Часто мы слышим выражения: «он инертный», «двигаться по инерции», «момент инерции». В переносном значении слово «инерция» может трактоваться как отсутствие инициативы и действий. Нас же интересует прямое значение.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Что такое инерция
Согласно определению инерция в физике – это способность тел сохранять состояние покоя или движения в отсутствие действия внешних сил.
Если с самим понятием инерции все понятно на интуитивном уровне, то момент инерции – отдельный вопрос. Согласитесь, сложно представить в уме, что это такое. В этой статье Вы научитесь решать базовые задачи на тему «Момент инерции».
Определение момента инерции
Из школьного курса известно, что масса – мера инертности тела. Если мы толкнем две тележки разной массы, то остановить сложнее будет ту, которая тяжелее. То есть чем больше масса, тем большее внешнее воздействие необходимо, чтобы изменить движение тела. Рассмотренное относится к поступательному движению, когда тележка из примера движется по прямой.
По аналогии с массой и поступательным движением момент инерции – это мера инертности тела при вращательном движении вокруг оси.
Момент инерции – скалярная физическая величина, мера инертности тела при вращении вокруг оси. Обозначается буквой J и в системе СИ измеряется в килограммах, умноженных на квадратный метр.
Как посчитать момент инерции? Есть общая формула, по которой в физике вычисляется момент инерции любого тела. Если тело разбить на бесконечно малые кусочки массой dm, то момент инерции будет равен сумме произведений этих элементарных масс на квадрат расстояния до оси вращения.
Это общая формула для момента инерции в физике. Для материальной точки массы m, вращающейся вокруг оси на расстоянии r от нее, данная формула принимает вид:
Теорема Штейнера
От чего зависит момент инерции? От массы, положения оси вращения, формы и размеров тела.
Теорема Гюйгенса-Штейнера – очень важная теорема, которую часто используют при решении задач.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Теорема Гюйгенса-Штейнера гласит:
Момент инерции тела относительно произвольной оси равняется сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.
Для тех, кто не хочет постоянно интегрировать при решении задач на нахождение момента инерции, приведем рисунок с указанием моментов инерции некоторых однородных тел, которые часто встречаются в задачах:
Пример решения задачи на нахождение момента инерции
Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.
Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.
Решение:
Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от 0 до R и рассмотрим одно такое кольцо. Пусть его радиус – r, а масса – dm. Тогда момент инерции кольца:
Массу кольца можно представить в виде:
Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:
В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.
Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.
Решение:
Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:
Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и решению задач.
Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе. Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.
Как уже известно, зная для данной фигуры центральные моменты инерции 


При этом можно за основную систему осей принять такую систему, при которой формулы существенно упрощаются. Именно, можно найти систему координатных осей, для которых центробежный момент инерции равен.нулю. В самом деле, моменты инерции 

может быть и положительным и отрицательным, так как слагаемые zydF могут быть разного знака в зависимости от знаков z и у для той или иной площадки. Значит, он может быть равен нулю.
Оси, относительно которых центробежный момент инерции обращается в нуль, называются главными осями инерции. Если начало такой системы помещено в центре тяжести фигуры, то это будут главные центральные оси. Эти оси мы будем обозначать 

Найдем, под каким углом 
Рис.1. Расчетная модель для определения положения главных осей инерции.
В известном выражении для перехода от осей yz к осям 





или
откуда:
|
|
(1) |
Этому уравнению удовлетворяют два значения 




Пользуясь этой формулой, можно по известным 







|
|
(2) |
Полученными соотношениями можно пользоваться при решении задач. Одним из главных моментов инерции является 

Формулы (2) можно преобразовать к виду, свободному от значения 




Заменяя здесь из формулы (1) дробь 
получаем
|
|
(3) |
К этому же выражению можно прийти, делая подобное же преобразование второй формулы (3).
За основную систему центральных осей, от которых можно переходить к любой другой, можно взять не Оу и Oz, а главные оси 





















По своему виду эти формулы совершенно аналогичны формулам для нормальных 


Теперь можно окончательно формулировать, что надо сделать, чтобы получить возможность простейшим образом вычислять момент инерции фигуры относительно любой оси. Необходимо через центр тяжести фигуры провести оси Оу и Oz так, чтобы, разбивая фигуру на простейшие части, мы могли легко вычислить моменты 





Рис.2. Расчетная модель нахождения положения главных осей.
Далее, можно найти момент инерции относительно любой центральной оси 


Зная же центральный момент инерции 


Во многих случаях удается сразу провести главные оси фигуры; если фигура имеет ось симметрии, то это и будет одна из главных осей. В самом деле, при выводе формулы 

Стало быть, в данном случае оси Оу и Oz являются главными центральными осями инерции сечения. Таким образом, ось симметрии — всегда главная центральная ось; вторая главная центральная ось проходит через центр тяжести перпендикулярно к оси симметрии.
Пример. Найти моменты инерции прямоугольника (Рис.3) относительно осей 

Рис.3. Пример расчета моментов инерции.
Центральные оси у и z как оси симметрии будут главными осями; моменты инерции сечения относительно этих осей равны:

Центральные моменты относительно повернутых осей 

Центробежный момент инерции относительно осей 

Координаты центра тяжести прямоугольника относительно осей 

Моменты инерции относительно осей 

Центробежный момент инерции равен:
Наибольшее и наименьшее значения центральных моментов инерции.
Как известно, центральные моменты инерции являются наименьшими из всех моментов относительно ряда параллельных осей.
Найдем теперь крайние значения (максимум и минимум) для центральных моментов инерции. Возьмем ось 

Наибольшее и наименьшее значения этого момента инерции соответствуют углу 

Подставляя в написанное выражение 
отсюда
Таким образом, осями с наибольшим и наименьшим центральными моментами инерции будут главные центральные оси. Так как при повороте центральных осей сумма соответствующих моментов инерции не меняется, то
Когда один из центральных моментов инерции достигает наибольшего значения, другой оказывается минимальным, т, е. если

Следовательно, главные центральные оси инерции — это такие взаимно перпендикулярные оси, проходящие через центр тяжести сечения, относительно которых центробежный момент инерции обращается в нуль, а осевые моменты инерции имеют наибольшее и наименьшее значения.
Дальше…
Содержание:
Геометрия масс:
Центр масс
При рассмотрении движения твердых тел и других механических систем важное значение имеет точка, называемая центром масс. Если механическая система состоит из конечного числа материальных точек
где 

Рис. 21
Центр масс является не материальной точкой, а геометрической. Он может не совпадать ни с одной материальной точкой системы, как, например, в случае кольца. Центр масс системы характеризует распределение масс в системе.
Векторная величина 


массы относительно координатной плоскости 




Радиус-вектор и координаты центра масс через статические моменты массы выражаются формулами
Если механическая система представляет собой сплошное тело, то его разбивают на элементарные частицы с бесконечно малыми массами 

Суммы в пределе переходят в интегралы. Формулы (1) и (Г) принимают форму
где 
Для однородных сплошных тел 



Для тел типа тонкого листа, которые можно принять за однородные материальные поверхности, 



Для тонкой проволоки, которую можно принять за отрезок линии, 



В этих случаях определение центра масс тел сводится к вычислению центра масс объемов, площадей и длин линий соответственно.
Моменты инерции
Для характеристики распределения масс в телах при рассмотрении вращательных движений требуется ввести понятия моментов инерции.
Моменты инерции относительно точки и оси
Моментом инерции механической системы, состоящей из 


Момент инерции относительно точки часто называют полярным моментом инерции. В случае сплошного тела сумма переходит в интеграл и для полярного момента инерции имеем
где 


Моментом инерции 



Рис. 22
В частном случае сплошного тела сумму следует заменить интегралом:
Моменты инерции одинаковых по форме однородных тел, изготовленных из разных материалов, отличаются друг от друга. Характеристикой, не зависящей от массы материала, является радиус инерции. Радиус инерции 

где 
Момент инерции относительно оси через радиус инерции относительно этой оси определяется выражением
В справочниках по моментам инерции приводят таблицы значений радиусов инерции различных тел.
Формула (5′) позволяет считать радиус инерции тела относительно оси расстоянием от этой оси до такой точки, в которой следует поместить массу тела, чтобы ее момент инерции оказался равным моменту инерции тела относительно рассматриваемой оси.
Моменты инерции относительно оси и точки имеют одинаковую размерность — произведение массы на квадрат длины 
Кроме моментов инерции относительно точки и оси используются также моменты инерции относительно плоскостей и центробежные моменты инерции. Эти моменты инерции удобно рассмотреть относительно координатных плоскостей и осей декартовой системы координат.
Моменты инерции относительно осей координат
Моменты инерции относительно декартовых осей координат 



где 
Из приведенных формул следует зависимость
Если через точку 

Из сравнения (8) и (8′) следует, что
Рис. 23
Сумма моментов инерции относительно декартовых осей координат не зависит от ориентации этих осей в рассматриваемой точке, т. е. является величиной, инвариантной по отношению к направлению осей координат.
Для осей координат 
Центробежные моменты инерции часто называют произведениями инерции.
Моменты инерции относительно осей и точек — величины положительные, так как в них входят квадраты координат. Центробежные моменты инерции содержат произведения координат и могут быть как положительными, так и отрицательными.
Центробежные моменты инерции имеют важное значение при рассмотрении давлений на подшипники при вращении твердого тела вокруг неподвижной оси и в других случаях.
Кроме рассмотренных моментов инерции иногда используются моменты инерции относительно координатных плоскостей 
Теорема о моментах инерции относительно параллельных осей (теорема Штейнера)
Установим зависимость между моментами инерции системы относительно параллельных осей, одна из которых проходит через центр масс. Пусть имеем две системы прямоугольных, взаимно параллельных осей координат 


Рис. 24
По определению момента инерции относительно оси имеем
где 








Подставим эти значения координат в выражение момента инерции 
В этом соотношении 



того, что по условию центр масс находится в начале координат этой системы координат.
Величина 



Связь моментов инерции относительно двух параллельных осей, одна из которых проходит через центр масс, составляет содержание так называемой теоремы Штейнера или Гюйгенса— Штейнера: момент инерции системы относительно какой-либо оси равен моменту инерции относительно параллельной оси, проходящей через центр масс, плюс произведение массы системы на квадрат расстояния между этими осями.
Из теоремы Штейнера следует, что для совокупности параллельных осей момент инерции является наименьшим относительно оси, проходящей через центр масс.
Если взять ось 

где 


Исключая момент инерции 
Установим изменение центробежных моментов инерции при параллельном переносе осей координат. Имеем
Учитывая, что 
где 

Так как начало системы координат 



т. е. центробежные моменты инерции при параллельном переносе осей координат из любой точки в центре масс изменяются в соответствии с (10).
Если производится параллельный перенос осей 

Исключая из (10) и (10′) центробежные моменты инерции Л’з» Лу, получим формулы для изменения центробежных моментов инерции при параллельном переносе осей координат из точки 

где 

Моменты инерции простейших однородных тел
Моменты инерции тел сложной формы часто удается вычислить, если их предварительно разбить на тела простой формы. Моменты инерции сложных тел получают суммируя моменты инерции частей этих тел. Получим формулы для вычисления моментов инерции некоторых однородных простейших тел.
Однородный стержень
Имеем однородный стержень длиной 



так как 

Вычисляя интеграл, получаем
Рис. 25
Таким образом,
Момент инерции стержня относительно оси 

Следовательно,
т. е.
Прямоугольная пластина
Прямоугольная тонкая пластина имеет размеры 










так как 
Аналогичные вычисления для оси 
так как эта ось 


Рис. 26
Интегрируя это выражение в пределах от 0 до 
Итак, для моментов инерции пластины относительно осей координат получены следующие формулы:
Круглый диск
Имеем тонкий однородный диск радиусом 











Таким образом,
Рис. 27
Для осей координат 




В случае тонкого проволочного кольца или круглого колеса, у которых масса распределена не по площади, а по его ободу, имеем
Круглый цилиндр
Рис. 28
Для круглого однородного цилиндра, масса которого 








т.е.
Вычислим момент инерции цилиндра относительно его поперечной оси симметрии 




Чтобы получить момент инерции всего цилиндра относительно оси 


Но 
Таким образом, момент инерции цилиндра относительно его поперечной оси симметрии получается как сумма моментов инерции относительно этой оси диска и стержня, массы которых равны по отдельности массе цилиндра. Диск получается из цилиндра симметричным сжатием его с торцов до срединной плоскости при сохранении радиуса, а стержень — сжатием цилиндра в однородный стержень, расположенный по оси цилиндра, при сохранении длины.
Шар
Пусть масса шара 











т.е.
Рис. 29
Для осей координат, проходящих через центр шара, в силу симметрии 

Моменты инерции относительно осей, проходящих через заданную точку
В заданной точке 




или для сплошных тел
В дальнейшем используется определение (20). Сплошные тела считаются разбитыми на 
Из прямоугольного треугольника 
где 







Умножая в (21) 



Подставляя (23) в (20) и вынося косинусы углов за знаки сумм, имеем
Учитывая, что
— моменты инерции относительно осей координат, а
— центробежные моменты инерции относительно тех же осей, получим
Для определения момента инерции 



Матрица, или таблица (25), составленная из осевых и центробежных моментов инерции относительно декартовых осей координат, называется тензором инерции в точке 
Для определения момента инерции относительно какой-либо оси, проходящей через заданную точку, для рассматриваемого тела необходимо иметь тензор инерции в этой точке и углы, определяющие направление оси с осями координат.
Рис. 30
Эллипсоид инерции
Для характеристики распределения моментов инерции тела относительно различных осей, проходящих через заданную точку, используется поверхность второго порядка — эллипсоид инерции. Для построения этой поверхности на каждой оси 

Геометрическое место концов отрезков 



Подставляя эти значения косинусов углов в (24) и сокращая на 
Это действительно уравнение эллипсоида, так как отрезок 


Для каждой точки 
В случае эллипсоида вращения все прямые, расположенные в экваториальной плоскости эллипсоида, перпендикулярной оси вращения, будут главными осями инерции. Для шара любая прямая, проходящая через его центр, есть главная ось инерции.
Моменты инерции относительно главных осей инерции называются главными моментами инерции, а относительно главных центральных осей инерции — главными центральными моментами инерции.
Если уравнение эллипсоида инерции отнести к его главным осям 
где 

Справедливо и обратное утверждение: если центробежные моменты инерции относительно трех взаимно перпендикулярных осей равны нулю, то эти оси являются главными осями инерции. Обращение в нуль трех центробежных моментов инерции является необходимым и достаточным условием того, что соответствующие прямоугольные оси координат есть главные оси инерции.
Главные моменты инерции часто обозначают 

- Заказать решение задач по теоретической механике
Свойства главных осей инерции
Теорема 1. Если одна из декартовых осей координат, например 






Главная ось инерции 


Вычитая из первого уравнения второе, имеем
Так как всегда можно выбрать точки, для которых 


Рис. 31
Аналогичные рассуждения для двух симметричных относительно оси 










Теорема 2. Если однородное тело имеет плоскость симметрии, то для любой точки, лежащей в этой плоскости, одна из главных осей инерции перпендикулярна плоскости симметрии, а две другие главные оси инерции расположены в этой плоскости.
Рис. 32
Для доказательства теоремы выберем в плоскости симметрии 










Для центробежного момента инерции 
так как часть тела (I), соответствующая точкам с положительными координатами 

Так как центробежные моменты инерции 




Центр масс однородного симметричного тела находится в плоскости симметрии. Поэтому одна из главных центральных осей инерции перпендикулярна плоскости симметрии, а две другие расположены в этой плоскости.
Доказанная теорема справедлива и для неоднородного тела, имеющего плоскость материальной симметрии.
Теорема 3. Если однородное тело имеет ось симметрии или неоднородное тело имеет ось материальной симметрии, то эта ось является главной центральной осью инерции.
Теорема доказывается аналогично предыдущей. Для каждой точки тела 




так как суммы по симметричным относительно оси частям тела (I) и (II) отличаются друг от друга только знаком у координаты 
Аналогично доказывается, что 
Таким образом, ось 
Теорема 4. Главные оси инерции для точки 
Выберем в точке 




где 


так как
где 


Если 


Используя полученные формулы при этих условиях, имеем:
Рис. 33
Следовательно, оси 


Из доказанной теоремы в качестве следствия получаем: главная центральная ось инерции является главной осью инерции для всех своих точек. Действительно, главная ось инерции 




Определение главных моментов инерции и направления главных осей
Пусть известны компоненты тензора инерции в точке 


Если оси координат 




Параллельные векторы отличаются друг от друга скалярным множителем, который обозначим 


Рис. 34
В этих уравнениях 


Для частных производных из (27′) получаем:
Подставляя их значения в (28′) и перенося все слагаемые в левую часть, после объединения и сокращения на общий множитель получим следующую систему уравнений для определения координат 

Так как (29) является однородной системой линейных уравнений, то отличные от нуля решения для координат 
Это кубическое уравнение для определения 
В общем случае имеется три различных действительных корня кубического уравнения 




Так как 






Подставляя в (29) 












Таким образом, если известен тензор инерции для осей 
Выражение компонентов тензора инерции через главные моменты инерции
Определим компоненты тензора инерции в точке 





Осевые моменты инерции относительно осей 


Для выражения центробежных моментов инерции через главные моменты инерции используем формулы преобразования координат точек тела при повороте осей координат вокруг точки 




где 





Рис. 35
Используя (33) для центробежного момента инерции 
так как центробежные моменты инерции относительно главных осей инерции равны нулю, т. е.
Оси координат 

или
Используя это соотношение для исключения величины 


где
— главные моменты инерции. Аналогично получаются выражения для 

Формулы (31) и (35) дают выражения всех компонентов тензора инерции для осей координат 

Если ось 


Из (35) имеем
В формуле (35′) с полюсом следует брать главный момент инерции с индексом той оси, на положительное направление которой указывает дуговая стрелка поворота осей 








Рис. 36
Если оси расположены, как показано на рис. 37, то дуговая стрелка поворота осей 





= 90°; р2 = а; Р3 = 90° + а;
Рис. 37
Аналогично при совпадении осей 





При совпадении осей 





- Свойства внутренних сил системы
- Дифференциальное уравнение движения системы
- Теоремы об изменении количества движения и о движении центра масс
- Теорема об изменении кинетического момента
- Прямолинейное движение точки
- Криволинейное движение материальной точки
- Движение несвободной материальной точки
- Относительное движение материальной точки
Главная >> Фейнмановские лекции по физике >> Том 2 >> Глава 19. Центр масс; момент инерции
Вычисление момента инерции
Рассмотрим теперь проблему определения момента инерции различных тел. Общая формула для нахождения момента инерции объекта относительно оси z имеет вид
Иными словами, нужно сложить все массы, умножив каждую из них на квадрат ее расстояния до оси (x2i + y2i). Заметьте, что это верно даже для трехмерного тела, несмотря на то, что расстояние имеет такой «двумерный вид». Впрочем, в большинстве случаев мы будем ограничиваться двумерными телами.

Размерность момента инерции всегда равна массе, умноженной на квадрат длины, так что единственная существенная величина, которую мы вычислили, это множитель 1/3.
А чему будет равен момент инерции I, если ось вращения проходит через середину стержня? Чтобы найти его, нам снова нужно взять интеграл, но уже в пределах от —1/2L до +1/2L. Заметим, однако, одну особенность этого случая. Такой стержень с проходящей через центр осью можно представлять себе как два стержня с осью, проходящей через конец, причем масса каждого из них равна М/2, а длина равна L/2. Моменты инерции двух таких стержней равны друг другу и вычисляются по формуле (19.5). Поэтому момент инерции всего стержня равен
Таким образом, стержень гораздо легче крутить за середину, чем за конец.
Можно, конечно, продолжить вычисление моментов инерции других интересующих нас тел. Но поскольку такие расчеты требуют большого опыта в вычислении интегралов (что очень важно само по себе), они как таковые не представляют для нас большого интереса. Впрочем, здесь имеются некоторые очень интересные и полезные теоремы. Пусть имеется какое-то тело и мы хотим узнать его момент инерции относительно какой-то оси. Это означает, что мы хотим найти его инертность при вращении вокруг этой оси. Если мы будем двигать тело за стержень, подпирающий его центр масс так, чтобы оно не поворачивалось при вращении вокруг оси (в этом случае на него не действуют никакие моменты сил инерции, поэтому тело не будет поворачиваться, когда мы начнем двигать его), то для того, чтобы повернуть его, понадобится точно такая же сила, как если бы вся масса была сосредоточена в центре масс и момент инерции был бы просто равен I1 = MR2ц.м., где Rц.м — расстояние от центра масс до оси вращения. Однако формула эта, разумеется, неверна. Она не дает правильного момента инерции тела. Ведь в действительности при повороте тело вращается. Крутится не только центр масс (что давало бы величину I1), само тело тоже должно поворачиваться относительно центра масс. Таким образом, к моменту инерции I1 нужно добавить Iц — момент инерции относительно центра масс. Правильный ответ состоит в том, что момент инерции относительно любой оси равен
Эта теорема называется теоремой о параллельном переносе оси. Доказывается она очень легко. Момент инерции относительно любой оси равен сумме масс, умноженных на сумму квадратов х и у, т. е. I = Σmi(x2i + y2i). Мы сейчас сосредоточим наше внимание на х, однако все в точности можно повторить и для у. Пусть координата х есть расстояние данной частной точки от начала координат; посмотрим, однако, как все изменится, если мы будем измерять расстояние х` от центра масс вместо х от начала координат. Чтобы это выяснить, мы должны написать
xi = x`i + Xц.м.
Возводя это выражение в квадрат, находим
x2i = x`2i + 2Xц.м.x`i + X2ц.м.
Что получится, если умножить его на mi и просуммировать по всем r? Вынося постоянные величины за знак суммирования, находим
Ix = Σmix`2i + 2Xц.м.Σmix`i + X2ц.м.Σmi
Третью сумму подсчитать легко; это просто МХ2ц.м. . Второй член состоит из двух сомножителей, один из которых Σmix`i; он равен x`-координате центра масс. Но это должно быть равно нулю, ведь х` отсчитывается от центра масс, а в этой системе координат среднее положение всех частиц, взвешенное их массами, равно нулю. Первый же член, очевидно, представляет собой часть х от Iц. Таким образом, мы и приходим к формуле (19.7).
Давайте проверим формулу (19.7) на одном примере. Просто проверим, будет ли она применима для стержня. Мы уже нашли, что момент инерции стержня относительно его конца должен быть равен ML2/3. А центр масс стержня, разумеется, находится на расстоянии L/2. Таким образом, мы должны получить, что ML2/3=ML2/12+M(L/2)2. Так как одна четвертая + одна двенадцатая = одной третьей, то мы не сделали никакой грубой ошибки.
Кстати, чтобы найти момент инерции (19.5), вовсе не обязательно вычислять интеграл. Можно просто предположить, что он равен величине ML2, умноженной на некоторый неизвестный коэффициент γ. После этого можно использовать рассуждения о двух половинках и для момента инерции (19.6) получить коэффициент 1/4γ. Используя теперь теорему о параллельном переносе оси, докажем, что γ=1/4γ + 1/4, откуда γ=1/3. Всегда можно найти какой-нибудь окольный путь!
При применении теоремы о параллельных осях важно помнить, что ось Iц должна быть параллельна оси, относительно которой мы хотим вычислять момент инерции.
Стоит, пожалуй, упомянуть еще об одном свойстве, которое часто бывает очень полезно при нахождении момента инерции некоторых типов тел. Оно состоит в следующем: если у нас есть плоская фигура и тройка координатных осей с началом координат, расположенным в этой плоскости, и осью z, направленной перпендикулярно к ней, то момент инерции этой фигуры относительно оси z равен сумме моментов инерции относительно осей х и у. Доказывается это совсем просто. Заметим, что
Момент инерции однородной прямоугольной пластинки, например с массой М, шириной ω и длиной L относительно оси, перпендикулярной к ней и проходящей через ее центр, равен просто
поскольку момент инерции относительно оси, лежащей в плоскости пластинки и параллельной ее длине, равен Mω2/12, т. е. точно такой же, как и для стержня длиной ω, а момент инерции относительно другой оси в той же плоскости равен ML2/12, такой же, как и для стержня длиной L.
Итак, перечислим свойства момента инерции относительно данной оси, которую мы назовем осью z:
1. Момент инерции равен
2. Если предмет состоит из нескольких частей, причем момент инерции каждой из них известен, то полный момент инерции равен сумме моментов инерции этих частей.
3. Момент инерции относительно любой данной оси равен моменту инерции относительно параллельной оси, проходящей через центр масс, плюс произведение полной массы на квадрат расстояния данной оси от центра масс.
4. Момент инерции плоской фигуры относительно оси, перпендикулярной к ее плоскости, равен сумме моментов инерции относительно любых двух других взаимно перпендикулярных осей, лежащих в плоскости фигуры и пересекающихся с перпендикулярной осью.
В табл. 19.1 приведены моменты инерции некоторых элементарных фигур, имеющих однородную плотность масс, а в табл. 19.2 — моменты инерции некоторых фигур, которые могут быть получены из табл. 19.1 с использованием перечисленных выше свойств.
СМОТРИТЕ ТАКЖЕ:
Социальные комментарии Cackle
Определение:
Моментом
инерции материальной точки относительно
неподвижной оси называется скалярная
физическая величина, являющаяся мерой
инертности этой точки при вращательном
движении и, равная произведению её массы
на квадрат расстояния до оси,
т.е.
,
а также,
где—
угловая скорость тела относительно
данной оси.
Определение:
Моментом
инерции системы материальных точек
относительно неподвижной оси называется
скалярная физическая величина, являющаяся
мерой инертности этой системы при
вращательном движении и, равная
алгебраической сумме произведений масс
всех материальных точек системы на
квадрат их расстояний до оси,
т.е.
.
Момент
инерции определен только относительно
оси.
В случае непрерывного распределения
масс с плотностью сумма заменится
на интеграл по всему объему тела:
(Интегрирование производится по всему
объёму; пределы интегрирования
устанавливаются исходя из конфигурации
тела и его размеров). Если тело однородно,
то его плотность во всех точках постоянна
и
можно вынести из-под знака интеграла.
Найдем моменты инерции для простейших
(геометрически правильных) форм твердого
тела, масса которого равномерно
распределена по объему, т.е.
.
1. Момент инерции
обручаотносительно оси, перпендикулярной
к его плоскости и проходящей через его
центр.
Обруч считается бесконечно тонким, т.е.
толщиной обода можно пренебречь по
сравнению с радиусом R..
Поскольку в этой системе все массы
находятся на одинаковом расстоянии от
оси вращения, R2можно вынести из-под знака интеграла:,
гдеm— полная масса обруча.
2. Момент инерции
дискаотносительно оси, перпендикулярной
его плоскости и проходящей через центр.
Диск считается бесконечно тонким, т.е.
его толщина много меньше радиуса
R.Момент инерции,
согласно определению, величина аддитивная:
момент инерции целого тела равен сумме
моментов инерции его частей. Разобьем
диск на бесконечно тонкие обручи радиусомsи толщинойds
(См.рис.).
Момент инерции диска относительно
перпендикулярной оси, проходящей через
центр.
Площадь поверхности обруча равна
произведению его длины на толщину: 2
s
ds.Поскольку массатдиска распределена равномерна, масса
обручаdmпропорциональна площади его поверхности:
.
Момент инерции обруча мы уже знаем:
. Осталось просуммировать моменты
инерции всех таких обручей:.
Такой же результат получится и для
момента инерции цилиндра конечной
длины относительно его продольной оси.
3. Момент инерции
шараотносительно его диаметра.
Поступим аналогичным образом: «нарежем»
шар на бесконечно тонкие диски
толщинойdz.находящиеся на расстоянииzот центра (См.рис.).
Момент инерции шара относительно
диаметра.
Радиус такого диска равен
. Объем дискаdVz
равен произведению его площади
на толщину:
. Массу дискаdmнаходим, разделив массу шаратна его объем
, умножив на объем диска:
.
Момент инерции диска был найден выше.
В применении к данному случаю, он
равен:
.
Момент инерции шара находится
интегрированием по всем таким дискам:
4.Момент инерции
тонкого стержняотносительно оси,
проходящей через его середину
перпендикулярно стержню.
Пусть стержень имеет длину
ℓ.Направим осьxвдоль стержня. Начало координат по
условию находится в центре стрежня.
Возьмем элемент стержня длинойdx.находящийся на расстоянииxот оси вращения. Его масса равна
dm
= (m/ℓ)
dx,а момент инерцииdJ=(m/ℓ)
x2
dx.
Отсюда находим момент инерции стрежня:
(*).
Момент инерции величина аддитивная,
т.е. суммарный момент инерции системы
тел относительно какой-либо оси, равен
сумме моментов инерции каждого из тел
данной системы относительно той же оси:
Физический смысл момента инерции:Инерционные свойства при поступательном
движении характеризуются только массой
тела, т.е. зависит только от массы.
Инерционные свойства при вращательном
движении характеризуются моментом
инерции, т.е. зависят от его массы,
расстояния до оси вращения и расположению
теда по отношению к этой оси. Последнее
означает, что относительно двух разных
осей инерционные свойства вращательного
движения одного и того же движения тела
будут разными. Пример.










































































































































































