Please wait.
We are checking your browser. mathvox.ru
Why do I have to complete a CAPTCHA?
Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.
What can I do to prevent this in the future?
If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.
If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.
Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.
Cloudflare Ray ID: 6d56f4bbafe87b43 • Your IP : 85.95.179.65 • Performance & security by Cloudflare
Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов
Серединный перпендикуляр к отрезку
Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).
Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.
Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.
Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.
Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.
Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .
Докажем, что отрезок AE длиннее отрезка EB . Действительно,
Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.
Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,
Полученное противоречие и завершает доказательство теоремы 2
Окружность, описанная около треугольника
Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .
Свойства описанной около треугольника окружности. Теорема синусов
Для любого треугольника справедливы равенства (теорема синусов):

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.
Для любого треугольника справедливо равенство:
где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.
Для любого треугольника справедливо равенство:
где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.
| Фигура | Рисунок | Свойство | 
| Серединные перпендикуляры к сторонам треугольника  | 
![]()  | 
Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке. Посмотреть доказательство  | 
| Окружность, описанная около треугольника | ![]()  | 
Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника. Посмотреть доказательство  | 
| Центр описанной около остроугольного треугольника окружности | Центр описанной около остроугольного треугольника окружности лежит внутри треугольника. | |
| Центр описанной около прямоугольного треугольника окружности | ![]()  | 
Центром описанной около прямоугольного треугольника окружности является середина гипотенузы. Посмотреть доказательство  | 
| Центр описанной около тупоугольного треугольника окружности | ![]()  | 
Центр описанной около тупоугольного треугольника окружности лежит вне треугольника. | 
| Теорема синусов | ![]()  | 
|
| Площадь треугольника | ![]()  | 
|
| Радиус описанной окружности | ![]()  | 
| Серединные перпендикуляры к сторонам треугольника | 
![]()  | 
Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Окружность, описанная около треугольника
Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Центр описанной около остроугольного треугольника окружности
Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружности
Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Центр описанной около тупоугольного треугольника окружности
Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусов
Для любого треугольника справедливы равенства (теорема синусов):

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.
Площадь треугольника
Для любого треугольника справедливо равенство:
где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.
Радиус описанной окружности
Для любого треугольника справедливо равенство:
где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.
Доказательства теорем о свойствах описанной около треугольника окружности
Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).
Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:
Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:
Следовательно, справедливо равенство:
откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.
Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).
При доказательстве теоремы 3 было получено равенство:
из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.
Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:
Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).
Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.
Формула (1) доказана.
Из формулы (1) для вписанного треугольника ABC получаем (рис.7):
Радиус описанной окружности равнобедренного треугольника
Радиус описанной окружности равнобедренного треугольника можно найти по одной из общих формул радиуса окружности, описанной около треугольника.
Используя свойства равнобедренного треугольника, можно также получить дополнительные формулы.
I. Радиус описанной около треугольника окружности можно найти по формуле
Площадь равнобедренного треугольника через длину основание a и боковую сторону b можно найти по формуле
соответственно, формула для нахождения радиуса описанной окружности для равнобедренного треугольника принимает вид:
верна и для равнобедренного треугольника.
Радиус описанной около равнобедренного треугольника окружности:
где a — основание, b — боковая сторона, α — угол при вершине, β — угол при основании.
III. Радиус описанной окружности в равнобедренном треугольнике можно найти непосредственно, без использования общих формул.
Например, в прямоугольном треугольнике AOF AO=R, AF=b/2, ∠FAO=α/2. Отсюда
IV. В равнобедренном тупоугольном треугольнике центр описанной окружности лежит вне треугольника, напротив его вершины.
Радиус находят по тем же формулам, что и для остроугольного треугольника.
V. В равнобедренном прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы, радиус равен половине гипотенузы (то есть половине основания треугольника).
http://www.resolventa.ru/spr/planimetry/otcircle.htm
Описанная окружность — подробнее
Определение
Описанная окружность – такая окружность, что проходит через все три вершины треугольника, около которого она описана.
Свойства и центр описанной кружности
И вот, представь себе, имеет место удивительный факт:
Вокруг всякого треугольника можно описать окружность.
Почему этот факт удивительный?
Потому что треугольники ведь бывают разные!
И для всякого найдётся окружность, которая пройдёт через все три вершины, то есть описанная окружность.
Доказательство этого удивительного факта мы приведем чуть позже, а здесь заметим только, что если взять, к примеру, четырехугольник, то уже вовсе не для всякого найдётся окружность, проходящая через четыре вершины.
Вот, скажем, параллелограмм – отличный четырехугольник, а окружности, проходящей через все его четыре вершины – нет!
А есть только для прямоугольника:
Подробнее об этом смотри в статье о вписанных четырехугольниках!
Ну вот, а треугольник всякий и всегда имеет собственную описанную окружность! И даже всегда довольно просто найти центр этой окружности.
Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к сторонам этого треугольника.
Знаешь ли ты, что такое серединный перпендикуляр?
Серединный перпендикуляр — это прямая, проходящая через середину отрезка и перпендикулярная ему.
Прямая ( displaystyle a) – это серединный перпендикуляр к отрезку ( displaystyle AB).
А теперь посмотрим, что получится, если мы рассмотрим целых три серединных перпендикуляра к сторонам треугольника.
Вот оказывается (и это как раз и нужно доказывать, хотя мы и не будем), что все три перпендикуляра пересекутся в одной точке. Смотри на рисунок – все три серединных перпендикуляра пересекаются в одной точке ( displaystyle O).
Это и есть центр описанной около (вокруг) треугольника ( displaystyle ABC) окружности.
Как ты думаешь, всегда ли центр описанной окружности лежит внутри треугольника? Представь себе – вовсе не всегда!
Если треугольник тупоугольный, то центр его описанной окружности лежит снаружи!
Вот так:
А вот если остроугольный, то внутри:
Что же делать с прямоугольным треугольником?
В прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы.
Здорово, правда?
Если треугольник – прямоугольный, то не надо строить аж три перпендикуляра, а можно просто найти середину гипотенузы – и центр описанной окружности готов!
Да ещё с дополнительным бонусом:
В прямоугольном треугольнике радиус описанной окружности равен половине гипотенузы.
Раз уж заговорили о радиусе описанной окружности: чему он равен для произвольного треугольника? И есть ответ на этот вопрос: так называемая теорема синусов.
А именно:
В произвольном треугольнике:
( Large displaystyle frac{a}{sin angle A}=2R)
Ну и, конечно,
( displaystyle begin{array}{l}frac{b}{sin angle B}=2R\frac{c}{sin angle C}=2Rend{array})
Так что ты теперь всегда сможешь найти и центр , и радиус окружности, описанной вокруг треугольника.
То есть чтобы найти радиус описанной окружности, нужно знать одну (!) сторону и один (!) противолежащий ей угол.
Хорошая формула? По-моему, просто отличная!
Доказательство теоремы
Теорема. Вокруг всякого треугольника можно описать окружность, при том единственным образом.
Центр этой окружности – точка пересечения серединных перпендикуляров к сторонам треугольника.
Смотри, вот так:
Давай наберёмся мужества и докажем эту теорему.
Если ты читал уже тему «Биссектриса» разбирался в том, почему же три биссектрисы пересекаются в одной точке, то тебе будет легче, но и если не читал – не переживай: сейчас во всём разберёмся.
Доказательство будем проводить, используя понятие геометрического места точек (ГМТ).
Геометрическое место точек, обладающих свойством «( displaystyle X)» — такое множество точек, что все они обладают свойством «( displaystyle X)» и никакие другие точки этим свойством не обладают.
Ну вот, например, является ли множество мячей – «геометрическим местом» круглых предметов? Нет, конечно, потому что бывают круглые …арбузы.
А является ли множество людей, «геометрическим местом», умеющих говорить? Тоже нет, потому что есть младенцы, которые говорить не умеют.
В жизни вообще сложно найти пример настоящего «геометрического места точек». В геометрии проще. Вот, к примеру, как раз то, что нам нужно:
Серединный перпендикуляр к отрезку является геометрическим местом точек, равноудалённых от концов отрезка.
Тут множество – это серединный перпендикуляр, а свойство «( displaystyle X)» — это «быть равноудаленной (точкой) от концов отрезка».
Проверим? Итак, нужно удостовериться в двух вещах:
- Всякая точка на серединном перпендикуляре находится на одинаковом расстоянии от концов отрезка
 - Всякая точка, которая равноудалена от концов отрезка – находится на серединном перпендикуляре к ему
 
Приступим:
Проверим 1. Пусть точка ( displaystyle M) лежит на серединном перпендикуляре к отрезку ( displaystyle AB).
Соединим ( displaystyle M) с ( displaystyle A) и с ( displaystyle B).Тогда линия ( displaystyle MK) является медианой и высотой в ( displaystyle Delta AMB).
Значит, ( displaystyle Delta AMB) – равнобедренный, ( displaystyle MA=MB) – убедились, что любая точка ( displaystyle M), лежащая на серединном перпендикуляре, одинаково удалена от точек ( displaystyle A) и ( displaystyle B).
Теперь 2. Почти точно так же, но в другую сторону. Пусть точка ( displaystyle M) равноудалена от точек ( displaystyle A) и ( displaystyle B), то есть ( displaystyle MA=MB).
Возьмём ( displaystyle K) – середину ( displaystyle AB) и соединим ( displaystyle M) и ( displaystyle K). Получилась медиана ( displaystyle MK). Но ( displaystyle Delta AMB) – равнобедренный по условию ( displaystyle (MA=MB)Rightarrow MK) не только медиана, но и высота, то есть – серединный перпендикуляр. Значит, точка ( displaystyle M) — точно лежит на серединном перпендикуляре.
Всё! Полностью проверили тот факт, что серединный перпендикуляр к отрезку является геометрическим местом точек, равноудаленных от концов отрезка.
Это все хорошо, но не забыли ли мы об описанной окружности? Вовсе нет, мы как раз подготовили себе «плацдарм для нападения».
Рассмотрим треугольник ( displaystyle ABC). Проведём два серединных перпендикуляра ( displaystyle {{a}_{1}}) и ( displaystyle {{a}_{2}}), скажем, к отрезкам ( displaystyle AB) и ( displaystyle BC). Они пересекутся в какой-то точке, которую мы назовем ( displaystyle O).
А теперь, внимание!
Точка ( displaystyle O) лежит на серединном перпендикуляре ( displaystyle {{a}_{1}}Rightarrow OA=OB);
точка ( displaystyle O) лежит на серединном перпендикуляре ( displaystyle {{a}_{2}}Rightarrow OB=OC).
И значит, ( displaystyle OA=OB=OC) и ( displaystyle OA=OC).
Отсюда следует сразу несколько вещей:
Бонусы: Вебинары из нашего курса подготовки к ЕГЭ по математике
ЕГЭ 6. Описанная окружность. Многоугольники
Вы этом видео вы узнаете, что такое описанная окружность, где находится её центр, и другие свойства.
Около каких фигур можно, а вокруг каких нельзя описать окружность.
Также мы узнаем, что такое правильные многоугольники, и какие у них свойства; как они связаны с описанной окружностью.
Научимся решать задачи из ЕГЭ на описанную окружность и правильные многоугольники.
ЕГЭ 6. Вписанная окружность
В этом видео мы узнаем, что такое вписанная окружность, где находится её центр, и другие свойства.
В какие фигуры можно, а в какие нельзя вписать окружность. Научимся решать задачи на вписанную окружность.
ВИДЕОУРОК
Описанная окружность
равнобедренного треугольника.
Для того, чтобы найти
радиус описанной окружности равнобедренного треугольника можно воспользоваться
следующей формулой:
ЗАДАЧА:
Основание равнобедренного тупоугольного треугольника
равно  18
см, а радиус описанной вокруг него окружности – 15
см. Найдите боковую сторону треугольника.
РЕШЕНИЕ:
В четырёхугольнике 
АОВС
АО = ВО = СО = 15 см
как радиусы описанной окружности.
В равнобедренном треугольнике  АВС
АС = ВС, 
основание  
АВ = 18 см.
Высота  СD  лежит на
серединном перпендикуляре основания  АВ, поэтому 
АD = ВD = 0,5АВ 
= 0,5 × 18 = 9 см.
В треугольнике ОВD согласно теореме Пифагора:
СD = СО – DО =
= 15 – 12 = 3 (см).
В треугольнике СDВ согласно теореме Пифагора:
ОТВЕТ:  3√͞͞͞͞͞10
см
ЗАДАЧА:
Высота равнобедренного тупоугольного треугольника,
опущенная на его основание, равна  8 см, а радиус описанной вокруг неё окружности – 13 см. Найдите боковую сторону треугольника.
РЕШЕНИЕ:
Начертим чертёж.
ОА = ОВ = ОС = R = 13 см.
ОН = 13 – 8 = 5
(см).
Вписанная окружность
равнобедренного треугольника.
Для того, чтобы найти
радиус вписанной окружности равнобедренного треугольника можно воспользоваться
следующей формулой:
Радиус вписанной в равнобедренный треугольник
окружности, выраженный через боковую сторону и высоту, опущенную на основание, выражается
следующей формулой:
ЗАДАЧА:
Высота равнобедренного треугольника равна  18
см, а радиус вписанной в него окружности – 8 см. Найдите периметр данного треугольника.
РЕШЕНИЕ:
В треугольнику АВС
АВ = ВС,
отрезок ВD – высота,
ВD =
18 см, точка  О – центр вписанной окружности.
Так как  ∆ АВС – равнобедренный, то точка  О  принадлежит его высоте и биссектрисе  ВD,
а отрезок  ОD – радиус вписанной окружности,
ОD = 8 см. Тогда
ВО = ВD – ОD = 10 см.
Центром окружности, вписанной
в треугольник, будет точка пересечения биссектрис треугольника. Тогда отрезок  АО – биссектриса
треугольника  АDВ. Воспользуемся свойством биссектрисы треугольника
Пусть  АВ = 5х
см, х
˃ 0,
тогда АD
=
4х см. 
Из ∆ АDВ (∠ АDВ = 90°):
АВ2 – АD2 = ВD2,
25х2 – 16х2 = 182,
9х2 = 324, х = 6.
Поэтому,
АВ = 30 см,
АD = 24 см,
АС = 2АD = 48 см.
Тогда
Р = 2АВ + АС = 108 см.
Радиус вписанной и описанной
окружности для равностороннего треугольника выражается следующими формулами:
У равностороннего треугольника центры вписанной
и описанной окружности, центр тяжести и ортоцентр совпадают, а сумма
радиусов описанной и вписанной окружности равна высоте.
ЗАДАЧА:
Найдите радиус окружности, вписанной в правильный
треугольник со стороною  12 см ?
РЕШЕНИЕ:
Так как треугольник 
АВС –
равносторонний, в котором  ВD  является биссектрисой, высотой и медианой, то
угол  DВС будет равен  30°.
Треугольник  ВDС –
прямоугольный в котором против угла в  30°  находится катет,
равный половине гипотенузы. Значит  DС = 6 см.
По теореме Пифагора находим ВD.
Тогда
r = 1/3 ВD = 1/3∙ 6√͞͞͞͞͞3 = 2√͞͞͞͞͞3 (см).
ЗАДАЧА:
Определить отношение радиуса вписанной в равносторонний
треугольник окружности к радиусу описанной окружности.
РЕШЕНИЕ:
В равностороннем  АВС  его три медианы,
биссектрисы и высоты совпадают и пересекаются в одной точке – центре
треугольника. Радиусом описанной окружности будет отрезок, соединяющий
центр  О  с одной из вершин треугольника.
А вписанной – апофема 
ОD.
Но так как  АО  ещё и биссектриса,
то  
∠ ОАD = 30°, 
а  ∆ АOD – прямоугольный, следовательно,
ЗАДАЧА:
Окружность касается одного из катетов равнобедренного
прямоугольного треугольника и проходит через вершину противоположного острого угла.
Найдите радиус окружности, если её центр находится на гипотенузе треугольника,
а катет треугольника равен  10 см.
РЕШЕНИЕ:
Пусть   АВС – заданный прямоугольный треугольник  (∠ А
= 90°), 
АВ = АС = 10 см.
О ∈ ВС –
центр окружности, которая проходит через
точку  С.
Е
– точка касания
окружности
до катета  АВ. 
В
треугольнику  АВС 
∠ В = ∠ С = 45° 
і  
АВ = АС = 10 (см).
Пусть  ОС = ОЕ = х (см).
Из
треугольника  
ОЕВ (∠ Е = 90°, ∠ В = 45°)
ОВ = √͞͞͞͞͞2  ∙ ОЕ = √͞͞͞͞͞2
х
(см).
Так как
 ВС = ОВ + ОС, 
то имеем:
10√͞͞͞͞͞2 = √͞͞͞͞͞2 х + х,
откуда
ОТВЕТ: 10(2 – √͞͞͞͞͞2) см
Задания к уроку 16
- Задание 1
 - Задание 2
 - Задание 3
 
Другие уроки:
- Урок 1. Точка и прямая
 - Урок 2. Угол
 - Урок 3. Параллельные и перпендикулярные прямые
 - Урок 4. Окружность
 - Урок 5. Угол и окружность
 - Урок 6. Треугольник (1)
 - Урок 7. Треугольник (2)
 - Урок 8. Прямоугольный треугольник (1)
 - Урок 9. Прямоугольный треугольник (2)
 - Урок 10. Равнобедренный треугольник (1)
 - Урок 11. Равнобедренный треугольник (2)
 - Урок 12. Периметр треугольника
 - Урок 13. Периметр равнобедренного (равностороннего) треугольника
 - Урок 14. Треугольник и окружность
 - Урок 15. Прямоугольный треугольник и окружность
 - Урок 17. Четырёхугольники
 - Урок 18. Параллелограмм
 - Урок 19. Периметр параллелограмма
 - Урок 20. Прямоугольник
 - Урок 21. Периметр прямоугольника
 - Урок 22. Квадрат
 - Урок 23. Ромб
 - Урок 24. Периметр ромба
 - Урок 25. Трапеция
 - Урок 26. Равнобедренная трапеция
 - Урок 27. Периметр трапеции
 - Урок 28. Четырёхугольник и окружность (1)
 - Урок 29. Четырёхугольник и окружность (2)
 - Урок 30. Многоугольник
 - Урок 31. Правильный многоугольник
 - Урок 32. Осевая и центральная симметрии
 
Где находится центр описанной около треугольника окружности? Что можно сказать о центре окружности, описанной около многоугольника?
Теорема.
Центр описанной около треугольника окружности является точкой пересечения серединных перпендикуляров к сторонам треугольника.
Дано: ∆ ABC,
окружность (O;R) — описанная около ∆ ABC.
Доказать:
O — точка пересечения серединных перпендикуляров к сторонам ∆ ABC.
Доказательство:

OA=OC (как радиусы), следовательно, треугольник AOC — равнобедренный с основанием AC (по определению).

      
Следовательно, центр описанной окружности — точка O — лежит на прямой, перпендикулярной стороне AC и проходящей через ее середину, то есть на серединном перпендикуляре к AC.

Так как серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, то точка O — центр описанной около треугольника ABC окружности.
Что и требовалось доказать.
Замечание.
Аналогичные рассуждения можно применить и для многоугольника, около которого можно описать окружность.
Центр описанной около многоугольника окружности является точкой пересечения серединных перпендикуляров к сторонам этого многоугольника.
Содержание:
Окружность, которая касается стороны треугольника и продолжений двух других его сторон, называется вневписанной окружностью треугольника. На рисунке 146 изображен треугольник АВС и три его вневписанные окружности с центрами 
Вневписанные окружности обладают рядом интересных свойств:
1. Центры вписанной и вневписанной окружностей лежат на биссектрисе соответствующего внутреннего угла треугольника.
2. 

3. 
Попробуйте доказать некоторые из этих свойств.
Найдем радиус 






Пример:
Вычислим, используя данную формулу, радиус вневписанной окружности прямоугольного треугольника с катетами 3 и 4, которая касается гипотенузы: 
Описанная и вписанная окружности треугольника
Определение. Окружность называется описанной около треугольника, если она проходит через все его вершины.
На рисунке 90 изображена окружность с радиусом R и центром 
Так как ОА = ОВ = ОС = R, то центр описанной окружности равноудален от вершин треугольника.
Вместо слов «окружность, описанная около треугольника АВС», также говорят «окружность, описанная вокруг треугольника АВС», или «описанная окружность треугольника АВС».
 
Теорема (об окружности, описанной около треугольника).
Около любого треугольника можно описать окружность, причем только одну, ее центр находится в точке пересечения серединных перпендикуляров к сторонам треугольника.
Доказательство:
Рассмотрим произвольный треугольник АВС (рис. 91). Пусть О — точка пересечения серединных перпендикуляров к его сторонам. Проведем отрезки ОА, ОВ и ОС. По свойству серединного перпендикуляра ОА = ОС, ОС = ОВ. Так как точка О равноудалена от всех вершин треугольника АВС, то окружность с центром в точке О и радиусом ОА проходит через все вершины треугольника АВС, т. е. является его описанной окружностью. Единственность описанной окружности докажите самостоятельно.
Замечание. Так как все три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке, то для нахождения центра описанной окружности достаточно построить точку пересечения любых двух из них.
Определение. Окружность называется вписанной в треугольник, если она касается всех его сторон.
На рисунке 92 изображена окружность с центром О и радиусом 
Так как 

Вместо слов «окружность, вписанная в треугольник АВС», также говорят «вписанная окружность треугольника АВС».
 
Теорема (об окружности, вписанной в треугольник).
В любой треугольник можно вписать окружность, причем только одну, ее центр находится в точке пересечения биссектрис треугольника.
Доказательство:
Рассмотрим произвольный треугольник АВС (рис. 93). Пусть О — точка пересечения его биссектрис. Проведем из точки О перпендикуляры ОК, ОМ и ON соответственно к сторонам АВ, ВС и АС. По свойству биссектрисы угла ОК = ON, ON = ОМ. Окружность с центром в точке О и радиусом ОК будет проходить через точки К, М и N и касаться сторон АВ, ВС и АС в указанных точках по признаку касательной.
Следовательно, эта окружность является вписанной в треугольник АВС. Единственность вписанной окружности докажите самостоятельно.
Замечание. Так как все три биссектрисы треугольника пересекаются в одной точке, то для нахождения центра вписанной окружности достаточно построить точку пересечения любых двух из них.
Теорема. Площадь треугольника можно найти по формуле 


Доказательство:
Пусть дан треугольник АВС со сторонами 


Теорема доказана.
Следствие:
Радиус окружности, вписанной в треугольник, можно найти по формуле
Одной из важнейших задач данной темы является задача нахождения радиуса описанной и радиуса вписанной окружностей данного треугольника.
Пример:
Найти радиус окружности, описанной около равнобедренного треугольника АВС, у которого АВ = ВС = 26 см, высота ВК = 24 см
(рис. 95).
Решение:
Способ 1 (метод подобия). Центр описанной окружности лежит на пересечении серединных перпендикуляров к сторонам треугольника. Проведем серединные перпендикуляры к сторонам АС и ВС, которые пересекутся в точке О — центре описанной окружности. Так как в равнобедренном треугольнике высота, проведенная к основанию, является медианой, то ВК — серединный перпендикуляр к стороне АС. Пусть МО — серединный перпендикуляр к стороне ВС. Тогда ВМ = 13 см, ВО = R -— искомый радиус. Поскольку 

Способ 2 (тригонометрический метод). Из 



Способ 3* (среднее пропорциональное). Продлим высоту ВК до пересечения с описанной окружностью в точке D (рис. 96). Так как центр описанной окружности равнобедренного треугольника лежит на прямой ВК (см. способ 1), то BD = 2R — диаметр данной окружности. В прямоугольном треугольнике BCD 

Ответ: 
Замечание. Из решения ключевой задачи 1 следует свойство: «Центр окружности, описанной около равнобедренного треугольника, лежит на его высоте, проведенной к основанию, или на ее продолжении».
Верно и обратное утверждение: «Если центр окружности, описанной около треугольника, лежит на высоте треугольника или на ее продолжении, то этот треугольник равнобедренный».
Обратное утверждение докажите самостоятельно.
Полезно запомнить!
Если в ключевой задаче 1 боковую сторону обозначить 


Отсюда следует удобная формула для нахождения радиуса окружности, описанной около равнобедренного треугольника:
Пример:
Найти радиус окружности, вписанной в равнобедренный треугольник АВС, у которого АВ = ВС = 10 см, АС = 12 см.
Решение:
Способ 1 (метод подобия). Центр вписанной окружности находится в точке пересечения биссектрис треугольника. Проведем в треугольнике АВС биссектрисы из вершин В и С, которые пересекутся в точке О — центре вписанной окружности (рис. 97). Биссектриса ВМ, проведенная к основанию равнобедренного треугольника АВС, будет его высотой и медианой, луч СО — биссектриса угла С, 







Способ 2 (тригонометрический метод). Из 



Способ 3 (свойство биссектрисы треугольника). СО — биссектриса 


Способ 4 (формула 


Ответ: 3 см.
Замечание. Из решения ключевой задачи 2 следует свойство: «Центр окружности, вписанной в равнобедренный треугольник, лежит на его высоте, проведенной к основанию».
Верно и обратное утверждение: «Если центр окружности, вписанной в треугольник, лежит на высоте треугольника, то этот треугольник равнобедренный».
Обратное утверждение докажите самостоятельно.
Пример:
Дан равносторонний треугольник со стороной а. Найти радиус R его описанной окружности и радиус 
Решение:
Способ 1 (тригонометрический метод).Так как в равностороннем треугольнике биссектрисы являются и высотами, и медианами, то его биссектрисы лежат на серединных перпендикулярах к сторонам треугольника. Поэтому в равностороннем треугольнике центры описанной и вписанной окружностей совпадают.
Рассмотрим равносторонний треугольник АВС со стороной а, у которого высоты AM и ВК пересекаются в точке О — центре описанной и вписанной окружностей (рис. 98). Тогда ОА = OB = R — радиусы описанной, 




В 

Способ 2 (свойство медиан). Поскольку AM и ВК — медианы треугольника АВС (см. рис. 98), то по свойству медиан 

Ответ: 
Полезно запомнить!
Поскольку радиус описанной окружности равностороннего треугольника

треугольника в 
Чтобы найти радиус R описанной окружности равностороннего треугольника, нужно сторону 


Прямоугольный треугольник и его описанная и вписанная окружности
Теорема. Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы, а ее радиус равен половине гипотенузы, т. е. 
Доказательство:
Проведем в прямоугольном треугольнике АВС медиану СО к гипотенузе АВ (рис. 111). Так как медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы, то ОС = ОА = ОВ.
Тогда середина гипотенузы — точка О — равноудалена от точек А, В и С и поэтому является центром описанной окружности треугольника АВС. Радиус этой окружности 
Теорема доказана.
Замечание. Также можно доказать, что серединные перпендикуляры к катетам прямоугольного треугольника пересекаются на середине гипотенузы.
Отметим, что у остроугольного треугольника центр описанной окружности лежит внутри треугольника (рис. 112, а), у тупоугольного — вне треугольника (рис. 112, б), у прямоугольного — на середине гипотенузы (рис. 112, в). Обоснуйте первые два утверждения самостоятельно.
Теорема. Радиус окружности, вписанной в прямоугольный треугольник, можно найти по формуле 




Доказательство:
Рассмотрим прямоугольный треугольник АВС с катетами 


Проведем радиусы в точки касания и получим: 





Теорема доказана.
Следствие: 
Доказательство:
Преобразуем формулу радиуса вписанной окружности:
Формула 


 
Пример. Дан прямоугольный треугольник, 

Решение:
Так как 
Из формулы 


Ответ:
Пример:
Найти радиус окружности, описанной около прямоугольного треугольника, у которого один из катетов равен 6, а радиус вписанной окружности равен 2.
Решение:
Способ 1 (геометрический). Пусть в треугольнике АВС, где 

По свойству касательных 
Тогда 
Следовательно, 
Радиус описанной окружности 
Способ 2 (алгебраический). Подставив в формулу 




Ответ: 5.
Пример:
Гипотенуза прямоугольного треугольника 

Решение:
Способ 1 (геометрический). Пусть в 




Отсюда 
Площадь 

Способ 2 (алгебраический). Из формулы 



Способ 3 (алгебраический). Из формулы 


Ответ: 40.
Реальная геометрия:
Есть два листа ДСП (древесно-стружечной плиты). Один из них имеет форму равностороннего треугольника со стороной 1 м, другой — форму прямоугольного равнобедренного треугольника с катетами, равными 1 м (рис. 120). Из каждого листа необходимо вырезать по одному кругу наибольшего диаметра. Определите, из какого листа будет вырезан круг большего диаметра и каким в этом случае будет процент отходов, если известно, что площадь круга можно найти по формуле 
Вписанные и описанные четырехугольники
Определение. Окружность называется описанной около многоугольника, если она проходит через все его вершины. При этом многоугольник называется вписанным в окружность.
Окружность называется вписанной в многоугольник, если она касается всех его сторон. При этом много угольник называется описанным около окружности.
Пятиугольник ABCDE (рис. 121, а) является вписанным в окружность а четырехугольник MNPK (рис. 121, б) — описанным около окружности.
Центр описанной окружности многоугольника находится в точке пересечения серединных перпендикуляров к его сторонам, а центр вписанной — в точке пересечения биссектрис его углов.
Обоснуйте эти утверждения самостоятельно.
Теорема (свойство вписанного четырехугольника).
Сумма противоположных углов четырехугольника, вписанного в окружность, равна 180°.
Доказательство:
Пусть ABCD — четырехугольник, вписанный в окружность (рис. 122). Его углы А, В, С и D являются вписанными в окружность. Так как вписанный угол равен половине дуги, на которую он опирается, то 


Теорема (признак вписанного четырехугольника).
Если сумма противоположных углов четырехугольника равна 
Доказательство:
Рассмотрим четырехугольник ABCD, у которого 


Тогда сумма 
Замечание. Так как сумма углов четырехугольника равна 360°, то для того чтобы около четырехугольника можно было описать окружность, достаточно, чтобы сумма любой пары его противоположных углов была равна 180°.
Следствия.
1. Около параллелограмма можно описать окружность, только если этот параллелограмм — прямоугольник (рис. 124, а). Центр этой окружности лежит в точке пересечения диагоналей прямоугольника.
2. Около ромба можно описать окружность, только если этот ромб — квадрат (рис. 124, б).
3. Около трапеции можно описать окружность, только если она равнобедренная (рис. 124, в).
Докажите эти следствия самостоятельно.
Теорема (свойство описанного четырехугольника ).
Суммы противоположных сторон описанного четырехугольника равны между собой.
Доказательство:
Пусть ABCD — описанный четырехугольник, М, N, Р и К — точки касания его сторон с окружностью (рис. 125). Так как отрезки касательных, проведенных к окружности из одной точки, равны между собой, то AM = АК = а, ВМ = BN = b, СР = CN = с, DP = DK = d. Тогда
откуда AD + ВС = AB + CD.
Теорема доказана.
Следствие:
Периметр описанного четырехугольника равен удвоенной сумме длин любой пары его противоположных сторон:
Теорема (признак описанного четырехугольника).
Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.
Доказательство:
Пусть для выпуклого четырехугольника ABCD справедливо, что

Проведем окружность, которая касается прямых AD, АВ и ВС (рис. 126). Такая окружность существует, ее центр находится в точке пересечения биссектрис углов А и В. Если окружность не касается стороны CD, то либо прямая CD не имеет с окружностью общих точек, либо является секущей. Рассмотрим первый случай. Проведем отрезок 

Отняв почленно от равенства (1) равенство (2), получим 
Рассмотрев случай, когда прямая DC — секущая, также придем к противоречию (сделайте это самостоятельно). Следовательно, данная окружность касается стороны CD и в четырехугольник ABCD можно вписать окружность. Теорема доказана.
 
Следствия.
1. В параллелограмм можно вписать окружность, только если этот параллелограмм — ромб. Центр этой окружности лежит в точке пересечения диагоналей ромба, а ее диаметр равен высоте ромба (рис. 127, а).
2. В прямоугольник можно вписать окружность, только если этот прямоугольник — квадрат (рис. 127, б).
3. Диаметр окружности, вписанной в трапецию, равен ее высоте (рис. 127, в).
Докажите эти следствия самостоятельно.
Для описанного многоугольника справедлива формула 

Доказательство аналогично приведенному в § 8 для треугольника. Выполните его самостоятельно, используя рисунок 128.
Пример:
Найти радиус окружности, вписанной в ромб с периметром 24 см и острым углом, равным 45°.
Решение:
Способ 1 (решение прямоугольного треугольника). Пусть ABCD — ромб (рис. 129), О — центр вписанной в ромб окружности. Известно, что высота ВК ромба равна диаметру EF вписанной окружности, т. е. 

Из прямоугольного треугольника АВК находим. что 


Способ 2 (метод площадей). Ромб — параллелограмм. По формуле площади параллелограмма 





Ответ: 
Пример:
Окружность, вписанная в прямоугольную трапецию ABCD, где 
Решение:
Способ 1. Площадь трапеции находится по формуле 




Способ 2*. Центр О вписанной окружности лежит на пересечении биссектрис углов 











Ответ: 18.
Замечание. Полезно запомнить свойство: «Боковая сторона описанной трапеции видна из центра вписанной окружности под углом 90°».
Пример:
Внутри острого угла А взята точка М, из которой опущены перпендикуляры МВ и МС на стороны угла А, 
Решение:
Так как в четырехугольнике АВМС сумма углов В и С равна 180°, то около него можно описать окружность. Проведем в ней хорду AM (рис. 132, б). Поскольку 



Ответ: 75°.
Окружность, вписанная в треугольник
Пример:
Окружность вписана в треугольник АВС со сторонами ВС = а, АС = Ь, АВ = с. Вывести формулу для нахождения длин отрезков, на которые точки касания окружности со сторонами делят каждую сторону треугольника.
Решение:
Пусть К, М и N — точки касания вписанной окружности соответственно со сторонами АС, АВ и ВС треугольника АВС (рис. 140). Известно, что отрезки касательных, проведенных из одной точки к окружности, равны между собой.
Тогда, если 





Ответ: 
Замечание. Если 


Описанная трапеция
Пример:
Найти площадь описанной равнобедренной трапеции с основаниями а и Ь.
Решение:
Площадь трапеции можно найти по формуле 






Замечание. Площадь описанной равнобедренной трапеции равна произведению среднего арифметического и среднего геометрического ее оснований.
Полезно запомнить!
Для описанной равнобедренной трапеции с основаниями 


Дополнительные свойства и признаки вписанного четырехугольника
Теорема.
Около четырехугольника можно описать окружность тогда и только тогда, когда угол между его стороной и диагональю равен углу между противоположной стороной и другой диагональю.
Рис. 143
Доказательство:
1. Если четырехугольник ABCD вписан в окружность (рис. 143), то 
2. Докажем, что если в некотором четырехугольнике ABCD 
Опишем около треугольника ABD окружность.
В 8-м классе (В. В. Казаков. «Геометрия, 8», с. 186) было доказано свойство:
«Геометрическим местом точек плоскости, из которых данный отрезок AD виден под углом а, является объединение двух дуг окружностей: дуги ABD и ей симметричной относительно прямой AD, исключая точки 
Обобщенная теорема Пифагора
В прямоугольном треугольнике 





Действительно, из подобия указанных треугольников 
Пример:
Пусть 


Ответ: 
Формула Эйлера для окружностей
Для вписанной и описанной окружностей треугольника с радиусами 
Проверим справедливость этой формулы на примере равнобедренного треугольника АВС, у которого АВ = ВС = 10, АС = 12 (рис. 150).
Вначале найдем расстояние между центрами указанных окружностей традиционным способом.
Проведем высоту ВН, длина которой будет равна 8 (пифагорова тройка 6, 8, 10). Центры описанной и вписанной окружностей — соответственно точки 








А теперь найдем d по формуле Эйлера: 


Запомнить:
- Центр описанной окружности треугольника (многоугольника) лежит в точке пересечения серединных перпендикуляров к его сторонам.
 - Центр вписанной окружности треугольника (многоугольника) лежит в точке пересечения биссектрис его углов.
 - Центр описанной окружности прямоугольного треугольника лежит на середине гипотенузы, а ее радиус равен половине гипотенузы: 
 - Радиус вписанной окружности прямоугольного треугольника находится по формуле 
 - Если четырехугольник вписан в окружность, то суммы его противоположных углов равны 180°. И обратно.
 - Если четырехугольник описан около окружности, то суммы его противоположных сторон равны между собой. И обратно.
 - Площадь треугольника и описанного многоугольника можно найти по формуле 
где
— полупериметр,
— радиус вписанной окружности.
 
Справочная информация по описанной и вписанной окружности треугольника
Определение. Окружность называют описанной около треугольника, если она проходит через все вершины этого треугольника.
На рисунке 298 изображена окружность, описанная около треугольника. В этом случае также говорят, что треугольник вписан в окружность. Очевидно, что центр описанной окружности треугольника равноудален от всех его вершин. На рисунке 298 точка 


Теорема 21.1. Вокруг любого треугольника можно описать окружность.
Доказательство: Для доказательства достаточно показать, что для любого треугольника 





На рисунке 299 изображен произвольный треугольник 













Заметим, что вокруг треугольника можно описать только одну окружность. Это следует из того, что серединные перпендикуляры 

Следствие 1. Три серединных перпендикуляра сторон треугольника пересекаются в одной точке.
Следствие 2. Центр описанной окружности треугольника — это точка пересечения серединных перпендикуляров его сторон.
Определение. Окружность называют вписанной в треугольник, если она касается всех его сторон.
На рисунке 300 изображена окружность, вписанная в треугольник. В этом случае также говорят, что треугольник описан около окружности.
Точка 





Теорема 21.2. В любой треугольник можно вписать окружность.
Доказательство: Для доказательства достаточно показать, что для любого треугольника 



На рисунке 301 изображен произвольный треугольник 












Заметим, что в треугольник можно вписать только одну окружность. Это следует из того, что биссектрисы углов 

Следствие 1. Биссектрисы углов треугольника пересекаются в одной точке.
Следствие 2. Центр вписанной окружности треугольника — это точка пересечения его биссектрис.
Пример:
Докажите, что радиус окружности, вписанной в прямоугольный треугольник, определяется по формуле 




Решение:
В треугольнике 











Отрезок 

Так как точка 





- Плоские и пространственные фигуры
 - Взаимное расположение точек и прямых
 - Сравнение и измерение отрезков и углов
 - Первый признак равенства треугольников
 - Треугольники и окружность
 - Площадь треугольника
 - Соотношения между сторонами и углами произвольного треугольника
 - Окружность и круг
 














































































































































 где 
 — полупериметр, 
 — радиус вписанной окружности.





