случае, когда М >m и 


Геометрический смысл этой теоремы хорошо иллюстрируется на следующем рисунке (рис. 12.4): по теореме Ролля существует хотя бы одна точка интервала (а,b), в которой касательная к графику функции будет параллельна оси абсцисс, поскольку в этой точке производная равна нулю.
Отметим, что все условия теоремы существенны, при невыполнении хотя бы одного из них утверждение теоремы неверно.
Теорема Ролля является частным случаем теоремы Лагранжа
Теорема Лагранжа
ТЗ. Пусть функция f(х) непрерывна на сегменте [a; b] и дифференцируема на открытом интервале (a; b). Тогда существует хотя бы одна точка 
Доказательство: Геометрический смысл теоремы Лагранжа состоит в том, что внутри сегмента [a; b] есть, по крайней мере, одна такая точка с, в которой касательная к графику функции f(х) параллельна секущей, соединяющей крайние точки графика функции (Рис. 76):
Рис. 76. Геометрический смысл теоремы Лагранжа.
Составим уравнение секущей AВ, угловой коэффициент которой равен 













Дополнительное объяснение теоремы Лагранжа:
Теорема 12.7.1. (Теорема Лагранжа) Пусть функция f(x) непрерывна на отрезке


Доказательство. Введем на отрезке 
где число X выберем таким образом, чтобы

тогда функция F(x) примет вид;
Эта функция удовлетворяет условиям теоремы Ролля: она непрерывна на отрезке 


Откуда следует, что
Формулу (12.7.1) называют формулой Лагранжа или формулой конечных приращений.
Геометрическая интерпретация теоремы Лагранжа приведена на рис. 12.5.
Заметим, что отношение 




Следствие 12.7.1. Если функция f определена на некотором отрезке, имеет производную, равную нулю во всех внутренних точках и непрерывна на концах отрезка, то она постоянна на рассматриваемом отрезке.
Действительно, каковы бы ни были точки 

Но 


Следствие 12.7.2. Если две функции f и g дифференцируемы во всех внутренних точках некоторого отрезка и 
Действительно, функция 


Теорема Коши
Теорема 12.8.1. (Теорема Коши) Пусть функции f и g определены, непрерывны на отрезке 


Доказательство’. Заметим, что так как функция g удовлетворяет теореме Лагранжа, то на интервале 


Поскольку


Введем на отрезке [а,Ь] вспомогательную функцию F(x):
Эта функция непрерывна на отрезке [а;b] как разность непрерывных функций, дифференцируема на интервале (а,b) и на концах отрезка принимает значения 



Учитывая, что 
Теорема Коши является обобщением теоремы Лагранжа для случая когда х = g(x).
Правило Лопиталя
Теорема: Если функции f(х) и g(x) непрерывны на сегменте 





Доказательство: Докажем случай, когда при 





Замечание: Теорема Лопиталя применяется только для раскрытия неопределенностей вида 

Замечание: При применении правила Лопиталя производная дерется отдельно от числителя и отдельно от знаменателя дроби.
Пример №25
Вычислить
Решение:
Так как 
Пример №26
Вычислить
Решение:
Замечание: При необходимости правило Лопиталя применяется повторно.
Пример №27
Вычислить
Решение:
В данном примере имеем дело с неопределенностью 



Связь дифференциала функции с производной. Дифференциал независимой переменной
Теорема: Если функция имеет дифференциал, то эта функция имеет также и производную.
Доказательство: В самом деле, пусть дана некоторая функция у = f(x) и пусть
есть дифференциал этой функции. Согласно формуле (2), приращение 
где 


т. е. производная у’ существует и равна величине k.
Следствие. Дифференциал функции равен произведению производной этой функции на приращение независимой переменной, т. е.
Теорема: Если функция имеет производную, то эта функция имеет также и дифференциал.
Доказательство: Пусть функция 
Отсюда 

следовательно,
В сумме (2) первое слагаемое 

Теорема доказана.
Замечание. Теперь понятно, почему функция от одной независимой переменной, имеющая производную, называется дифференцируемой.
До сих пор мы пользовались понятием дифференциала функции. Введем понятие дифференциала независимой переменной.
Определение: Под дифференциалом независимой переменной понимается дифференциал функции, тождественной с независимой переменной, т. е. функции у = х. Так как
то согласно формуле (1) имеем
т. е. дифференциал независимой переменной равен приращению этой независимой переменной.
Пользуясь этим последним свойством, формулу (1) можно переписать в следующем симметричном виде:
Итак, дифференциал функции равен произведению производной этой функции на дифференциал независимой переменной.
Разделив обе части последней формулы на dx, получим
Иными словами, производная функции равна отношению дифференциала этой функции к дифференциалу независимой переменной.
До сих пор обозначение 
сейчас это выражение мы можем рассматривать как обычную дробь с числителем dy и знаменателем dx.
Физическое значение дифференциала
Пусть известен закон движения точки М по оси Ох:
где х — расстояние точки М от начала отсчета О, t — время, причем будем предполагать, что точка М движется в одном и том же направлении. За бесконечно малый промежуток времени dt точка М переместится в точку М’, пройдя при этом путь
Это есть истинное приращение пути.
Дифференциал пути dx согласно формуле (4) из равен
Но 
Таким образом, дифференциал пути равен тому фиктивному приращению пути, которое получится, если предположить, что начиная с данного момента времени точка движется равномерно, сохраняя приобретенную скорость.
Например, если спидометр автомобиля показывает 60 км/ч, то шофер, рассчитывая, что за 1 мин пробег машины составит 1 км, фактически вычисляет не приращение пути за 1 мин (которое вследствие неравномерности движения может быть не равно 1 км!), а дифференциал пути.
Приближенное вычисление малых приращений функции
Если 
отличается от дифференциала
на величину, бесконечно малую относительно Ах. Отсюда имеем приближенное равенство
Эти равенства весьма полезны при приближенных расчетах. Заметим, что формула (1′) представляет собой линейный член формулы Тейлора.
Пример №28
Найти 
Решение:
Полагая в формуле 
По таблицам же находим 
Рассмотрим еще одну задачу, важную для приближенных вычислений.-
Пример №29
Для данной функции
предельная абсолютная погрешность ее аргумента х равна 
Каковы предельные абсолютная 

Решение:
Из формулы (1) имеем
следовательно, при 
Пример №30
Угол х = 60° определен с точностью до 1°. Как отразится это обстоятельство на синусе угла?
Решение:
Здесь 

Эквивалентность приращения функции и дифференциала функции
Введем понятие эквивалентных или асимптотически равных бесконечно малых функций.
Определение: Две бесконечно малые функции 


Для обозначения равносильности бесконечно малых 

Так, например,
при 
Заметим, что если бесконечно малые 
В самом деле, если 
т. е. 

Обратно, если разность двух бесконечно малых а и (3 есть бесконечно малая высшего порядка по сравнению с одной из них, то эти бесконечно малые эквивалентны.
Действительно, предполагая, например, что
получаем 
В частности, отбрасывая {или прибавляя) от бесконечно малой бесконечно малую высшего порядка, получаем величину, равносильную исходной.
Например, при 

Отметим важное свойство эквивалентных бесконечно малых.
Теорема: При нахождении предела отношения двух бесконечно малых данные бесконечно малые можно заменять эквивалентными им (предполагая, что предел отношения последних, конечный или бесконечный, существует).
Доказательство: Действительно, пусть 


Переходя к пределу в тождестве (1), получим
Пример №31
Так как при 



Теорема: Бесконечно малое приращение функции эквивалентно дифференциалу этой функции при всех значениях независимой переменной у для которых производная функции конечна и отлична от нуля.
Доказательство: В самом деле, если функция у = f(x) дифференцируема, то из формулы (2) имеем
где а — бесконечно мало при 
Так как согласно условию теоремы при 

Следовательно,
т. е. бесконечно малые 


Поэтому
Замечание. Вообще, если функция f(x) дифференцируема в точке х = 0, то при 
Из формулы (3), в частности, при 
а)sin х ~ х;
б)ах — 1 ~ х In а (а > 0);
в)1n(1 + х) ~ х.
Что такое дифференцируемость функции
Определение 6.1. Функция 



где 



Теорема 6.1. Для того чтобы функция 


Доказательство.
Необходимость. Если функция 

Достаточность. Если 




Умножив обе части равенства на 
С учетом теоремы 6.1 и равенства 

откуда при 
Следовательно, при 
где 


Определение 6.2. Главная линейная часть приращения функции 






Заметим, что если рассмотреть функцию 





Геометрический смысл дифференциала следует из формулы (6.2), рис. 6.1. Согласно принятым обозначениям:
Дифференциал функции равен приращению 

Правила вычисления дифференциала аналогичны соответствующим правилам нахождения производной:


Пусть для функции 





Таким образом, форма записи дифференциала сохраняется, если независимую переменную заменить некоторой функцией. Это свойство называется инвариантностью (неизменностью) формы записи дифференциала.
Основные теоремы дифференциального исчисления
Определение 7.1. Функция 


Точки локального максимума и минимума называются точками локального экстремума, а значения функции в них — локальными экстремумами функции.
Если функция 

Определение 7.2. Точка 


Теорема 7.1 (Ферма). Пусть функция 




Доказательство.
Пусть в точке 





откуда
при
откуда
Существование производной возможно лишь при 
Замечание 7.1. В доказательстве теоремы существенно, что 
Геометрический смысл теоремы Ферма. Если 



Теорема 7.2 (Ролля). Пусть функция
1) определена и непрерывна на отрезке
2) дифференцируема для
3)
Тогда найдется точка 
Доказательство. Рассмотрим два случая.
1. Если функция 


2. Пусть 




Так как 




Замечание 7.2. Все условия теоремы Ролля существенны.
Геометрический смысл теоремы Ролля. При выполнении условий теоремы внутри отрезка 



Теорема 7.3 (Коши). Пусть заданы функции 

1) они определены и непрерывны на отрезке
2) дифференцируемы для
3)
Тогда найдется точка 
Доказательство.
Очевидно, что 





Введем вспомогательную функцию
Функция
1) определена и непрерывна на
2) 
3)
Следовательно, по теореме Ролля, для функции 


откуда
Теорема 7.4 (Лагранжа о среднем). Пусть функция 



или

Доказательство.
Рассмотрим наряду с функцией 

Из последнего равенства легко получается формула (7.1).
Замечание 7.3. Формула Лагранжа (7.1) часто записывается в виде

где
Если в (7.2) принять 
Геометрический смысл теоремы Лагранжа о среднем
При выполнении условий теоремы на интервале 



Следствие 7.1. Пусть функция 




Доказательство.
Пусть 








Следствие 7.2. Пусть функции 



Доказательство.
Так как функция 

Согласно следствию 7.1,
Следствие 7.3. Пусть функция 






Доказательство.
Пусть 

По теореме Лагранжа 







Случай 
Правила и формулы дифференцирования
Если
Если производная функции в каждой точке некоторого промежутка положительная, то функция на этом промежутке возрастает.
Если производная функции в каждой точке промежутка отрицательная, то функция на этом промежутке убывает.
Если производная в каждой точке промежутка тождественно равна нулю, то на этом промежутке функция постоянная.
Внутренние точки области определения функции, в которых её производная равна нулю или не существует, называют критическими точками функции.
Критическая точка 
Точки минимума и максимума функции называют точками экстремума, а значения функции в этих точках — экстремумами.
Если вторая производная дважды дифференцируемой функции 




Если при переходе через точку 


Прямая 




Прямая 





Уравнение наклонной асимптоты: 
- Дифференцируемые функции
- Техника дифференцирования
- Дифференциальная геометрия
- Логарифмическая функция, её свойства и график
- Предел функции на бесконечности
- Применение производной к исследованию функции
- Приложения производной
- Производные высших порядков
IV.
ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ
§
10. Основы дифференцирования функции
двух переменных
Частная производная
от функции
по переменной x
– это предел
.
Частная производная
от функции
по переменной y
– это предел
.
Соответствующие
обозначения:
и
,
или же
и
.
Производная
– это скорость изменения функции при
малом изменении переменной x,
когда переменная y
постоянна. Очевидно,
– новая функция.
При поиске
считаем, что y
– это число, выраженное буквой (параметр).
Тогда получаем функцию одной переменной
,
а производную от неё находим по правилам
дифференцирования функции одной
переменной.
Так же
– это скорость изменения функции при
малом изменении y
и постоянном x,
а при поиске
составляем функцию
и дифференцируем её как функцию одной
переменной.
Пример 1.
Частные производные от функции
:
;
.
Пример 2.
Найдём частные производные от функции
:
;
.
В 1-м случае вынесли
постоянный множитель
,
не зависящий от x,
а во 2-м случае – множитель
,
не зависящий от y.
Пример 3.
Для функции
найдём
;
.
Полный дифференциал
показывает, как примерно
изменится функция, если увеличить x
на величину
и одновременно
y
– на величину
(если
или
,
то речь об уменьшении x
или y).
Пример 4.
Найдём полный дифференциал функции
в общем виде и в точке
:
а)
– при
получается производная степенной
функции;
б)
– при
получается
производная показательной функции.
Таким образом, в
общем виде
,
или, если вынести общий множитель,
.
Чтобы найти полный
дифференциал в точке, подставив её
координаты
и
,
тогда
.
Смысл
результата.
Пусть надо найти, например, значение
функции
в точке
,
или, что то же самое, найти величину
.
Если взять точку
,
то
.
При переходе в точку N
изменение аргументов составило
и
(разность старых и новых координат).
Полный дифференциал
в точке M
(не в N!)
равен приращению
функции при переходе из точки
в
.
Поэтому
.
Более точно,
.
Пример 5. Найдём
для нескольких функций полные дифференциалы
в общем виде и в конкретной точке M:
а)
пусть
;
,
тогда
.
Дифференциал в
общем виде
;
в точке M
будет
.
б) пусть
даны
и
;
тогда
.
Дифференциал в
общем виде:
;
в точке:
;
в)
если даны
и
,
то


Упростим числители:
;
.
В полном дифференциале
вынесем общий множитель:
,
подставим координаты
точки:
,
или
.
Так, чтобы найти
,
считаем
,
затем
и
,
после чего
и соответственно
.
Пример 6.
При помощи полного дифференциала найдём
значение функции
при
(угол выражен в радианах).
Подберём точку
как можно ближе к
,
чтобы в ней легко вычислялось значение
.
Это точка
:
.
Частные производные
в общем виде:
,
,
а в точке
будет
,
и
.
Значит, около
точки
функция меняется примерно так же, как
меняется переменная x.
В нашем случае
.
Новое значение
функции
.
Более точное
значение
почти совпадает с приближённым. Отличие
вызвано тем, что
,
а не 1;
Ответ:
.
Пример 7.
При помощи полного дифференциала найдём
.
Представим это
число как значение функции
в точке
.
При этом
и
,
а для таких аргументов функцию
легко посчитать:
.
Итак,
,
,
,
.
Тогда
при
и
.
Для
частные производные
;
.
В точке M
и
,
тогда
(функция растёт в
2 раза быстрее, чем 2-й аргумент).
Итак,
.
Ответ:
(более точное значение равно
).
ЧП1.
Найдите частные производные для функций
1) а)
; б)
;
в)
; г)
;
2) а)
; б)
;
в)
; г)
;
3) а)
; б)
;
в)
; г)
;
4) а)
; б)
;
в)
; г)
;
5) а)
; б)
;
в)
; г)
;
6) ;
7) .
ЧП2.
Найдите полные дифференциалы функций
в указанной точке:
1) а)
; б)
;
в)
; г)
;
2) а)
; б)
;
в)
; г)
;
3) а)
; б)
;
в)
г)
.
ЧП3.
Найдите при помощи полного дифференциала
приближённые значения
1) а)
; б)
; в)
; г)
;
2) а)
; б)
; в)
; г)
;
3) а)
; б)
; в)
; г)
;
4) а)
; б)
; в)
; г)
.
Экстремум функции
двух переменных
Точка M
называется точкой минимума функции
,
если можно указать открытую область D
(часть плоскости xOy),
в которой значение
– наименьшее из всех. Более строго, M
– точка минимума, если существует D,
что
а)
(точка входит в эту область и не принадлежит
её границе);
б)
(в любой другой точке этой же области
значение функции меньше, чем в интересующей
нас точке).
При замене на
условие
получим определение точки максимума.
Например,
– точка минимума функции
,
поскольку в ней
,
а в любой другой точке
.
Схема поиска
точек экстремума для функции
1) Найдём
и
,
затем – точки
,
где обе производные равны 0;
2) найдём 2-е
производные
,
т.е. соответственно
;
3) координаты точки
подставим во 2-е производные. Получим
числа
;
4) если,
в точке
экстремума нет. Если
,
то смотрим, каков знак A:
если
,
то
– точка минимума,
если же
,
то
– точка максимума;
5) если в
оказалось, что
,
необходимы другие методы решения,
выходящие за рамки пособия (разложение
в ряд Тейлора);
6) таким же образом
3-й, 4-й и 5-й шаги выполняем для остальных
точек.
Пример 8.
Найдём экстремумы функции
.
1)
решаем систему
(уравнения решены
независимо, и подходят все сочетания
координат);
2) находим 2-е
производные
;
;
;
Проверяем точку
,
подставив
и
:
3)
;
;
;
4)
,
экстремума в
нет.
Проверяем точку
,
подставив
и
:
3)
;
;
;
4)
,
экстремум в
есть.
Поскольку
,
то данный экстремум – это минимум. Можно
найти его значение
.
Ответ:
минимум при
и
,
равный –50.
Пример 9.
Исследуем на экстремум функцию
.
1) Находим
решаем систему
Здесь
.
У 2-го уравнения
3 корня: –1, 0 и 1, но координаты зависимы:
если
,
то
,
если
,
то
,
если
,
то
.
Получаем 3 точки:
;
2) берём 2-е производные
;
;
;
проверяем точку
:
3)
;
;
;
4)
,
в
есть экстремум, а поскольку
,
то этот экстремум – минимум. Его значение
;
проверяем точку
:
3)
;
;
;
4)
,
экстремума в
нет.
Легко видеть, что
для точки
результаты те же, что и для
.
Ответ:
минимум, равный –2, при
и
,
а также при
и
.
Замечание 1.
Если в записи функции поменять все
знаки, точки минимума станут точками
максимума, и наоборот. При этом координаты
точек не изменятся. Так, из примера 9
следует, что для
получим максимум, равный 2, при
и
,
а также при
и
.
Если же к функции
добавить (или отнять) любое число,
изменится лишь значение экстремума, но
не его тип. Так, у функции
окажется максимум при
и
,
а также при
и
,
равный 2+50=52.
ЧП4.
Найдите точку экстремума функции
при указанных параметрах a,
b.
Найдите значение функции в этой точке
и определите тип экстремума:
а)
a
= 2; b
= 3; б)
a
= 3; b
= 2; в)
a
= 2; b
= 5; г)
a
= 5; b
= 4;
д)
a
= 6; b
= 1; е)
a
= 1; b
= 2; ж)
a
= 0; b
= 4; з)
a
= 3; b
= 0.
ЧП5.
Найдите точку экстремума функции
при указанных параметрах a,
b.
Найдите значение функции, определите
тип экстремума:
а)
a
= 2; b
= 3; б)
a
= 3; b
= 2; в)
a
= 2; b
= 5; г)
a
= 5; b
= 4;
д)
a
= 6; b
= 1; е)
a
= 1; b
= 2; ж)
a
= 0; b
= 4; з)
a
= 3; b
= 0.
Замечание
2. Функции
двух переменных ведут себя сложнее, чем
функции одной переменной. Так, при
решении задач на экстремум:
а) даже у непрерывных
функций могут быть несколько точек
максимума и ни одной точки минимума
(или наоборот);
б) все стационарные
точки могут оказаться седловыми
точками, из
которых функция растёт при изменении
x
и убывает при изменении y
(или наоборот). Тем самым у функции не
окажется ни максимума, ни минимума.
Замечание 3.
Приведённая схема исследования на
экстремум предполагает, что функция
дифференцируема в точках экстремума.
Однако это не обязательно. Так, функция
в точке
имеет максимум, но её производные в
данной точке обращаются в бесконечность.
Подобные случаи выходят за рамки пособия.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Системы координат в пространстве: Как отмечалось в
лекции 2, положение точки 
декартовой системе координат тремя числами — ее координатами по трем взаимно перпендикулярным осям 



Определение:
Поверхность, для которой одна из координат
является постоянной, называется координатной поверхностью.

Определение:
Линия, для которой все координаты, кроме
одной, являются постоянными, называется координатной линией.
Для декартовой системы координат координатными поверхностями
являются плоскости, параллельные координатным плоскостям.
Действительно, в соответствии с определением (48.1) их уравнения имеют вид: 


Координатными линиями для декартовой системы координат
являются прямые, параллельные координатным осям, получающиеся как пересечение координатных плоскостей.
Вообще можно заметить, что координатные линии являются
пересечением координатных поверхностей.
Наряду с декартовыми координатами часто применяются
цилиндрические координаты. В этих координатах положение точки 













Для цилиндрических координат координатными поверхностями
являются плоскости, перпендикулярные координатной оси 



Кроме декартовых и цилиндрических координат в пространстве
также применяются сферические координаты. В этих координатах
положение точки 



Долготой 







Сферические координаты связаны с декартовыми следующими
соотношениями:
Для сферических координат координатными поверхностями являются сферы с центром в начале координат 



будут линии пересечения этих поверхностей. Название системы координат объясняется наличием сфер среди координатных поверхностей.
Основные понятия функций двух переменных
Определение функции одной переменной было дано в лекции 3 части 1 Курса. По аналогии с этим определением введем понятие функции двух переменных.
Определение:
Функцией двух переменных называется правило,
которое каждой паре действительных чисел 
Переменные 

аргументами, переменная 



Обозначать функцию двух переменных будем аналогично тому, как
это делали для функции одной переменной: 










Пример:
Периметр параллелограмма со сторонами 






Основными способами задания функции двух переменных являются
аналитический и табличный.
При аналитическом способе функция задается посредством формул.
При этом она может быть задана в декартовой, цилиндрической или
сферической системе координат в явном и неявном виде.
Если в уравнении, определяющем функцию, значение функции 
Пример:
Функция 
Область определения данной функции есть множество точек плоскости 

Если в уравнении, определяющем функцию, значение функции 

При этом остается требование, чтобы каждой паре чисел 

Пример:
Функция 



Область определения каждой из этих функций:
т.е. круг на плоскости 

Для табличного задания функции двух переменных 

Табличное задание функции
В первой строке таблицы перечисляются значения аргумента 
левом столбце — значения аргумента 





Графиком функции двух переменных является множество точек
пространства, удовлетворяющих уравнению функции. Для функции двух переменных это будет в общем случае некоторая поверхность (см. пример 48.3).
Следует отметить, что поскольку эта поверхность изображается в
проекции на плоскость (лист бумаги), изображение графиков функции двух переменных вызывает определенные трудности. Однако в настоящее время в связи с широким распространением персональных компьютеров с большим набором графических пакетов прикладных программ эти трудности отступают на второй план по сравнению с наглядностью графического метода представления функции.
Функции более двух независимых переменных
На
практике встречаются функции трех и более независимых переменных. Так, например, объем 


Определение:
Функцией трех переменных называется
правило, которое каждой тройке действительных чисел 
Переменные 




Обозначаются функции трех переменных так же, как и функции двух переменных: 


Определение:
Если каждой точке 



Способами задания функции трех переменных являются также
аналитический и табличный. Следует, однако отметить, что пользоваться таблицей с тремя входами менее удобно.
Аналогично можно ввести понятие функции четырех переменных,
пяти, вообще — 







Заметим, что функцию трех или более переменных изобразить с
помощью графика в пространстве невозможно. Способы графического представления такой функции будут рассмотрены в следующей лекции.
По аналогии с определением 48.5 говорят, что если каждой точке 






Поверхности и линии в пространстве
Как отмечалось в
начале лекции, поверхность в 3-х мерном пространстве описывается уравнением вида 
Пересечение двух поверхностей задает линию в пространстве; таким
образом, линия в пространстве определяется системой двух уравнений вида

Изучать характер изменения поверхности можно методом
параллельных сечений, который заключается в следующем. Рассматривают линии получающиеся в сечении поверхности семейством параллельных плоскостей и на основании изменения этих сечений судят о характере изменения (рельефе) поверхности. Чаще всего это будут плоскости параллельные координатным плоскостям. Например для представления о рельефе
земной поверхности на географических картах изображают линии
одинаковой высоты (изогипсы или горизонтали), получающиеся в сечении земной поверхности семейством параллельных плоскостей.
Определение:
Линиями уровня функции 



Если функция задана в неявном виде 
Пример:
Уравнение поверхности, разобранной в примере (48.8) (сферы радиуса 

Линии уровня будут иметь уравнения 













Для функции трех переменных аналогичным понятием будут
поверхности уровня.
Определение:
Поверхностями уровня функции 
где 
Это будет однопараметрическое семейство поверхностей в 3-х мерном пространстве
Цилиндрические поверхности
Определение:
Поверхность составленная из всех прямых,
пересекающих данную линию 



В дальнейшем мы будем рассматривать только цилиндрические
поверхности с плоскими направляющими, лежгицими в одной из
координатных плоскостей и образующими, перпендикулярными этой плоскости (см. рис. 33).
Можно показать, что не содержащее переменной 





Замечание:
В пространстве 


Аналогично можно показать, что уравнение 





Рассмотрим примеры цилиндрических поверхностей.
Определение:
Поверхность определяемая уравнением
является цилиндрической и называется эллиптическим цилиндром (рис. 34).
Ее образующие параллельны оси 




Определение:
Цилиндрическая поверхность, определяемая уравнением
называется гиперболическим цилиндром (рис. 35).
Образующие этой поверхности параллельны оси 



Определение:
Цилиндрическая поверхность, определяемая уравнением
называется параболическим цилиндром (рис. 36).
Ее направляющей является парабола, лежащая в плоскости 
Замечание:
Как известно, прямая в пространстве может
быть задана уравнениями различных пар плоскостей, пересекающихся по этой прямой. Подобно этому кривая в пространстве может быть задана с помощью уравнений различных поверхностей, пересекающихся по этой кривой. Например, окружность 


С другой стороны эта окружность может быть получена как линия
пересечения плоскости 

т.е. может быть задана системой уравнений
равносильной системе (48.9)
В дальнейшем, исследуя форму той или иной поверхности с помощью сечений, параллельных координатным плоскостям, мы не раз будем пользоваться цилиндрическими поверхностями, проектирующими эти сечения на координатные плоскости. Это позволит так же, как в рассмотренном примере, судить о размерах и форме указанных сечений, а тем самым и
о форме исследуемых поверхностей.
Конические поверхности
Поверхность, составленная из всех
прямых, пересекающих линию 



В качестве примера рассмотрим коническую поверхность с вершиной в начале координат, для которой направляющей является эллипс
с полуосями 


называется конусом второго порядка (рис. 37). Выведем ее уравнение.
Рассмотрим произвольно выбранную точку 
поверхности и проведем через нее образующую 




Отсюда 

Мы получили каноническое уравнение конуса второго порядка. В частности, если 

48.4.3. Поверхность вращения. Пусть линия 

Рассмотрим поверхность образованную вращением этой линии
относительно оси 

Эта поверхность называется поверхностью вращения. Найдем ее уравнение. Пусть 



















Так как точка 








которому удовлетворяют координаты любой точки 





Замечание:
Мы считали, что кривая 



задана и в другой координатной плоскости и может вращаться относительно другой координатной оси. Формулы, подобные формулам (48.13), (48.14) и (48.15), читатель легко составит сам.
Решение заданий на тему: Основные понятия функции нескольких переменных
Пример:
Найти и изобразить на плоскости область
определения функции двух переменных
Решение:
Поскольку знаменатель не должен обращаться в нуль,
область определения данной функции будет:
Это будет множество всех точек плоскости 

Ответ:
Пример:
Найдите область определения функции трех переменных

Решение:
Поскольку выражение под корнем квадратным
должно быть неотрицательным, область определения данной функции будет:
Это будет множество всех точек полупространства, отделенного
плоскостью 
Ответ:
Пример:
Найдите и изобразите на плоскости линии уровня
функции двух переменных
Решение:
Уравнение линий уровня имеет вид 

соответствовать линия только при 





Пример:
Определите вид поверхности, задаваемой уравнением
Решение:
Выделив полный квадрат по 

Это круговой цилиндр с осью параллельной оси 


Поверхности второго порядка
В части 1 данного Курса мы
изучили кривые второго порядка. Аналогично этому, общее уравнение поверхности второго порядка имеет вид:
Рассмотренные в 47.4 лекции уравнения поверхности являются
частным случаем общего уравнения (49.1).
Форму поверхностей рассматриваемых в этой лекции, будем изучать
методом параллельных сечений. Суть этого метода состоит в том, что на координатную плоскость проектируются сечения поверхности
плоскостями, параллельными этой координатной плоскости так, как это делается на графических картах.
49.1.1. Эллипсоид.
Определение:
Поверхность определяемая уравнением
называется эллипсоидом. Числа 
эллипсоида, а уравнение (49.2) каноническим уравнением эллипсоида.
Так как в уравнении (49.2) текущие координаты входят в четных
степенях, то эллипсоид симметричен относительно координатных
плоскостей. Чтобы установить форму эллипсоида, будем пересекать его плоскостями, параллельными координатным плоскостям. Покажем, что если пересечь эллипсоид плоскостью 


аппликату 
проектирующее сечение 



Из этого уравнения видно, что кривая 
Из формулы (49.3) видно, что с возрастанием 




также получаются эллипсы. Эллипсоид имеет вид, изображенный на рис. (42). В частном случае при 

Определение:
Если все три полуоси эллипсоида равны между
собой: 
Пример:
Какую поверхность задает уравнение
Решение:
Поделив обе части уравнения на 12 и переписав его в
виде:

заключаем, что это есть уравнение эллипсоида с полуосями

49.1.2. Гиперболоиды.
Определение:
Поверхность определяемая уравнением
называется однополостным гиперболоидом} а уравнение (49.5) — его
каноническим уравнением.
Эта поверхность имеет три плоскости симметрии — координатные
плоскости, так как текущие координаты 




Аналогично, в сечении однополостного гиперболоида плоскостью 

лежащая в плоскости
При пересечении однополостного гиперболоида плоскостью 


или


Полуоси этого эллипса 




При 
При пересечении его плоскостями 

В п. (48.4.2) и (48.4.3) рассматривались цилиндрические и конические
поверхности, каждая из которых составлена из прямых. Оказывается, однополостный гиперболоид можно также рассматривать как поверхность, составленную из прямых линий. Рассмотрим прямую, определяемую уравнениями.
в которых 

Перемножая почленно эти уравнения, получим

т.е. уравнение однополостного гиперболоида.
Таким образом, уравнение однополостного гиперболоида является
следствием системы уравнений (49.7). Поэтому координаты любой точки 

где 
Можно также показать, что через каждую точку однополостного
гиперболоида проходит по одной прямой каждого из указанных семейств.
Таким образом, однополостный гиперболоид можно рассматривать как поверхность, составленную из прямых линий (рис. 44).

Возможность составления поверхности однополостного гиперболоида
из прямых линий используется в строительной технике. Так, например, по конструкции, предложенной инженером Шуховым, в Москве была сооружена радиомачта с помощью балок, расположенных по прямолинейным образующим однополостного гиперболоида.
Определение:
Поверхность, определяемая уравнением
называется двуполостным гиперболоидом, а (49.9) его каноническим уравнением.
Координатные плоскости являются плоскостями симметрии для
двуполостного гиперболоида. Пересекая эту поверхность координатными плоскостями 


Если двуполостной гиперболоид (49.9) пересечь плоскостью 

с полуосями 




и является уравнением двуполостного гиперболоида вращения. В сечении последнего плоскостью 

радиуса
Пример:
Какую поверхность задает уравнение
Решение:
Поделив обе части уравнения на 5 и переписав его в
виде

заключаем, что это уравнение однополостного гиперболоида,
расположенного «вдоль» оси
Пример:
Какую поверхность задает уравнение
Решение:
Поделив обе части уравнения на -5 и переписав его в
виде

заключаем, что это уравнение двуполостного гиперболоида вращения, расположенного «вдоль» оси
49.1.3. Параболоиды.
Определение:
Эллиптическим параболоидом называется поверхностъ, определяемая уравнением
а (49.10) — его каноническим уравнением.
При пересечении эллиптического параболоида координатными
плоскостями 


а при пересечении плоскостью 

с полуосями 

Поскольку 


Определение:
Гиперболическим параболоидом называется
поверхность, определяемая уравнением
а (49.11) его каноническим уравнением.
Пересекая эту поверхность плоскостью 
При пересечении гиперболического параболоида плоскостью 

При различных значениях 


Гиперболический параболоид можно рассматривать как поверхность, описываемую движением любой из этих парабол при условии, что плоскость движущейся параболы остается параллельной плоскости 



На рис. (47) показано расположение этой гиперболы для двух случаев: 




Последнее уравнение равносильно системе двух уравнений
Это означает, что гиперболический параболоид пересекается плоскостью 

лежащим в плоскости 

где 

Таким образом, гиперболический параболоид можно рассматривать
как поверхность составленную из прямых линий (рис. 48).

Замечание:
Поверхности, составленные из прямых линий, называются линейчатыми. Таким образом, цилиндрические и конические поверхности, а также одпополостный гиперболоид и гиперболический параболоид являются линейчатыми поверхностями.
Пример:
Какую поверхность задает уравнение 
Решение:
Записав уравнение в виде:

заключаем, что это уравнение эллиптического параболоида,
расположенного «вдоль» оси 



Пример:
Какую поверхность задает уравнение 
Решение:
Записав уравнение в виде:

заключаем, что это уравнение гиперболического параболоида («седла») с осью 

Решение заданий на тему: Поверхности второго порядка
Пример:
Определите вид поверхности, задаваемой уравнением

Решение:
Перенеся свободный член в правую часть уравнения и
поделив обе его части на 5, получим:

Это каноническое уравнение эллипсоида с полуосями
Ответ: эллипсоид.
Пример:
Определите вид поверхности, задаваемой уравнением

Решение:
Перенеся свободный член в правую часть уравнения и
поделив обе его части на 6, получим:

Это каноническое уравнение однополостного гиперболоида, расположенного вдоль оси 


Ответ: Однополостный гиперболоид вдоль
Пример:
Определите вид поверхности, задаваемой уравнением

Решение:
Перенеся свободный член в правую часть уравнения и
поделив обе его части на 7, получим:

Это каноническое уравнение однополостного гиперболоида вращения, расположенного вдоль оси 


Пример:
Определите вид поверхности, задаваемой уравнением

Решение:
Перенеся 

Это уравнение двуполостного гиперболоида, расположенного вдоль оси
Ответ: Двуполостный гиперболоид вдоль оси
Пример:
Определите вид поверхности, задаваемой уравнением

Решение:
Перенеся 

Это уравнение двуполостного гиперболоида вращения, расположенного вдоль оси
Ответ: Двуполостный гиперболоид вдоль оси
Пример:
Определите вид поверхности, задаваемой уравнением

Решение:
Перенеся 

Это уравнение эллиптического параболоида, расположенного вдоль оси
Ответ: Эллиптический параболоид вдоль оси
Пример:
Определите вид поверхности, задаваемой уравнением

Решение:
Перенеся 

Это каноническое уравнение гиперболического параболоида,
расположенного вдоль оси
Ответ: Гиперболический параболоид вдоль оси
Преобразование декартовых координат в пространстве
Параллельный перенос осей. Поворот осей. Приведение поверхности
2-го порядка к каноническому виду.
Аналогично тому, как это было сделано в лекции 2 части 1
настоящего курса, выведем формулы связывающие координаты точки в данной декартовой (прямоугольной) системе координат с ее координатами в другой такой же, отличающейся расположением начала и направлением осей. Сначала рассмотрим более простой случай, когда оси координат сонаправленны.
Параллельный перенос осей декартовой системы координат
Будем предполагать, что обе системы прямоугольные, причем одноименные оси этих систем параллельны, одинаково направлены и на каждой из них выбрана одна и та же масштабная единица (см. рис. 49). Условимся называть координаты точки в системе 

Пусть начало новой системы координат 

Также как для декартовой системы двух координат (см. лекцию 2
части 1 Курса), можно показать, что при параллельном переносе осей в пространстве получаются следующие формулы преобразования координат:
или, что тоже самое
50.2. Поворот осей декартовой системы координат. Пусть в
пространстве заданы две прямоугольные системы координат, имеющие общее начало 




Задавать положение новых осей относительно старых будем с помощью направляющих косинусов. Так, например, положение оси 
Заметим, что так же как для направляющих косинусов вектора,
справедливо соотношение:
Обозначив аналогичным образом направляющие косинусы всех осей, сведем результаты в таблицу:
Направляющие косинусы новых осей по отношению к старым
Можно доказать (сделайте это самостоятельно), что старые
координаты выражаются через новые по формулам:
Если обозначить матрицу направляющих косинусов 

то формулы (50.4) в матричной форме запишутся в виде:
Матрица 
- сумма квадратов элементов строки или столбца равна 1;
- сумма произведений соответственных элементов двух строк или столбцов равна нулю;
Такая матрица, как отмечалось в лекции 36 части 1 Курса, называется ортогональной. Формулы (50.4) соответствуют формулам (36.2) лекции 36, а преобразование координат в матричной форме (50.6) такое же как для случая двух координат.
Поскольку обратная матрица совпадает с транспонированной: 

а в координатах:
Определение:
Декартова (прямоугольная) система координат в пространстве 

Если 
На практике, если направление оси 




Замечание:
Если считать оси системы координат в
пространстве «жестко соединенными», то вращением невозможно
совместить правую и левую системы координат с общим началом.
Замечание:
Определитель матрицы 
координат равен + 1, если при преобразовании ориентация системы не меняется (правая переходит в правую или левая в левую). В противном случае (правая переходит в левую или левая в правую) определитель 
Замечание:
На плоскости также различают правую и левую
системы координат (см. рис. 52). Система является правой, если ось 


Если считать оси системы координат на плоскости «жестко
соединенными», то вращением без вывода из плоскости невозможно совместить правую и левую системы координат с общим началом.
Приведение уравнения поверхности 2-го порядка к каноническому виду
Если в общем уравнении (49.1) поверхности 2-го порядка отсутствуют члены 
привести уравнение к каноническому виду можно выделив полный квадрат. Покажем это на примерах. .
Пример:
Какую поверхность задает уравнение:
Решение:
Сгруппировав члены с одинаковыми переменными и
выделив полный квадрат, получаем:
Сделаем замену переменных:

В новых координатах уравнение примет вид:

Это каноническое уравнение эллипса с полуосями

Поскольку новые координаты 

основании изложенного в п. (50.1), заключаем, что новая система
координат получается из старой параллельным переносом начала координат в точку 

Пример:
Какую поверхность задает уравнение

Решение:
Сгруппировав члены с одинаковыми переменными и выделив полный квадрат, получаем:

Сделаем замену переменных:

В новых координатах уравнение имеет вид:

Это каноническое уравнение однополостного гиперболоида,
расположенного «вдоль» оси 



Если в общем уравнении (49.1) поверхности 2-го порядка не все коэффициенты 
Направляющие косинусы осей новой системы координат, в которой
уравнение поверхности станет каноническим, находятся из трех систем уравнений:
дополненных условием нормировки (50.3):

где три действительные собственные значения 
Замечание:
Направляющие косинусы каждой из трех новых
осей образуют собственный вектор матрицы квадратичной формы
соответствующий собственному значению 
корни уравнения (50.9) отличны от нуля, системы (50.8) определяют направляющие косинусы осей новой системы координат 
цилиндром или парой параллельных плоскостей. В этом случае систему (50.8) следует дополнить уравнением 
Замечание:
Можно показать, что если матрица 


где: 



матрица уравнения поверхности, 
Пример:
Определить, какую поверхность задает уравнение

и найти направляющие косинусы осей новой системы координат, в
которой уравнение поверхности станет каноническим.
Решение:
Составим матрицу (50.10) квадратичной формы:

и характеристическое уравнение (50.9):
Найдем направляющие косинусы из систем (50.8), дополненных условием нормировки (50.3).


Получим матрицу 

Делая это преобразование 

получаем уравнение:

Делая еще одно преобразование (параллельный перенос)

получаем каноническое уравнение однополостного гиперболоида

Решение заданий на тему: Преобразование декартовых координат в пространстве
Пример:
Определите вид поверхности задаваемой уравнением

Решение:
Сгруппировав члены с одинаковыми переменными и
выделив полный квадрат, получаем:

Сделаем замену переменных:

В новых координатах уравнение имеет вид:

Это каноническое уравнение эллиптического параболоида.
Пример:
Определить вид поверхности задаваемой уравнением
найти направляющие косинусы осей новой системы координат и
каноническое уравнение поверхности.
Решение:
Составим матрицу (50.10) квадратичной формы:

и характеристическое уравнение (50.9):

выполним элементарные преобразования для упрощения определителя: прибавим к первому столбцу последний и к первой строк последнюю:

Составим системы (50.8)


Решая эти системы, с учетом нормирующего условия (50.3) находим
направляющие косинусы и матрицу линейного преобразования

Делая преобразование координат (поворот осей) 

и затем — параллельный перенос, получаем каноническое уравнение
эллиптического цилиндра:

Пример:
Определить вид поверхности, задаваемой уравнением
Решение:
Матрица (50.10) квадратичной формы имеет следующий
вид:

Решая характеристическое уравнение

находим собственные значения:

Решая системы (50.8) с учетом нормирующего условия (50.3) находим
направляющие косинусы и матрицу линейного преобразования 

Делая преобразование 

получаем в координатах 

полный квадрат, получаем каноническое уравнение конуса:

Заметим, что здесь
Предел, непрерывность и частные производные функции двух переменных
Предел функции двух переменных: При рассмотрении
предела функции одной переменной (часть 1 Курса) было введено понятие 



Определение:


Любая точка 


Определение:
Число 








При этом записывают:

Для двойного предела справедливы все свойства предела,
перечисленные в части 1 Курса для функции одного переменного: предел суммы, разности, произведения равен соответственно сумме, разности, произведению пределов, если каждый из них существует; предел частного равен частному пределов, если каждый из них существует и предел знаменателя не равен нулю; постоянный множитель можно выносить за знак предела
и т.д.
Из определений (51.1) и (51.2) следует, что
где 


Поэтому для вычисления пределов функции двух переменных мы будем пользоваться равносильным определением (51.3)
Определение:
Число 
переменных или двойным пределом функции 




Пример:
Найти
Решение:
В данном примере 

В данном примере функция 

Заметим, что двойной предел 

которые не являются новыми понятиями, а вычисляются последовательно как обычные пределы функции одной переменной.
Однако существует теорема, которая позволяет заменять двойной
предел функции двух переменных повторным пределом при достаточно широких предположениях.
Теорема:
Если существует 



Пример:
В условиях примера (51.1) вычислить повторные пределы.
Решение:

Проверьте самостоятельно, что
Установите справедливость выполнения условий теоремы 51.1.
Определение:
Функция 

Можно доказать равносильность следующих трех утверждений:
является бесконечно малой при
Определение предела естественным образом распространяется на
случай функции 3-х и более переменных.
Определение:
Областью (открытой областью) называется
множество точек плоскости, обладающее следующими двумя свойствами:
- каждая точка области принадлежит ей вместе с некоторой
окрестностью этой точки (свойство открытости); - всякие две точки области можно соединить непрерывной линией, целиком лежащей в этой области (свойство связности).
Часть плоскости, лежащей внутри замкнутого контура 






Точка 


Множество всех граничных точек области называется ее границей.
На рис. (53) любая точка 


Определение:
Если к открытой области присоединить ее
границу, то полученное множество точек называется замкнутой областью.
Определение:
Если для данной области можно подобрать круг,
полностью ее покрывающий, т.е. такой, внутри которого лежат все точки области, то такая область называется ограниченной.
Если же круга, полностью покрывающего область, подобрать нельзя,
то область называется неограниченной.
Определение:
Область 
называется односвязной, если для любого замкнутого контура, лежащего в этой области, ограниченная им часть плоскости целиком принадлежит области 
Например, область, заключенная между окружностями 


Замечание:
Все введенные в этом пункте понятия
переносятся на пространство трех и большего числа измерений.
Непрерывность функции нескольких переменных
Определение:
Функция 


Определение:
Точка 

Заметим, что определение точки разрыва более сложное, чем просто
противоположное к данному утверждение и будет сформулировано позже.
Свойства непрерывных функций сформулируем в виде теоремы,
которую примем без доказательства, т.к. оно аналогично доказательству соответствующей теоремы о непрерывных функциях одной переменной из тома 1 Курса.
Теорема:
Если функция 







На основании этой теоремы легко устанавливается непрерывность
многочлена от двух переменных при любом их значении и непрерывность рациональной функции во всех точках плоскости, в которых знаменатель не равен нулю.
Определение:
Точка 

Пример:
Найти точки разрыва функции
Решение:
Функция определена и непрерывна всюду, кроме
точек с координатами, удовлетворяющими уравнению: 

Ответ: точки разрыва образуют прямую
Функции непрерывные в ограниченной замкнутой области
Были рассмотрены свойства функции одной
переменной, непрерывной на отрезке. Аналогичными свойствами обладают функции нескольких переменных, непрерывные в ограниченной замкнутой области.
Определение:
Функция 

этом для непрерывности 



Теорема:
Если функция 

- ограничена:
2. достигает своего наименьшего т и наибольшего 
3.любое значение между 

Пример:
Функция 


Она ограничена: 
Наименьшее значение 


Функция принимает любое значение 


Частные производные 1-го порядка
Рассмотрим функцию двух переменных 




Эта производная называется частной производной (или частной производной первого порядка) функции 


Разность
называется частным приращением по 


Учитывая эти обозначения, можно записать
Аналогично определяются и обозначаются частное приращение функции 


Таким образом, частная производная функции двух переменных по
одному из ее аргументов равна пределу отношения частного приращения функции к вызвавшему его приращению аргумента, когда приращение аргумента стремится к нулю.
Значение частной производной зависит от точки 



Частные производные, рассматриваемые как функции двух
переменных, обозначаются следующим образом:

Частные приращения и частные производные функции 







Частная производная функции 



Таким образом, частная производная функции нескольких
переменных определяется как производная функции одной из этих переменных. Вследствие этого все правила и формулы дифференцирования, выведенные для производных функции одной переменной, сохраняются для частных производных функции нескольких переменных. Следует лишь помнить, что во всех этих правилах и формулах при нахождении частной производной по какому-либо аргументу все остальные аргументы считаются постоянными.
Пример:
Найти частные производные первого порядка функции 
Решение:

Ответ:
Выясним геометрический смысл частной производной 




Рассмотрим плоскую кривую 


Отсюда следует, что 




Частные производные высших порядков
Частные
производные функции нескольких переменных являются функциями тех же переменных. Эти функции, в свою очередь, могут иметь частные производные, которые называются вторыми частными производными (или частными производными второго порядка) исходной функции.
Так, например, функция 
частные производные второго порядка, которые определяются и обозначаются следующим образом:



Функция 

Аналогично определяются и обозначаются частные производные
третьего и более высокого порядка функции нескольких переменных: частной производной 

Например, частная производная третьего порядка 


Частная производная второго или более высокого порядка, взятая по
нескольким различным переменным, называется смешанной частной производной.
Например, частные производные

являются смешанными частными производными функции двух
переменных
Пример:
Найти смешанные частные производные второго
порядка функции
Решение:
Находим частные производные первого порядка

Затем находим смешанные частные производные второго порядка

Мы видим, что смешанные частные производные данной функции 

Теорема:
Две смешанные частные производные одного порядка
одной и той же функции, отличающиеся лишь порядком
дифференцирования, равны между собой при условии их непрерывности.
В частности, для функции двух переменных 

Решение заданий на тему: Частные производные
Поскольку основная задача данного практического занятия —
приобретение навыков нахождения частных производных функции нескольких переменных, мы не всегда будем упрощать полученный результат.
Пример:
Найдите все частные производные первого порядка функции
Решение:
При нахождении 


Пример:
Найдите частные производные первого порядка функции
Решение:
При нахождении 


Аналогично находим 


Пример:
Найдите частные производные первого порядка функции
Решение:
При нахождении 


При нахождении 


Пример:
Найдите частные производные первого порядка функции
Решение:
При фиксированном 

Аналогично находим 

Пример:
Найдите частные производные первого порядка функции
Решение:
При фиксированном 

Аналогично, при фиксированном 

Полный дифференциал функции нескольких переменных
Полное приращение функции: При нахождении частных производных рассматривались частные приращения функции нескольких переменных, когда лишь один из аргументов изменялся, остальные же оставались фиксированными (постоянными). Теперь мы рассмотрим полное приращение, которое получает функция при изменении всех ее аргументов.
Пусть дана функция двух переменных 






Геометрически полное приращение функции 



Найдем, например, полное приращение функции 




Используя формулу (52.1), получим
Мы видим, что полное приращение 
представить в виде суммы двух слагаемых: первого слагаемого 







Полный дифференциал функции
В предыдущем пункте
мы рассмотрели пример, в котором приращение функции двух переменных было предоставлено в виде суммы двух слагаемых линейно относительно 


Напомним, что в томе 1 для функции одной переменной 











Определение:
Полным дифференциалом функции двух переменных 

Полный дифференциал является главной частью приращения функции 







Определение:
Если 

дифференциал, то она называется дифференцируемой в этой точке.
Как следует из определения (52.1), если функция 


Можно показать, что обратное утверждение, вообще говоря, неверно,
т.е. из существования частных производных не следует существование полного дифференциала. Однако, если предположить, что частные производные не только существуют, но и непрерывны, то функция будет дифференцируемой. Иными словами, имеет место следующая теорема, доказательства которой мы не приводим.
Теорема:
Если частные производные 




Все сказанное легко распространяется на функции трех и большего
числа переменных. Так, например, для дифференцируемой функции трех переменных 

при условии 
Пример:
Найти полный дифференциал функции 
Решение:
Полный дифференциал 



Мы видим, что найденные частные производные являются непрерывными функциями во всей плоскости 

с линейной частью приращения функции в п. (52.1)
Геометрический смысл полного дифференциала
Пусть функция 

или
В лекции 50 было показано, что уравнение касательной плоскости 
где 

правые части этих уравнений совпадают, будут совпадать и их левые части.
Таким образом, дифференциал функции двух переменных равен
приращению аппликаты касательной плоскости
В этом заключается геометрический смысл дифференциала.
Заметим, что в соответствии с определением дифференциала приращение аппликаты касательной плоскости 


Приближенные вычисления с помощью полного дифференциала
Полным дифференциалом функции нескольких переменных можно пользоваться для приближенных вычислений.Пусть дана дифференцируемая функция 

Здесь 





т.е. приращение функции можно приближенно заменить ее полным
дифференциалом.
Так как

Подставляя это выражение для 

откуда

Формулой (52.7) можно пользоваться при приближенных вычислениях значений функции двух переменных в точке 


Аналогичные формулы можно вывести для функции 


Пример:
Вычислить приближенно с помощью полного дифференциала
Решение:
Рассмотрим функцию 

Найдем частные производные:

Положим теперь 

Заметим, что если вычислить это значение с большей точностью с
помощью калькулятора, получится 
иллюстрирует определение дифференциала как главной части приращения функции.
Дифференциалы более высоких порядков
Если 


частные производные второго порядка, то можно найти дифференциал от полного дифференциала, называемый дифференциалом второго порядка:
Поскольку 




Пользуясь теоремой (51.4) и приводя подобные члены, получаем:
Аналогично можно найти дифференциал третьего порядка функции
двух независимых переменных (сделайте это самостоятельно):

Легко догадаться, что общая формула для дифференциала 
Дифференцирование сложных функций
Пусть дана
функция двух переменных 
Тогда 









Пусть независимая переменная 









причем 



Если каждый из пределов, стоящих в правой части этого равенства,
существует, то существует и предел, стоящий в левой части этого
равенства, т.е. производная 


Найдем

Рассмотрим сначала

Этот предел существует, так как существуют производные 






Учитывая это, формулу (52.12) можно записать в следующем виде:
Пример:
Найти производную 
Решение:
Используя формулу (52.13), получим
Рассмотрим теперь функцию 


Этот случай сводится к предыдущему, причем роль переменной 


Но 
В правой и левой частях этой формулы имеются производные 







Предположим теперь, что 







Частные производные 


Аналогично можно получить выражение для
Полученные результаты легко обобщаются на случай сложной
функции любого конечного числа аргументов.
В частности, для функции трех переменных 
Дифференцирование неявных функций
Пусть дано уравнение
В нем каждому действительному значению 










которой является вся числовая ось, а множество значений -множество всех неотрицательных чисел. Эта функция называется неявной.
Пусть в общем случае дано уравнение
где 
Определение:
Если каждому значению 




Таким образом, для неявной функции 

справедливое для всех х из области определения М этой неявной функции.
В отличие от неявной функции функция 

Вернемся к рассмотренному примеру. Уравнение (52.18) можно
разрешить относительно
Эта функция — явная. Разумеется, это та же самая функция, которая
ранее была задана неявно уравнением (52.18). Она тождественно
удовлетворяет уравнению (52.18). В самом деле, подставив в соотношение (52.18) вместо 

В некоторых случаях каждому значению 



неявные функции, которые можно записать в явном виде, разрешив уравнение 

Не следует, однако, думать, что всякую неявную функцию можно
представить в виде явной элементарной функции. Например, уравнение

задает неявную функцию 




Не всякое уравнение вида 

действительные значения х и у, и, следовательно, оно не определяет никакой неявной функции.
Каким же условиям должна удовлетворять функция 


Теорема:
Если функция 








Эту теорему мы оставляем без доказательства.
Перейдем теперь к вопросу о дифференцировании неявной функции.
Пусть левая часть уравнения (52.19) удовлетворяет указанным в
теореме условиям. Тогда это уравнение определяет неявную функцию 



Так как производная функции, тождественно равной нулю, также
равна нулю, то полная производная 

и поэтому 
По этой формуле находится производная неявной функции одной
переменной.
Пример:
Найти производную неявной функции 


В частности, в точке

Не выражая у в явном виде через 

Инвариантность формы полного дифференциала
Как
известно, для дифференциала функции одной переменной 


Для функции нескольких переменных 


независимо от того, являются ли 
Мы ограничимся доказательством этого утверждения только для
случая функции двух переменных 



Покажем, что эта форма дифференциала сохраняется, когда 






Но по формулам (52.16) и (52.17)
так как

Следовательно, полный дифференциал 



Заметим, что дифференциалы более высоких порядков такими
свойствами не обладают.
Решение заданий на тему: Полный дифференциал
Пример:
Найдите полные дифференциалы 1-го и 2-го порядка
функции

Решение:
Дифференциал 1-го порядка находим как в примере
(52.2).

Находя дифференциал от 




Для нахождения 

Пример:
Найдите 
Решение:
В соответствии с формулой производной сложной
функции имеем:
После подстановки выражений для 

Пример:
Найдите 
Решение:



Пример:
Найдите производную 
Решение:
Для получения требуемой производной
продифференцируем обе части данного уравнения, имея в виду, что 

Отсюда находим

Продифференцировав это выражение еще раз, имея в виду, что 

Производная по направлению и градиент
Производная по направлению: Пусть задана
дифференцируемая функция 






Пусть 





Обозначим через 


Определение:
Производной функции 


Производная функции 


Заметим, что если производная функции 





Можно сказать, что производная по направлению 

Выведем формулу для вычисления производной по направлению.
Прежде всего заметим, что приращения 



Так как функция 


причем 
т.е.
Если рассматривать приращение функции вдоль луча в направлении вектора 


Разделив обе части этого равенства на 


Но 


Из формулы (53.4) следует, что если вектор 





Замечание:
Все сказанное в этом разделе остается
справедливым для функции двух переменных 

Пример:
Найти производную функции 

Решение:
частные производные в точке 
соответствии с формулой (53.5) получаем:

Полученный результат свидетельствует о том, что в точке 

Ответ:
Градиент
Напомним, что в лекции 46 было дано определение
скалярного поля.
Определение:
Градиентом в точке 


Градиент функции 

Таким образом, каждой точке 

Пример:
Найти градиент функции 
Решение:
Найдем значение частных производных в точке

В соответствии с формулой (53.7) получаем:

Ответ:
Теорема:
Проекция вектора 
равна производной функции 
Доказательство:
Пусть 

Поэтому

что и требовалось доказать.
Учитывая, что производная по направлению 




Обозначим через угол 



Если направление векторов 





Таким образом, мы приходим к следующему выводу: 
Отсюда следует, что 

Выясним взаимное расположение 


Рассмотрим кривую 


где 




направлен по касательной к кривой 
Каждая точка кривой 



Продифференцируем обе части этого тождества по 


В частности, при 

Левая часть этого равенства является скалярным произведением
и вектора

направленного по касательной к кривой 
Предположим, что 



Так как эта кривая была выбрана произвольно, то мы приходим к
следующему выводу. Если скалярное поле задано дифференцируемой функцией 



В случае плоского скалярного поля, заданного дифференцируемой
функцией двух переменных 
Его связь с производной по направлению 

где 





Касательная плоскость и нормаль к поверхности
Пусть
поверхность задана уравнением
где 



Эта плоскость называется касательной к поверхности 

Для нахождения уравнения этой плоскости, используем уравнение
плоскости, проходящей через данную точку

В качестве нормального вектора 

Определение:
Прямая, проходящая через точку касания 
Для нахождения ее уравнения, воспользуемся уравнением прямой в
пространстве, проходящей через заданную точку

В качестве направляющего вектора 
Пример:
Найти уравнение касательной плоскости и нормали к
однополостному параболоиду 
Решение:
Запишем уравнение поверхности в виде (53.13): 
Найдем

В соответствии с (53.14) уравнение касательной плоскости имеет вид:
В соответствии с (53.15) уравнение нормали имеет вид:

Ответ:
Рассмотрим теперь часто встречающийся на практике случай, когда
поверхность задана уравнением 
Запишем уравнение поверхности в виде
Здесь 
В соответствии с (53.14) уравнение касательной плоскости имеет вид:
В соответствии с (53.15) уравнение нормали имеет вид:
Направляющие косинусы нормали в точке 
изложено в т. 1 Курса. Формулы для направляющих косинусов нормали при задании поверхности уравнением 
где
Если поверхность задала уравнением 
Решение заданий на тему: Производная по направлению и градиент
Пример:
Найдите производную функции 


Решение:
Найдем направляющие косинусы:
Заметим, что 
Найдем значения частных производных в точке 

Найдем производную по направлению:

Поскольку производная по направлению равна тангенсу угла наклона касательной в данной точке в данном направлении с плоскостью 



Пример:
Найдите производную функции 


Решение:
Найдем направляющие косинусы, для чего
предварительно найдем координаты вектора 
Направляющие косинусы вектора равны координатам единичного
вектора, сонаправленого с данным:
Найдем
Аналогично тому, как это делалось в предыдущем примере, найдем
производную по направлению:

Заметим, что функция в данном направлении в точке 
Пример:
Найдите градиент функции 

Решение:
Используя найденные в примере (53.1) значения частных
производных, найдем

В соответствии с изложенным в лекции 46 производная функции в
данной точке принимает наибольшее значение в направлении градиента и равна его модулю; т.е. 


Пример:
Найдите уравнение касательной плоскости и нормали
к конусу

в точке
Решение:
Здесь поверхность задана уравнением вида 
Найдем 

В соответствии с (52.16) уравнение касательной плоскости имеет вид:

В соответствии с (52.17) уравнение нормали имеет вид:

Ответ:
Экстремум функции нескольких переменных
Формула Тейлора функции 2-х переменных:
Пусть
функция двух переменных 



Можно показать, что для случая 
где коэффициенты при 




В этих обозначениях формула Тейлора (54.1) принимает вид:

Замечание:
Для функции 



где
Решение систем нелинейных уравнений методом Ньютона
Пусть дана система 


Определение:
Решением системы (54. 3) называется точка 

Введем матрицы-столбцы неизвестных 


Тогда система (54.3) может быть записана в матричном виде:
Для приближенного решения системы (54.3) в методе Ньютона
предлагается процедура последовательного уточнения значений решения системы.
Пусть известно приближенное решение 

где:
В матричных обозначениях (54.6) записывается следующим образом:

Подставляя (54.6) в (54.3), получаем систему:

Заменим каждую из функций в левых частях этих уравнений по
формуле Тейлора (54.2) с точностью до линейных членов:
Пренебрегая остаточным членом, получим систему (54.7) линейных
уравнений для определения неизвестных «поправок» 
Находя из этой системы значения поправок 

Конечно, подставляя найденные значения 





Метод Ньютона, как правило, сходится если начальное приближение
достаточно близко к истинному решению. На практике начальное
приближение для системы двух и трех уравнений выбирают из геометрических соображений. Решение системы (54.7) и реализация метода Ньютона в настоящее время осуществляется с помощью ЭВМ.
В матричном виде, с использованием обозначений (54.4), система (54.7) и ее решение записывается более удобно:
где 

Решая матричное уравнение (54.9), получаем матрицу-столбец
поправок:
где 


Замечание:
Для системы двух и трех уравнений аргументы 
Пример:
Решить систему уравнений
Решение:
В данном случае система двух уравнений с двумя неизвестными:
Таким образом, матрица Якоби получилась равной:

На практике далее вычисления производятся с помощью программы на ЭВМ, исходными данными для работы которой являются правые части уравнений 



Для нахождения начального приближения воспользуемся
геометрической интерпретацией уравнений системы примера 54.1. Уравнение 




Ограничимся нахождением решения системы с положительными
координатами, выбрав в качестве начального приближения

Для начальной иллюстрации метода Ньютона покажем процесс
численного решения примера 54.1. В вычислениях будем брать на один знак больше требуемой точности, т.е. 2 знака после запятой.
Найдем матрицу обратную к матрице Якоби как было изложено в
части 1 настоящего Курса:

Система (54.11) для определения поправок 
Подставляя сюда начальное приближение 
Вычисляя далее очередное приближение получаем
Поскольку условие окончания процесса
Подставляя в систему (54.13) значения 
Поскольку условие окончания процесса выполнено:
Окончательное приближение получается равным

Локальный экстремум функции нескольких переменных
Определение:
Мы говорим, что функция 


для всех точек 

Определение:
Совершенно аналогично говорят, что функция 


для всех точек 

Локальный максимум и минимум функции называют локальными
экстремумами функции, т.е. говорят, что функция имеет локальный
экстремум в данной точке, если эта функция имеет локальный максимум или минимум в данной точке.
Как и для функции одной переменной локальные максимумы и
минимумы будем называть просто максимумами и минимумами или экстремумами.
Данное выше определение максимума и минимума функции можно
перефразировать следующим образом.
Положим 

1) Если 

2) Если 

Эти формулировки переносятся без изменения на функцию любого
числа переменных.
Теорема:
Необходимые условия экстремума. Если функция 


Действительно, дадим переменному 







Эта теорема не является достаточной для исследования вопроса об
экстремальных значениях функции, но позволяет находить эти значения в тех случаях, в которых мы заранее уверены в существовании максимума или минимума. В противном случае требуется дополнительное исследование.
Так например функция 


Определение:
Точки области определения в которых 


Если функция достигает экстремума в какой либо точке, то в силу
теоремы (54.1) это может случиться только в критической точке.
Для исследования функции в критических точках установим
достаточные условия экстремума функции двух переменных.
Теорема:
Пусть в некоторой области, содержащей точку 




Тогда при
имеет максимум, если
2. 
3. 

4. 
быть и может не быть (в этом случае требуется дальнейшее исследование).
Замечание:
В случае, когда функция имеет локальный экстремум в точке 

Действительно, если
и например,
Доказательство теоремы 54.2: Напишем формулу Тейлора второго
порядка для функции 

будем иметь:
где 

По условию

Следовательно,

Обозначим теперь значения вторых частных производных в точке 

Обозначим через 





Подставляя эти выражения в формулу для 
Предположим, что
Разделив и умножив на 
Рассмотрим теперь четыре возможных случая.
- Пусть
Тогда в числителе дроби стоит сумма двух неотрицательных величин. Они одновременно в нуль не обращаются, так как первый член обращается в нуль при
второй при
Если 


где 



или

Но тогда для всех точек 


а это означает, что в точке 

2) Пусть 

или

т.е. 
3) Пусть 
ни максимума, ни минимума. Функция возрастает, когда мы движемся из точки 


при движении вдоль этого луча функция возрастает. Если же перемещаться вдоль луча 



при движении вдоль этого луча функция убывает.
4) Пусть 
ни максимума, ни минимума. Исследование проводится так же, как и в случае 
5) Пусть 


При достаточно малых значениях 







Таким образом, каков бы ни был знак 
Если 

6) Пусть 



при 


Пример:
Исследовать на максимум и минимум функцию
Решение:
1) Найдем критические точки пользуясь необходимыми условиями
экстремума:

Отсюда получаем две критические точки:

2) Найдем производные второго порядка:

3) Исследуем характер первой критической точки
Следовательно, в точке (1; 1) данная функция имеет минимум, именно:

4) Исследуем характер второй критической точки

Следовательно, во второй критической точке функция не имеет ни
максимума, ни минимума (минимакс).
Решение заданий на тему: Экстремум функции нескольких переменных
Пример:
Найдите экстремумы функции
Решение:
Найдем частные производные первого порядка и найдем
стационарные точки из необходимого условия экстремума, решив систему уравнений:

Найдем далее частные производные второго порядка и вычислим значение дискриминанта 

В соответствии с достаточным условием экстремума найденная
стационарная точка 

Ответ: Точка 
Пример:
Исследуйте на экстремум функцию
Решение:
Найдем стационарные точки:

Решая 4 системы, получаем 4 стационарные точки:

Определим знак дискриминанта 
Следовательно в точках 



Определите знак частной производной 


Следовательно в точке 

Пример:
Исследуйте на экстремум функцию
Решение:
Найдем частные производные первого порядка и
определим стационарные точки из необходимого условия экстремума, решив систему уравнений:


Найдем частные производные второго порядка и вычислим значение дискриминанта 

На основании достаточного условия экстремума заключаем, что
найденная стационарная точка 

Ответ: Точка 
Условный экстремум
Глобальный экстремум. Условный экстремум. Метод множителей
Лагранжа. Понятие о численных методах поиска экстремума.
Криволинейный интеграл в скалярном поле.
В некоторых задачах необходимо найти максимум или минимум
функции от нескольких переменных, не являющихся независимыми, но связанными друг с другом некоторыми дополнительными условиями: уравнениями или неравенствами.
Определения:
Наибольшее значение функции 

Аналогично вводится понятие глобального минимума на множестве 
Наибольшее и наименьшее значение функции в замкнутой области
Пусть функция 

Тогда она имеет в этой области наибольшее и наименьшее значение,
которые достигаются либо внутри области, либо на ее границе. Если
наибольшее или наименьшее значение функция принимает во внутренних точках области 

Мы приходим к следующему правилу нахождения наибольшего и
наименьшего значения функции двух переменных.
Для того, чтобы найти наибольшее и наименьшее значения функции 




В некоторых случаях при нахождении наибольших и наименьших
значений функции двух переменных в ограниченной замкнутой области границу этой области удобно разбить на части, каждая из которых задается своими уравнениями.
Пример:
Haumu наибольшее и наименьшее значение функции 
Решение:
Находим первые частные производные 


получим одну критическую точку 
Найдем теперь наибольшее и наименьшее значение функции на
границе, т.е. на окружности 








Далее находим
Таким образом, функция имеет наибольшее значение, равное 4, и наименьшее значение, равное -4.
Итак, наибольшее значение функции 




Заметим, что наибольшее и наименьшее значение функции на окружности 
Условный экстремум:
Пример:
Из куска -жести площадью 2а требуется сделать
закрытую коробку в виде прямоугольного параллелепипеда, имеющего наибольший объем.
Решение:
Обозначив длину ребер параллелепипеда 

Решение этой задачи приводится ниже.
Такие задачи называются задачами на условный экстремум.
Сначала рассмотрим задачу нахождения условного экстремума
функции двух переменных, связанных одним условием.
Требуется найти максимумы и минимумы функции
при условии, что 
Геометрически задача сводится к нахождению такой точки 




В принципе можно из уравнения (55.2) выразить одну из переменных, например 


Этот путь, однако, может оказаться сложным, если выражение (55.2) достаточно громоздкое.
Иногда такие задачи решают методом неопределенных множителей Лагранжа.
Метод множителей Лагранжа
Считая 





Дифференцируя обе части равенства (55.2) по 
Это равенство выполняется для всех 

Умножив обе части равенства (55.4) на неопределенный пока
коэффициент 
выполняющееся в точках экстремума.
Подберем 

Тогда при этих значениях 


Таким образом, в точках экстремума выполняются три условия:
Т.е. система (55.6) является необходимым условием условного
экстремума. Заметим, что левые части уравнений (55.5) являются частными производными функции Лагранжа
трех переменных
Таким образом, для нахождения условного экстремума функции (55.1) при условии (55.2) методом множителей Лагранжа, нужно составить дополнительную функцию (55.7), приравняв нулю ее частные производные 
(55.6) являются необходимым условием, требуется дополнительное
исследование характера критической точки. Иногда при решении конкретных задач удается установить характер критической точки из физического смысла задачи.
Рассмотренный метод распространяется на случай любого числа
переменных.
Если требуется найти экстремумы функции 

нужно составить функцию Лагранжа:
Приравняв нулю ее частные производные по всем 
Определив из системы (55.9) значения 
Пример:
Решим пример (55.1) методом множителей
Лагранжа.
Решение:
Составим вспомогательную функцию

Найдем ее частные производные и приравняем их нулю:

Для решения этой системы умножим первое уравнение на 




Т. к. 

Из первых двух уравнений находим 


Из геометрических соображений следует, что полученная критическая точка дает максимум, т.к. минимум объема будет при 

Ответ: Объем коробки наибольший, когда коробка имеет форму куба
с ребром равным
Понятие о численных методах поиска экстремума
В связи с тем, что аналитические методы зачастую приводят к громоздким вычислениям, в связи с развитием вычислительной техники большое распространение получили численные методы поиска экстремума.
Ряд таких методов, получивших название градиентных, основаны на
свойстве градиента указывать направление наибольшего возрастания функции в данной точке.
Иногда градиентные методы называют «методами наискорейшего
спуска» — применяя их для нахождения точки минимума.
Кроме градиентных методов широкое распространение получили
также численные методы поиска экстремума, основанные на приближении (линейном или более высокого порядка) значения функции в данной точке.
В заключение лекций посвященных функциям нескольких переменных кратко остановимся на понятии интеграла по длине дуги, находящейся в плоском скалярном поле.
Криволинейный интеграл по длине дуги
Понятие длины
дуги плоской кривой 




Определение:
Предел интегральной суммы 55.10 при условии,
что все 


где дифференциал дуги
Если кривая 

то криволинейный интеграл по длине дуги будет вычисляться в соответствие с выражением дифференциала дуги (см. п. 45.4) по формулам:
где 

Пример:
Вычислить криволинейный интеграл по дуге окружности
от точки 

Решение:
По формуле 55.12

Из условия 




Следует обратить внимание на то. что точки
Установим физический смысл криволинейного интеграла по длине
дуги. Пусть вдоль кривой 




Точное значение массы получится предельным переходом и, в соответствии с определением 55.2, будет равно криволинейному интегралу:
Если 
Пример:
Найти массу проволоки, имеющей форму параболы 

Решение:
По формуле 55.14, учитывая, что 


Позже мы рассмотрим криволинейные интегралы 2°
ют более широкие приложения рода, которые имеют более широкие приложения.
Решение заданий на тему: условный экстремум
Пример:
Найдите условные экстремумы функции 
Решение:
Графиком функции 


Из геометрических соображений ясно, что для точек этой линии
наибольшее значение функции достигается в точке 

Заметим, что условный максимум — точка 
Находя производную 
этой критической точке и на концах отрезка:
и находим как раз те локальные экстремумы, которые были определены из геометрических соображений:
Пример:
Найдите экстремумы функций 
Решение:
Составим функцию Лагранжа:

Необходимые условия экстремума дают систему:
Для определения наличия экстремума и его характера, определим знак
при данных зналениях переменных.
Если
и следовательно, в этой точке минимум.
Если
и следовательно, в этой точке максимум.
Заметим, что геометрически данная задача сводится к нахождению самой «высокой» 


Ответ: точка максимума
Пример:
Найдите наибольшее и наименьшее значение функции 
Решение:
Найдем стационарные точки данной функции
Проверим принадлежность этой точки 
Найдем критические точки, принадлежащие отрезку
Найдем значение функции в этой точке
Найдем значение функции на концах отрезка:
Заключаем, что наибольшее значение при 

Аналогично найдем наименьшее и наибольшее значения функции при 

наименьшее — при
Для исследования функции на третьей границе: 

Из условия
заключаем, что на третьей границе 


(Впрочем, эти значения уже были). Выбирая из всех найденных значений функции самое большое и самое маленькое, окончательно заключаем, что наибольшее значение 

Ответ:
Решение заданий и задач по предметам:
- Математика
- Высшая математика
- Математический анализ
- Линейная алгебра
Дополнительные лекции по высшей математике:
- Тождественные преобразования алгебраических выражений
- Функции и графики
- Преобразования графиков функций
- Квадратная функция и её графики
- Алгебраические неравенства
- Неравенства
- Неравенства с переменными
- Прогрессии в математике
- Арифметическая прогрессия
- Геометрическая прогрессия
- Показатели в математике
- Логарифмы в математике
- Исследование уравнений
- Уравнения высших степеней
- Уравнения высших степеней с одним неизвестным
- Комплексные числа
- Непрерывная дробь (цепная дробь)
- Алгебраические уравнения
- Неопределенные уравнения
- Соединения
- Бином Ньютона
- Число е
- Непрерывные дроби
- Функция
- Исследование функций
- Предел
- Интеграл
- Двойной интеграл
- Тройной интеграл
- Интегрирование
- Неопределённый интеграл
- Определенный интеграл
- Криволинейные интегралы
- Поверхностные интегралы
- Несобственные интегралы
- Кратные интегралы
- Интегралы, зависящие от параметра
- Квадратный трехчлен
- Производная
- Применение производной к исследованию функций
- Приложения производной
- Дифференциал функции
- Дифференцирование в математике
- Формулы и правила дифференцирования
- Дифференциальное исчисление
- Дифференциальные уравнения
- Дифференциальные уравнения первого порядка
- Дифференциальные уравнения высших порядков
- Дифференциальные уравнения в частных производных
- Тригонометрические функции
- Тригонометрические уравнения и неравенства
- Показательная функция
- Показательные уравнения
- Обобщенная степень
- Взаимно обратные функции
- Логарифмическая функция
- Уравнения и неравенства
- Положительные и отрицательные числа
- Алгебраические выражения
- Иррациональные алгебраические выражения
- Преобразование алгебраических выражений
- Преобразование дробных алгебраических выражений
- Разложение многочленов на множители
- Многочлены от одного переменного
- Алгебраические дроби
- Пропорции
- Уравнения
- Системы уравнений
- Системы уравнений высших степеней
- Системы алгебраических уравнений
- Системы линейных уравнений
- Системы дифференциальных уравнений
- Арифметический квадратный корень
- Квадратные и кубические корни
- Извлечение квадратного корня
- Рациональные числа
- Иррациональные числа
- Арифметический корень
- Квадратные уравнения
- Иррациональные уравнения
- Последовательность
- Ряды сходящиеся и расходящиеся
- Тригонометрические функции произвольного угла
- Тригонометрические формулы
- Обратные тригонометрические функции
- Теорема Безу
- Математическая индукция
- Показатель степени
- Показательные функции и логарифмы
- Множество
- Множество действительных чисел
- Числовые множества
- Преобразование рациональных выражений
- Преобразование иррациональных выражений
- Геометрия
- Действительные числа
- Степени и корни
- Степень с рациональным показателем
- Тригонометрические функции угла
- Тригонометрические функции числового аргумента
- Тригонометрические выражения и их преобразования
- Преобразование тригонометрических выражений
- Комбинаторика
- Вычислительная математика
- Прямая линия на плоскости и ее уравнения
- Прямая и плоскость
- Линии и уравнения
- Прямая линия
- Уравнения прямой и плоскости в пространстве
- Кривые второго порядка
- Кривые и поверхности второго порядка
- Числовые ряды
- Степенные ряды
- Ряды Фурье
- Преобразование Фурье
- Функциональные ряды
- Функции многих переменных
- Метод координат
- Гармонический анализ
- Вещественные числа
- Предел последовательности
- Аналитическая геометрия
- Аналитическая геометрия на плоскости
- Аналитическая геометрия в пространстве
- Функции одной переменной
- Высшая алгебра
- Векторная алгебра
- Векторный анализ
- Векторы
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов
- Операции над векторами
- Непрерывность функций
- Предел и непрерывность функций нескольких переменных
- Предел и непрерывность функции одной переменной
- Производные и дифференциалы функции одной переменной
- Частные производные и дифференцируемость функций нескольких переменных
- Дифференциальное исчисление функции одной переменной
- Матрицы
- Линейные и евклидовы пространства
- Линейные отображения
- Дифференциальные теоремы о среднем
- Теория устойчивости дифференциальных уравнений
- Функции комплексного переменного
- Преобразование Лапласа
- Теории поля
- Операционное исчисление
- Системы координат
- Рациональная функция
- Интегральное исчисление
- Интегральное исчисление функций одной переменной
- Отношение в математике
- Математическая логика
- Графы в математике
- Линейные пространства
- Первообразная и неопределенный интеграл
- Линейная функция
- Выпуклые множества точек
- Система координат









































































является главной частью приращения функции.



























равен сумме дифференциалов этих функций: 
и
определяется формулой: 


















































































































































































, полученной от вращения вокруг оси
дуги
, принадлежащей параболе
;
перпендикулярной оси
(рис. 74).







































































































































































































































































































































































































































































































Тогда в числителе дроби стоит сумма двух неотрицательных величин. Они одновременно в нуль не обращаются, так как первый член обращается в нуль при
второй при 









































































