❓ Что такое теория вероятностей?
Теория вероятностей использует случайные величины и распределения вероятностей для математической оценки неопределенных ситуаций. Понятие вероятности используется для присвоения числового описания вероятности наступления события. Вероятность можно определить как число благоприятных исходов, деленное на общее число возможных исходов события.
Определение теории вероятностей
Теория вероятностей – это область математики и статистики, которая занимается определением вероятностей, связанных со случайными событиями. Существует два основных подхода к изучению теории вероятностей: теоретический и экспериментальный. Теоретическая вероятность определяется на основе логических рассуждений без проведения экспериментов. В отличие от нее, экспериментальная вероятность определяется на основе исторических данных путем проведения повторных экспериментов.
Пример теории вероятностей
Предположим, нам необходимо определить вероятность выпадения числа 4 при бросании игральной кости. Число благоприятных исходов равно 1. Возможные исходы игральной кости – {1, 2, 3, 4, 5, 6}. Из этого следует, что всего существует 6 исходов. Таким образом, вероятность выпадения 4 при бросании игральной кости, используя теорию вероятности, можно вычислить как 1 / 6 ≈ 0,167.
🎲 Основы теории вероятностей
Мы можем понять эту область математики с помощью нескольких основных терминов, напрямую связанных с теорией вероятностей.
Случайный эксперимент
Случайный эксперимент в теории вероятностей – это испытание, которое повторяется несколько раз для получения четко определенного набора возможных результатов. Подбрасывание монеты является примером случайного эксперимента.
Пространство выборки
Пространство выборки можно определить как множество всех возможных исходов, полученных в результате проведения случайного эксперимента. Например, пространство выборки при подбрасывании симметричной монеты (fair coin), стороны которой – это орел и решка.
Событие
Теория вероятностей определяет событие как набор исходов эксперимента, который образует подмножество пространства выборки.
Примеры событий:
- Независимые – те, на которые не влияют другие события, являются независимыми.
- Зависимые – те, на которые влияют другие события.
- Взаимоисключающие – события, которые не могут произойти в одно и то же время.
- Равновероятные – два или более события, которые имеют одинаковые шансы произойти.
- Исчерпывающие – это события, которые равны выборочному пространству эксперимента.
Случайная величина
В теории вероятностей случайную переменную можно определить как величину, которая принимает значение при всех возможных исходах эксперимента.
Существует два типа случайных величин:
- Дискретная случайная величина – принимает точные значения, такие как 0, 1, 2…. Описывается кумулятивной функцией распределения и функцией массы вероятности.
- Непрерывная случайная величина – переменная, которая может принимать бесконечное число значений. Для определения характеристик этой переменной используются кумулятивная функция распределения и функция плотности вероятности.
Вероятность
Вероятность мы можем определить как численную вероятность наступления события. Вероятность того, что событие произойдет, всегда лежит между 0 и 1. Это связано с тем, что число желаемых исходов никогда не может превысить общее число исходов события. Теоретическая вероятность и эмпирическая вероятность используются в теории вероятностей для измерения шанса наступления события.
Условная вероятность
Ситуация, когда необходимо определить вероятность наступления события, притом что другое событие уже произошло.
Обозначается как P(A | B).
Если хочешь подтянуть свои знания по математике, загляни на наш курс «Математика для Data Science», на котором ты:
- Усвоишь специальную терминологию и сможешь читать статьи по Data Science без постоянных обращений к поисковику.
- Подготовишься к успешной сдачи вступительных экзаменов в Школу анализа данных Яндекс.
- Овладеешь математическим аппаратом, который необходим, чтобы стать специалистом в Data Science.
Ожидание
Ожидание случайной величины X можно определить как среднее значение результатов эксперимента, проводимого многократно. Ожидание обозначается как E[X]. Также известно как среднее значение случайной величины.
Дисперсия
Дисперсия – это мера, которая показывает, как распределение случайной величины изменяется относительно среднего значения. Дисперсия определяется как среднее квадратичное отклонение от среднего значения случайной величины. Обозначается как Var[X].
Функция распределения теории вероятностей
Распределение вероятностей или кумулятивная функция распределения – это функция, которая моделирует все возможные значения эксперимента, используя случайную переменную. Распределение Бернулли и биномиальное распределение – это примеры дискретных распределений вероятностей. Например, нормальное распределение представляет собой пример непрерывного распределения.
Массовая функция вероятности
Массовая функция вероятности определяется как вероятность того, что дискретная случайная величина будет в точности равна определенному значению.
Функция плотности вероятности
Функция плотности вероятности – это вероятность того, что непрерывная случайная величина принимает множество возможных значений.
Формулы теории вероятностей
В теории вероятностей существует множество формул, которые помогают рассчитать различные вероятности, связанные с событиями.
Наиболее важные формулы:
- Теоретическая вероятность: Число благоприятных исходов / Число возможных исходов.
- Эмпирическая вероятность: Число случаев, когда событие происходит / Общее число испытаний.
- Правило сложения: P(A ∪ B) = P(A) + P(B) – P(A∩B), где A и B – события.
- Правило комплементарности: P(A’) = 1 – P(A). P(A’) означает вероятность того, что событие не произойдет.
- Независимые события: P(A∩B) = P(A) ⋅ P(B).
- Условная вероятность: P(A | B) = P(A∩B) / P(B).
- Теорема Байеса: P(A | B) = P(B | A) ⋅ P(A) / P(B).
- Массовая функция вероятности: f(x) = P(X = x).
- Функция плотности вероятности: p(x) = p(x) = dF(x) / dx, где F(x) – кумулятивная функция распределения.
- Ожидание непрерывной случайной величины: ∫xf(x)dx, где f(x) является МФВ (Массовой функцией вероятности).
- Ожидание дискретной случайной величины: ∑xp(x), где p(x) – это ФПВ (Функцией плотности вероятности).
- Дисперсия: Var(X) = E[X2] – (E[X])2.
Применение теории вероятностей
Теория вероятностей используется во многих областях и помогает оценить риски, которые связаны с теми или иными решениями. Некоторые из направлений, где применяют теорию вероятностей:
- В финансовой отрасли теория вероятностей используется для создания математических моделей фондового рынка с целью прогнозирования будущих тенденций. Это помогает инвесторам вкладывать средства в наименее рискованные активы, которые дают наилучший доход.
- В потребительской индустрии теория вероятностей используется для снижения вероятности неудачи при разработке продукта.
- Казино использует теорию вероятностей для разработки азартных игр с максимизацией своей прибыли.
🏋️ Практические задания
Задача 1: При бросании двух игральных костей, какова вероятность того, что выпадет комбинация, сумма которой будет равна 8?
При бросании двух игральных костей существует 36 возможных исходов. Для получения суммы, равной 8, существует 5 благоприятных исходов: [(2, 6), (6, 2), (3, 5), (5, 3), (4, 4)]. Используя формулы теории вероятностей: Вероятность = Число благоприятных исходов / общее число возможных исходов = 5 / 36. Ответ: Вероятность получения суммы 8 при бросании двух игральных костей равна 5 / 36.
Задача 2: Какова вероятность вытащить карту королеву из колоды?
Колода карт имеет 4 масти. Каждая масть состоит из 13 карт. Таким образом, общее число возможных исходов = (4) * (13) = 52. Может быть, 4 королевы, по одной из каждой масти. Следовательно, количество благоприятных исходов = 4. Карточная вероятность = 4 / 52 = 1 / 13. Ответ: Вероятность получить королеву из колоды карт равна 1 / 13
Задача 3: Из 10 человек 3 купили карандаши, 5 купили тетради, а 2 купили и карандаши, и тетради. Если покупатель купил тетрадь, какова вероятность того, что он также купил карандаш?
Используя понятие условной вероятности, P(A | B) = P(A∩B) / P(B). Пусть A – событие, когда люди покупают карандаши, а B – событие, когда люди покупают тетради. P(A) = 3 / 10 = 0,3P(B) = 5 / 10 = 0,5P(A∩B) = 2 / 10 = 0,2. Подставим полученные значения в приведенную формулу, P(A | B) = 0,2 / 0,5 = 0,4. Ответ: Вероятность того, что покупатель купил карандаш, при условии, что он купил блокнот, равна 0,4.
В заключение
Подведем итоги:
- Теория вероятностей – это раздел математики, в котором рассматриваются вероятности случайных событий.
- Понятие вероятности объясняет возможность наступления того или иного события.
- Значение вероятности всегда лежит между 0 и 1.
- В теории вероятностей все возможные исходы случайного эксперимента составляют пространство выборки.
- Теория вероятностей использует такие важные понятия, как случайные величины и кумулятивные функции распределения для моделирования случайного события. Сюда же относится определение различных вероятностей, связанных с этим.
Если хочешь подтянуть свои знания по математике, загляни на наш курс «Математика для Data Science», который включает в себя:
- 47 видеолекций и 150 практических заданий.
- Консультации с преподавателями курса.
События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).
Зачем нужна теория вероятности
Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.
Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.
В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.
Основные понятия теории вероятности
Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.
Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.
Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.
События А и В называется несовместными, если они не могут произойти одновременно.
Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом
.
Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом
.
Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.
- Вероятность принимает значения на отрезке от 0 до 1, т.е.
.
- Вероятность невозможного события равна 0, т.е.
.
- Вероятность достоверного события равна 1, т.e.
.
- Если события A и В несовместные, то вероятность их суммы равна сумме их вероятностей, т.е.
.
Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные
из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле
. Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.
Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов
.
Ответ получаем по формуле .
Пример задачи из ЕГЭ по математике по определению вероятности
На столе лежат 20 пирожков – 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?
Решение.
Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А – это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:
Ответ: 0,4
Независимые, противоположные и произвольные события
Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.
События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.
Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. .
Теоремы сложения и умножения вероятностей, формулы
Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е.
.
Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае
.
Последние 2 утверждения называются теоремами сложения и умножения вероятностей.
Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.
Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого — 3, для пятого — 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение , которое обозначается символом 6! и читается “шесть факториал”.
В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов В нашем случае
.
Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .
В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам
В нашем случае .
И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго — 5 способами, третьего — четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: . В общем случае ответ на этот вопрос дает формула для числа сочетаний из
элементов по
элементам:
В нашем случае .
Примеры решения задач из ЕГЭ по математике на определение вероятности
Задача 1. Из сборника под ред. Ященко.
На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.
Решение:
.
Ответ: 0,3.
Задача 2. Из сборника под ред. Ященко.
В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.
Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:
Ответ: 0,98.
Задача 3.
Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.
Решение:
Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие “У. верно решит ровно 9 задач” входит в условие “У. верно решит больше 8 задач”, но не относится к условию “У. верно решит больше 9 задач”.
Однако, условие “У. верно решит больше 9 задач” содержится в условии “У. верно решит больше 8 задач”. Таким образом, если мы обозначим события: “У. верно решит ровно 9 задач” – через А, “У. верно решит больше 8 задач” – через B, “У. верно решит больше 9 задач” через С. То решение будет выглядеть следующим образом:
.
Ответ: 0,06.
Задача 4.
На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение.
Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме “Тригонометрия”, либо к теме “Внешние углы”. По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:
Ответ: 0,35.
Задача 5.
Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
Решение:
Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.
Тогда укажем варианты таких событий. Примем обозначения: – лампочка горит,
– лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события “лампочка перегорела”, “лампочка горит”, “лампочка горит”:
, где вероятность события “лампочка горит” подсчитывается как вероятность события, противоположного событию “лампочка не горит”, а именно:
.
Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: .
Ответ: 0,975608.
Еще одну задачку вы можете посмотреть на рисунке:
Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.
Содержание:
Случайные события:
В естественных науках познание действительности происходит в результате испытаний (экспериментов) или наблюдений, т. е. опыта в широком понимании слова. Под испытанием (наблюдением), в общем смысле, подразумевается наличие определенного комплекса условий. Возможный результат — исход испытания или наблюдения — называется событием, независимо от его значимости.
При построении теории события идеализируются, т. е. игнорируются ситуации, несущественные для данного явления.
Пример:
При бросании монеты может выпасть герб или решетка (обратная сторона). Таким образом, при однократном испытании возможны два события: А — выпадение герба, Б — выпадение решетки.
Однако возможно еще одно событие С — когда монета станет на ребро. Но при организации игры в «орлянку» это обстоятельство несущественно (монета перебрасывается!) и в нашем идеализированном опыте это событие не учитывается.
Определение 1. Результат испытания, который нельзя заранее прогнозировать у называется случайным с опыте.
Иными словами, событие является случайным в данном опыте, если заранее нельзя предсказать, произойдет оно или не произойдет в этом опыте.
Например, случайным событием является выпадение герба при бросании монеты. Конечно, предполагается, что испытание организовано так, что исход его заранее не известен.
Во многих случаях случайное событие есть результат неполной информации о данном явлении, Например, в опыте с бросанием монеты, если нам были бы известны сила толчка, форма монеты, закон сопротивления воздуха и другие факторы, определяющие закон движения монеты, мы смогли бы точно предсказать исход испытания.
Определение 2. Событие называется достоверным в данном испытании (т. е. при осуществлении определенной совокупности условий), если оно неизбежно происходит при этом испытании.
Например, получение студентом положительной или отрицательной оценки на экзамене есть событие достоверное, если экзамен протекает согласно обычным правилам.
Определение 3. Событие называется невозможным в данном испытании, если оно заведомо не происходит в этом испытании.
Например, если в урне находятся лишь цветные (небелые) шары, то извлечение из этой урны белого шара есть событие невозможное. Отметим, что при других условиях опыта появление белого шара не исключается; таким образом, это событие невозможно лишь в условиях нашего опыта.
Теория вероятностей есть наука, изучающая закономерности случайных событий.
В связи с развитием новой техники особый интерес представляют статистические закономерности массовых однородных случайных событий (контроль качества продукции, обслуживание серийного производства, работа телефонной станции и т. п.). Здесь в различных вариантах установлена основная теорема теории вероятностей — закон больших чисел.
Примем как аксиому, что для каждого события А можно определить, по крайней мере теоретически, вероятность этого события — число Р(А), представляющее, в некотором смысле, меру достоверности данного события и подчиненное естественным требованиям. Предполагается, что вероятность любого события удовлетворяет неравенству
причем вероятность невозможного события равна нулю, а вероятность достоверного события равна единице.
На практике считают, что если вероятность события мала, то это событие практически невозможно; наоборот, если вероятность события близка к единице, то это событие почти достоверно; и сообразно этому принимают обоснованные решения.
В создании теории вероятностей участвовали многие крупные математики (Паскаль, Ферма, Лаплас, Гаусс, Пуассон и др.). В более поздний период решающие успехи в этой науке принадлежат отечественным математикам (Чебышев, Марков, Ляпунов, Бернштейн, Колмогоров, Хинчин и др.).
Теория вероятностей широко используется в теоретических и прикладных науках (в физике, геодезии, в теории стрельбы, в теории автоматического управления и многих других). В частности, она служит теоретической базой математической и прикладной статистики, на основе которых происходит планирование и организация производства.
Случайные события
Теория вероятностей — математическая наука, изучающая закономерности в случайных явлениях.
Определение 1. Случайное явление — это такое явление, которое при неоднократном воспроизведении одного и того же опыта протекает каждый раз несколько по-иному.
Примеры случайных явлений.
1) Вес тела, узнаваемый с помощью весов (одно и то же тело взвешивают на одних и тех же весах несколько раз). Результаты различны вследствие влияния второстепенных факторов: положение тела на чаше весов, вибрации аппаратуры, ошибки отсчета показаний прибора…
2) Попадание в цель бомбы, сброшенной с самолета (сброс несколько раз с одного положения в одну и ту же цель). Результаты различны вследствие влияния второстепенных факторов: сила ветра, человеческий фактор…
Из примеров видно, что случайные явления неопределенны и многопричинны. Основные условия опыта — неизменны, а второстепенные изменяются от опыта к опыту и вносят случайные различия в результаты.
В классической схеме исследования (математике, физике, механике, технике) этими случайными элементами пренебрегают, рассматривая вместо реального события его упрощенную «модель». Но существуют задачи, в которых второстепенные факторы играют заметную роль (например, точечное попадание в цель). Для решения таких задач существуют вероятностные или статистические методы исследования, базой которых служит устойчивость массовых случайных явлений. Действительно, если наблюдать в совокупности массы однородных случайных явлений (чем больше — тем лучше), то обнаруживается закономерность, устойчивость, свойственная именно массовым случайным явлениям.
Эти методы являются дополнением к классическим.
Определение 2. Любой наблюдаемый результат опыта, то есть всякий факт, который в результате опыта может произойти или не произойти, называется случайным событием или случайным исходом.
Обозначение: А = {…}.
Примеры случайных событий. 1) Опыт состоит в бросании монеты. Событие А = {появление орла}. 2) Событие В = {обрыв нити в течение часа работы швейной машины}. 3) Событие С = {попадание в цель при выстреле}.
Определение 3. Предметом теории вероятностей являются модели неоднократно повторяемых при неизменном комплексе условий экспериментов со случайными исходами.
Случайные события или исходы. Множество элементарных событий.
Основные понятия
Случайное событие может быть разложено на более простые, например, выпадение орла при бросании монеты, попадание в определенную точку при стрельбе, выпадение определенной грани при бросании кубика.
Определение 4. Неразложимые события или взаимно исключающие друг друга исходы называются элементарными событиями или элементарными исходами и обозначаются
События отождествляются с множествами.
Определение 5. Совокупность всех элементарных событий называется пространством элементарных событий или множеством элементарных событий и обозначается 

У опыта может быть 



Событие А — множество всех элементарных событий из множества 

Любое подмножество множества 
Множество 
Примеры на построение множества 
Задание. Построить множество элементарных событий 
Пример 1.
Опыт состоит в однократном подбрасывании монеты. Событие А = {выпадение орла}.
Решение. Элементарные исходы: 




Пример 2.
Опыт состоит в троекратном подбрасывании монеты. Событие А = {не более одного раза выпала решка}.
Решение. Обозначим О — выпадение орла, Р — выпадение решки. Элементарные исходы опыта: 



Пример 3.
Опыт состоит в стрельбе по плоской мишени. Событие А = {попадание в определенную точку}.
Решение. Введем в плоскости мишени прямоугольную декартовую систему координат. Каждому исходу — попаданию в определенную точку — поставим в соответствие координаты 



Пример 4.
Опыт состоит в оценивании студентов на экзамене. Событие А = {студент сдал экзамен}.
Решение. Множество элементарных событий 
Пример 5.
Опыт состоит в работе телефонной станции. Событие А = {поступило 3 звонка}.
Решение. Множество все элементарных событий 

Пример 6.
Проводится три броска симметричной монеты. Какова вероятность того, что герб появится два раза?
Задачу начинаем решать с определения события 


Здесь общее число исходов 

Пример 7.
Какова вероятность того, что наудачу взятый телефонный номер из семи цифр имеет: I) все цифры различные; 2) только нечетные цифры.
1) определим вначале событие 





2) определим событие 



Частота и вероятность случайного события
Любая точная наука изучает не сами явления, происходящие в природе, а их математические модели. В математических задачах часто рассматривают события, которые, в зависимости от определенных условий, могут или произойти, или не произойти. Такие события называют случайными.
Теория вероятностей — раздел математики, в котором изучаются закономерности случайных событий.
Предположим, проводят определенное испытание (эксперимент, наблюдение, опыт и т. п.), исход которого нельзя предсказать заранее. Такие испытания в теории вероятностей называют случайными. При этом целесообразно проводить только такие испытания, которые можно повторить, хотя бы теоретически, произвольное количество раз в одинаковых условиях.
Случайными испытаниями являются, например, подбрасывание монеты или игрального кубика, покупка лотерейного билета, стрельба по мишени и т. п.
Таким образом,
случайное испытание — это испытание (эксперимент, наблюдение, опыт), исход которого зависит от случая и которое можно повторить многократно при одних и тех же условиях.
Исходом случайного испытания является случайное событие.
Случайное событие — это событие, которое при одних и тех же условиях может произойти, а может и не произойти.
Примерами случайных событий могут быть «выпадение единицы при подбрасывании игрального кубика», «выпадение аверса при подбрасывании монеты», «выигрыш 10 руб. при покупке лотерейного билета» и т. п. Такие события, как «закипание воды при ее нагревании до 
Случайные события, как правило, обозначают большими латинскими буквами: 
Пример №1
В ящике лежат только белые и черные шары. Из него наугад вынимают один шар. Какие из событий 







Решение:
Так как из ящика может быть вынуто только то, что в нем находится, то вынуть белый или черный шар можно, а зеленый — нет. Можем также утверждать, что любой предмет, вынутый наугад из ящика, будет шаром, поскольку там нет ничего, кроме шаров. Следовательно, события 



Ответ. 


Событие, которое в данных условиях обязательно произойдет, называют достоверным.
Событие, которое в данных условиях никогда не произойдет, называют невозможным.
В примере 1 события 



Пример №2
Допустим, проводят случайное испытание, например, стрелок стреляет по мишени. Нас интересует, как математически оценить шансы стрелка попасть по мишени в одних и тех же неизменных условиях.
Чтобы это выяснить, рассмотрим понятия частоты события и относительной частоты события.
Если в неизменных условиях проведено 






Пример №3
Испытание состоит в подбрасывании игрального кубика 150 раз подряд. Пусть событием 



Относительная частота события может измениться, если изменить количество испытаний или провести другую серию испытаний в тех же условиях.
Пример №4
В разные годы разные ученые проводили испытание, состоявшее в многократном подбрасывании монеты, и рассматривали событие 
Понятно, что разные ученые использовали разные монеты, но само испытание и рассматриваемое ими событие можно считать одинаковыми. Эти испытания, проведенные в разные эпохи и в разных странах, дают приблизительно один и тот же результат: относительная частота события А близка к числу 0,5. В данном случае число 0,5 называют статистической вероятностью события.
Если при проведении достаточно большого количества случайных испытаний значение относительной частоты случайного события 

Вероятность принято обозначать латинской буквой 


Приходим к выводу, что вероятность случайного событии можно найти с достаточно большой точностью, если случайное испытание проводить много раз. Чем больше проведено испытаний, тем более близким будет значение относительной частоты случайного события к вероятности этого события.
Вернемся к вопросу, сформулированному в Примере 2, то есть к математической оценке шансов стрелка попасть по мишени. Теперь ясно, что такую математическую оценку дает вероятность. Чтобы оценить вероятность попадания стрелка по мишени (событие 


Если известна вероятность события 

Пример №5
Вероятность попадания стрелка но мишени равна 0,781. Сколько метких выстрелов приблизительно будет у этого стрелка в серии из 50 выстрелов?
Решение:
Пусть в серии из 50 выстрелов было



Ответ. 39 метких выстрелов.
Напомню:
Теорию вероятностей нередко называют «наукой о случайном». На многих примерах можно убедиться в том, что массовые случайные явления тоже имеют свои закономерности, знание которых можно успешно использовать в практической деятельности человека.
Еще в древности люди заметили, что несколько охотников, бросив копья одновременно, могут поразить зверя с большей вероятностью, чем один охотник. Этот вывод не был научным, а основывался на наблюдениях и опыте.
Как наука теория вероятностей зародилась в XVII в. На ее развитие повлияли насущные потребности науки и практики того времени, в частности в деле страхования, которое распространялось благодаря бурному развитию торговых связей и путешествий. Удобной моделью для решения задач и анализа понятий теории вероятностей были для ученых азартные игры. Об этом заметил еще Гюйгенс в своей книге «О расчетах в азартной игре» (1657 г.), которая стала первой в мире книгой по теории вероятностей. Дальнейшему развитию теории вероятностей (XVII—XVIII вв.) способствовали работы Б. Паскаля, Д. Бернулли, Ж.Л. Д’Аламбера, Д. Крега, Т. Симпсона, П. Ферма, Т. Байеса и др.
Важный вклад в теорию вероятностей сделал швейцарский математик Я. Бернулли (1654-1705): он доказал закон больших чисел в самом простом случае независимых испытаний в книге «Аналитическая теория вероятностей».
В 1718 г. английский математик А. Муавр (1667-1754) опубликовал книгу «Теория случая», в которой исследовал закономерности, присущие случайным явлениям.
Впервые основы теории вероятностей изложил французский математик П. Лаплас (1749-1827).
В дальнейшем теория вероятностей развивалась благодаря работам француза С. Пуассона (1781-1840) и россиян П.Л. Чебышева (1821-1894), А.А. Маркова (1856-1922) и A.M. Ляпунова (1857-1918).
Свой вклад в развитие теории вероятностей сделали и украинские математики: Б.В. Гнеденко (1912-1996), И.И. Гихман (1918-1985), А.В. Скороход (1930-2011), М.И. Ядренко (1932-2004).
Алгебраические операции над событиями
Так как события отождествляются с множествами, то над событиями можно совершать все операции, выполняемые над множествами.
Множество А является подмножеством множества В: 
Множества А и В эквивалентны: А = В
Событие А тождественно или равносильно событию В. Это возможно тогда и только тогда, когда 
Объединение множеств: 
Пересечение множеств: 
Разность множеств: А В
Разность событий, то есть событие, состоящее в том, что А произошло, а В нет. Обозначение: А — В.
Дополнение множества А до множества 



Примеры:
1. Диаграмма Венна.
Внутри квадрата, в котором две пересекающихся окружности разных радиусов, выбирается наудачу точка.
Событие А = {точка лежит внутри левой окружности}, В = {точка лежит внутри правой окружности}.
Изобразить с помощью диаграмм Венна основные алгебраические операции над событиями.
Решение.
2. Опыт состоит в двукратной стрельбе по мишени. События: А = {попадание при первом выстреле}, В = {попадание при втором выстреле}. Записать в алгебре событий следующие события:
1) С= {попадание при обоих выстрелах}. Решение: С = А•В,
2) 

3) 


4) 


5) Е = {в результате двух выстрелов будет ровно одно попадание}. Решение: 
6) Н = {все промахи}. Решение: Н = 
3. Опыт состоит в вынимании карт из колоды. События: А = {появление карты червонной масти}, В = {появление карты бубновой масти}. Записать в алгебре событий событие С = {появление карты красной масти}.
Решение. С = А + В.
Свойства операций
1. 
3. 
5. 
Определение 6 (первое определение поля). Совокупность всех наблюдаемых событий составляет поле событий данного опыта.
Определение 7. Событие А, которое неизбежно происходит при каждой реализации комплекса условий, называется достоверным. А = 
Определение 8. Если событие А заведомо не может произойти при осуществлении комплекса условий, то оно называется невозможным. А = 
Примеры: 1) {При бросании двух игральных костей сумма очков будет не меньше двух} -достоверное событие, 2) {При бросании двух игральных костей сумма очков будет равна 13} -невозможное событие.
Определение 9. Полной группой событий называется несколько событий в данном опыте, в результате которого должно появиться хотя бы одно их них.
Примеры группы: 1) выпадение орла и выпадение решки при бросании монеты, 2) попадание и промах при стрельбе.
Определение 10. События называются несовместными в данном опыте, если никакие два из них не могут появиться вместе (одновременно) и совместными, если возможно их совместное осуществление.
Замечание. Если два события совместны, то это не значит, что они происходят в одном и том же месте и в одно и то же время, а означает, что при одних и тех же условиях задачи возможно осуществление того и другого.
Примеры: 1) попадание и промах при стрельбе — несовместные события, 2) появление на данном участке неба А — самолета, В — птицы -совместные события.
Определение 11. Противоположными называются два несовместных события, образующих полную группу.
Примеры: 1) А = {попадание} и 

Определение 12. Сложное событие, состоящее в том, что происходит событие А и событие 5, называется совмещением событий А и В. Обозначение: А • В.
Пример: А = {появление «6» на первой кости}, В = {появление «6» на второй кости}, тогда событие А • В = {появление «6» на обеих костях}.
Замечание. Если 
Определение 13. События называются равновозможными, если по условиям симметрии опыта(то есть комплекс условий для опыта — неизменен) нет оснований считать какое-либо из них более возможным, чем любое другое.
Пример: выпадение орла и решки при бросании монеты.
Определение 14. Если несколько событий образуют полную группу, несовместные и равновозможные, то они называются случаями или шансами.
Определение 15. Случай называется благоприятным событию, если появление этого случая влечет за собой появление события.
Определение 16 (второе определение поля событий). Пусть F — система событий, удовлетворяющая допущениям: а) если F принадлежат события А и В, то ей принадлежат также и А • В, А + В, А -В, b) система F содержит достоверное и невозможное события, тогда такая система F называется полем событий.
Различные подходы к определению вероятности
Каждое из событий обладает какой-то степенью возможности: одни — большей, другие — меньшей, третьи — невозможны вообще. Чтобы количественно сравнить событие по степени их возможности, с каждым событием свяжем определенное число, которое тем больше, чем более возможно событие. Это число и называется вероятностью.
Определение 17. Вероятность события — есть численная мера степени объективной возможности этого события.
Обозначение — Р(А).
Существует три различных подхода к определению вероятности, и, как следствие, три различных определения: 1) аксиоматическое, 2) классическое, 3) статистическое.
Аксиоматическое определение вероятности
Данное определение дано на основе аксиом вероятности. Аксиоматическая теория вероятности создана русским ученым А.Н.Колмогоровым в 1933 году.
Пусть F — система событий для данного эксперимента. Каждому событию поставим в соответствие некоторое неотрицательное число Р{А) — специальную числовую функцию для количественного описания степени объективной возможности наступления того или иного наблюдаемого в эксперименте события.
Определение 18. Вероятностью события А называется числовая функция Р(А), определенная для всех 
1 аксиома: P(

2 аксиома: 
Следствие: 
3 аксиома: если события 



Следствия из аксиом.
1. 
2. Если А влечет за собой 5, то есть 

3. Если 

А.Н.Колмогоров исходил из того, что события — это множества, и вероятность также является функцией множества.
Аксиомы позволяют вычислить вероятность любых событий с помощью вероятностей элементарных событий, которые определяются либо из соображений, связанных с симметрией опыта или же на основе опытных данных (частоте появления события).
Система аксиом непротиворечива, так как существуют реальные объекты, которые всем аксиомам удовлетворяют. Но система аксиом неполна: даже для одного и того же множества Q вероятности в множестве F можно выбирать различными способами.
Классическое определение вероятности
Это определение сводит понятие вероятности к понятию равновероятности или равновозможности событий.
Пусть исходы опыта равноправны по отношению к условиям опыта, то есть эти исходы или события равновозможны или равновероятны, и соответствующее опыту множество 
В этой схеме вероятность события А можно оценить по относительной доле благоприятных случаев.
Пусть множество всех элементарных исходов опыта 
Пусть 
Обозначим 


Определение 19. Вероятность события А — доля тех исходов, в результате которых это событие осуществляется:

Пример №6
В урне находится 2 белых и 3 синих шара. Из урны наугад вынимается 1 шар. Найти вероятность того, что этот шар — белый.
Решение.
Пусть событие А = {появился белый шар}. Общее число исходов 


Замечание. Подсчет числа элементов тех или иных подмножеств множества 

Пример №7
Мальчик записал двузначное число. Какова вероятность, что оно четное?
Решение.
На первом месте мальчик может записать 9 цифр (0 быть не может), на втором месте — 10 цифр, следовательно, общее число исходов 
Найдем число исходов, благоприятствующих событию А = {мальчик записал четное число}. На первом месте может быть записано 9 цифр, а вот на втором месте, чтобы число было четным, могут быть поставлены цифры 0, 2, 4, 6, 8, то есть 5 цифр. Тогда число исходов, благоприятствующих событию А, равно 
Тогда вероятность Р(А) = 
Пример №8
На полке стоят 10 книг, из них 3 словаря, 4 справочника и 3 учебника. Какова вероятность того, что из пяти наудачу взятых книг окажется 2 словаря, 2 справочника и один учебник?
Решение. В данном случае общее число книг равно 10. Из них 5 книг можно выбрать n различными способами, где
Найдем число m событий, благоприятствующих выбору 2-х словарей (из 3-х имеющихся), 2-х справочников (из 4-х имеющихся) и одного учебника (из 3-х имеющихся). Получим
Следовательно, искомая вероятность вычисляется по формуле:
Ответ:
Пример №9
Баскетболист бросает мяч пять раз. Вероятность попадания при каждом броске равна 0,7. Найти вероятность того, что он попадет в корзину: а) три раза; б) менее трех раз; в) более трех раз.
Решение. Для решения задачи воспользуемся формулой Бернулли:
где n – число выполненных бросков; m – число попаданий мяча из этих n бросков; p – вероятность попадания при одном броске.
В данной задаче n=5, p=0,7.
а) m=3. Следовательно,
б) 
в) m>3 ⇒ = 4 или m=5. Следовательно, получаем:
Ответ: а) 0,3087; б) 0,16308; в) 0,52822.
Пример №10
В первой урне лежат 5 белых и 10 черных шаров, во второй – 3 белых и 7 черных шаров. Из второй урны в первую переложили какой-то один шар, а затем из первой урны вынули наугад один шар. Определить вероятность того, что вынутый шар – белый.
Решение. После того, как из второй урны в первую был переложен шар, в первой урне оказалось 16 шаров:
1) или 6 белых и 10 черных, если добавленный шар был белым (одним из тех 3-х, что лежали во второй урне);
2) или 5 белых и 11 черных, если добавленный шар был черным (одним их тех семи, что лежали во второй урне).
Обозначим события: 



Поэтому по формуле полной вероятности находим:
Ответ:
Пример №11
В партии из 10 деталей имеется 8 новых и две бывших в употреблении. Наудачу отобраны две детали.
а) Составить закон распределения случайной величины Х – числа новых деталей среди отобранных.
б) Вычислить числовые характеристики случайной величины Х.
Решение. а) X – дискретная случайная величина. Она имеет следующие возможные значения: 
где s =10 – общее число деталей в партии; n = 8 – число новых деталей в партии; m = 2 – число отобранных деталей; k – число новых деталей среди отобранных.
Тогда получаем:
Контроль:
Следовательно, искомый закон распределения случайной величины X задается табл. П 1.1:
б) По определению:
Тогда, пользуясь табл. П 1.1, вычисляем:
Ответ: а) табл. П 1.1; б)
Пример №12
Случайная величина X задана функцией распределения вероятностей:
Найти: а) плотность распределения вероятностей (𝑥);
б) числовые характеристики случайной величины X;
в) вероятность попадания величины X в интервал [1; 2,5).
Решение. Рассматриваемая случайная величина X является непрерывной, так как функция F(x) непрерывна на (−∞; +∞),
Её график изображен на рис. П 1.1.
а) Так как функция 
То получаем:

График функции (𝑥) изображен на рис. П 1.2.
б) Вычисляем:
Ответ: а) формула (1); б)
2. Элементы математической статистики
Пример №13
Дана выборка объема n=30:

Требуется:
1) Найти статистический ряд и построить полигон частот;
2) Составить интервальный статистический ряд, взяв 7−10 интервалов, и построить гистограмму частот;
3) Найти оценки математического ожидания 𝑥̅, выборочную дисперсию 


4) С доверительной вероятностью 
а) для математического ожидания M(X) в случае известной дисперсии, предполагая D(X)= 
б) для математического ожидания M(X) в случае неизвестной дисперсии,
в) для среднего квадратического отклонения
Решение. 1) По данной выборке находим:
Строим статистический ряд:
Нанесем на плоскости 
где 

1) Найдем «размах» выборки: 
где 
Следовательно, выберем 
Интервальный статистический ряд указан в табл. П 1.2.
В системе координат 

Построим прямоугольники с основанием 

где 
2) Для нахождения оценок параметров выборки составим по интервальному статистическому ряду расчетную табл. П 1.3, заменив в ней каждый интервал его средним значением
Тогда получаем:
3) а) При построении доверительного интервала для математического ожидания M(X)=m с известной дисперсией D(X)=
где 



Следовательно, искомый доверительный интервал имеет вид:
б) При построении доверительного интервала для математического ожидания M(X)=m с неизвестной дисперсией воспользуемся формулой:
где 



Следовательно, искомый интервал имеет вид:
т.е.
в) При построении доверительного интервала среднего квадратического отклонения 𝜎 воспользуемся формулой:
где s = 4,45 – исправленное выборочное среднее квадратическое отклонение, 
Следовательно, искомый доверительный интервал имеет вид:
т.е.
4) Для проверки гипотезы о нормальном распределении генеральной совокупности, из которой взята данная в примере выборка, составим расчетную таблицу, используя интервальный статистический ряд (табл. П 1.4).
Для нахождения чисел 
где
причем
Ответ: 1) табл. П 1.2 и рис. П 1.3;
2) табл. П 1.3 и рис. П 1.4;
3)
Комбинаторный метод вычисления вероятностей в классической схеме
Комбинаторика — математический аппарат для вычисления числа различных комбинаций элементов множества (изучалась в теории множеств). Каждая из комбинаторных формул определяет общее число исходов в опыте: выборке наудачу 

Рассмотрим 4 различные схемы выбора.
1) Схема выбора, приводящая к сочетаниям
Пусть опыт состоит в выборке 




Свойства сочетаний:
1) 

Замечание.
Формула Стерлинга для вычисления факториала: 
Пример №14
В урне 10 красных и 9 синих шаров. Из урны вынимаются наудачу 2 шара. Найти вероятность, что оба шара будут синими.
Решение.
Событие А = {появление 2 синих шаров}. Всего шаров 10 + 9 = 19.
Общее число исходов 
Синих шаров — 9. Тогда число исходов, благоприятствующих событию А, равно
Вероятность события А: 
Пример №15
В партии из 10 деталей — 3 бракованных. Определить вероятность того, что в выбранных наудачу 4 изделиях 1) не будет ни одного бракованного, 2) будет ровно одно бракованное.
Решение.
Общее число исходов опыта, выборке наудачу 4 изделий из 10, равно 
В партии 3 бракованных и 7 не бракованных деталей.
1) Событие А = {в выборке не будет ни одного бракованного изделия}, то есть все 4 детали возьмут из 7. Число исходов, благоприятствующих событию А, равно 

2) Событие В = {в выборке будет ровно одно бракованное изделие}. Ему благоприятствуют только такие исходы, когда 1 элемент выборки принадлежит браку (3 детали), а остальные 3 детали -хорошим не бракованным деталям (их 7 штук). Тогда число исходов, благоприятствующих событию В, равно 

Вероятность события В равна:
2) Схема выбора, приводящая к размещениям без возвращения
Пусть опыт состоит в выборке 




Полученные исходы — размещения из 


Свойства размещений:
1)
Если число размещений совпадает с числом перестановок, то есть 



Пример №16
Из 10 первых букв русского алфавита выбирали без возвращения 4 буквы и записывали их в порядке поступления. Какова вероятность того, что наудачу составленное слово будет оканчиваться буквой «а»?
Решение.
Общее число исходов опыта — число всех 4-ех буквенных слов в данном опыте, а именно:

Событие А = {наудачу составленное слово из 4-х букв оканчивается на букву «а»}. Место буквы «а» — четвертое, оно занято, то есть число элементов множества А равно числу способов разместить на 3 оставшиеся первые места по одной букве из оставшихся 9. Следовательно, число исходов, благоприятствующих событию А, равно

Тогда вероятность события А равна 
Пример №17
Из ящика, содержащего 10 перенумерованных изделий, наугад вынимают одно за другим все находящиеся в нем изделия. Найти вероятность того, что номера вынутых изделий будут идти по порядку: 1,2,…, 10.
Решение.
Общее число исходов опыта — вариантов расставить 10 изделий на 10 мест- равно перестановке
Число исходов, благоприятствующих событию В = {номера вынутых изделий будут идти по порядку}, равно 
Тогда вероятность события В равна 
Пример №18
Из колоды из 36 карт вытащили наудачу 3 карты. Какова вероятность того, что они все будут тузы а) без учета порядка, б) с учетом порядка?
Решение.
а) Событие А = {вытащили 3 туза без учета порядка}. Общее число исходов опыта равно 


б) Событие В = {вытащили 3 туза с учетом порядка}. Общее число исходов опыта равно 


3) Схема выбора, приводящая к сочетаниям с повторениями
Пусть опыт состоит в выборке 






Комбинации, получающиеся в результате опыта, называются сочетаниями с повторениями. Их общее число определяется по комбинаторной формуле 
Пример №19
В библиотеке имеются книги по 16 разделам науки. Поступили 4 заказа на литературу. Считая, что любой состав литературы равновозможен, найти вероятности событий: а) А = {заказаны книги из разных разделов науки}, б) В = {заказаны книги из одного и того же раздела}.
Решение.
Число всех исходов равно числу сочетаний с повторениями из 16 элементов по 4: 
а) Число исходов, благоприятствующих событию А, равно числу способов отобрать без возвращения 4 элемента из 16: 

б) Число исходов, благоприятствующих событию В равно числу способов отобрать без возвращения 1 элемент из 16: 

Схема выбора, приводящая к размещениям с повторениями
Пусть опыт состоит в выборке 





Получаемые комбинации называются размещениями с повторениями. Их общее число определяется по комбинаторной формуле 
Замечание.
а) Эту схему называют размещением по ячейкам: 

б) Если в ячейку с номером 



в) Бывают комбинации элементов из различных групп. Пусть имеется 






Пример №20
Из ящика, содержащего 10 перенумерованных изделий, наугад вынимают одно за другим все находящиеся в нем изделия, записывают его номер, а затем выкладывают обратно и перемешивают с другими. Найти вероятность того, что записанные номера будут идти по порядку.
Решение.
Число всех исходов опыта равно 


Пример №21
10 мячей размещают по 20 корзинам. Найти вероятности следующих событий: а) А ={в определенных 10 корзинах окажется по мячу}, б) В = {в каких-то 10 корзинах окажется по мячу}, в) С = {все 10 мячей поместятся в 3 корзины}.
Решение.
Это схема — размещение по ячейкам. Число всех исходов опыта равно 
а) В определенных 10 корзинах окажется ровно по одному мячу. Это вторая схема — размещения без возвращения, а именно перестановки (число шаров равно числу корзин). Число исходов, благоприятствующих событию А, равно 
б) В каких-то 10 корзинах окажется ровно по одному мячу. Это вторая схема — размещения без возвращения. Число исходов, благоприятствующих событию В, равно 

с) Все 10 мячей поместятся в 3 корзины. Корзины не указаны, значит, мы должны выбрать три корзины из 20 (это первая схема — сочетания) и положить в них все 10 мячей, следовательно, в одной корзине может оказаться несколько мячей (это четвертая схема — размещения с повторениями). Тогда число исходов, благоприятствующих событию С, равно 

Пример №22
Два раза бросается игральная кость. Найти вероятность того, что оба раза не выпадут «6»-ки?
Решение.
По замечанию в). При однократном бросании кости — 6 исходов. То есть при первом бросании — 6 исходов и при втором бросании — 6 исходов (могут оба раза выпасть одинаковые цифры). Следовательно, число всех исходов опыта равно 


Геометрические вероятности в классической схеме
Классическая теория вероятностей основана на рассмотрении конечной группы равновероятных событий. Теория недостаточна, когда получается бесконечное множество исходов. Поэтому классическое определение несколько видоизменили для опытов с бесконечным множеством исходов, хотя при этом по-прежнему основную роль играет понятие «равновероятности» некоторых событий.
Формулировка общей задачи геометрической вероятности:
Пусть в пространстве (одномерном, двумерном, трехмерном) имеется некоторая область D ив ней содержится другая область d с квадриремой границей. В область D наудачу бросается точка. Брошенная точка может попасть в любую точку области D. Вероятность попасть при бросании в какую-либо часть области D пропорциональна мере (mes) этой части (длине, площади, объему в зависимости от рассматриваемого пространства) и не зависит от ее расположения и формы. Вероятность попадания в область d при бросании наудачу точки в область D находится по формуле:

Частные случаи.
1) Пусть отрезок l составляет часть отрезка L. Вероятность попадания на отрезок l при бросании наудачу точки на отрезок L находится по формуле 
2) Пусть плоская фигура s составляет часть плоской фигуры S. Вероятность попадания на фигуру s при бросании наудачу точки в область S находится по формуле 
3) Пусть объемная фигура v составляет часть объемной фигуры V. Вероятность попадания в фигуру v при бросании наудачу точки в область V находится по формуле 
Пример №23 (задача о встрече)
Два лица А и В условились встретиться в определенном месте между 12 часами и часом. Пришедший первым ждет другого в течение 20 минут, после чего уходит. Чему равна вероятность встречи лиц А и В, если приход каждого из них в течение указанного часа может произойти наудачу, и моменты прихода независимы.
Решение.
Обозначим моменты прихода лица А через х, а лица В через у, причем 
Для того, чтобы встреча произошла, необходимо и достаточно, чтобы х и у удовлетворяли неравенству 

Раскроем модуль: 
Изобразим х и у как декартовые координаты на плоскости. За единицу масштаба примем минуту. Всевозможные исходы — точки квадрата со сторонами 60. Благоприятствующие встрече исходы — точки области между прямыми 
Вероятность встречи лиц А и В равна отношению площади заштрихованной фигуры к площади всего квадрата: 
Пример №24 (Задача Бюффона)
Плоскость разграфлена параллельными прямыми, отстоящими друг от друга на расстоянии 2а. На плоскость наудачу бросается игла длины 




Решение.
По условию задачи, центр иглы может лежать между параллельными прямыми или на одной из прямых. То есть игла может выглядывать из-за прямой ровно наполовину.
х — расстояние от центра иглы до ближайшей параллели, 

Величины х и 
Середина иглы С — точка пересечения иглы с пунктирной линией.
Всевозможные положения середины иглы определяются точками прямоугольника со сторонами а и 
Из рисунка 1 видно, что для пересечения иглы с параллелью необходимо и достаточно, чтобы выполнялось неравенство: 
Пусть событие A = {пересечение иглы и параллели}. Вероятность пересечения иглы и параллели равна отношению площади фигуры под синусоидой (рис. 2) к площади прямоугольника: 
Замечание. Существует ряд задач на геометрическую вероятность, в которых результат зависит от метода решения. Одна из таких задач — парадокс Бертрана: найти вероятность того, что длина наудачу взятой хорды в круге превосходит длину стороны вписанного в этот круг равностороннего треугольника. В условии задачи не определено понятие проведения хорды наудачу, что и привело к 3-м различным решениям.
Пример №25
На первом блюде лежат 8 апельсинов, на втором – 4 яблока. Сколькими способами можно выбрать один фрукт?
Решение. Один апельсин можно выбрать восемью способами, а одно яблоко – четырьмя. Один фрукт – это либо апельсин, либо яблоко.
Воспользуемся правилом суммы: m = 8, n = 4; число способов выбора одного фрукта m + n = 12.
Ответ: 12.
Пример №26
Сколько трёхзначных чисел можно составить из цифр 0,1,2,3,4,5,9, если:
а) число записано разными цифрами?
б) цифры в записи числа могут повторяться?
Решение. а) Первую цифру в записи числа можно выбрать шестью способами (ноль не может быть первой цифрой), для выбора второй цифры, отличающейся от первой, существует 6 способов (ноль может быть второй цифрой), а для выбора третьей цифры остаётся 5 способов (две цифры из имеющихся семи поставлены на первое и второе места). Таким образом, согласно правилу произведения получаем 6∙6∙5 = 180 способов составления трёхзначного числа, записанного разными цифрами.
б) Если цифры в записи числа могут повторяться, то имеем 6 способов выбора первой цифры и по 7 способов выбора каждой из следующих цифр.
Количество таких чисел 6∙7∙7 = 294.
Ответ: а) 180; б) 294.
Пример №27
Студенты изучают 6 различных дисциплин. Если ежедневно в расписание включается по 3 различных дисциплины, то сколькими способами могут быть распределены занятия в день?
Решение. Различные комбинации трёх дисциплин, выбранных из шести, составляют расписание на один день. При этом они различаются либо составом дисциплин, либо их порядком. Поэтому искомое число определяется формулой числа размещений:
Ответ: 120.
Пример №28
Сколько шестизначных чётных чисел можно составить из цифр 1,3,4,5,7,9, если в каждом из этих чисел ни одна цифра не повторяется?
Решение. Чтобы число было чётным, последняя его цифра (число единиц) должна быть чётной. Из заданных цифр только одна чётная – это 4. Поэтому последней цифрой искомого числа может быть только 4.
Остальные пять цифр могут стоять на первых пяти местах в любом порядке. Значит, задача сводится к нахождению числа перестановок из пяти элементов:
Ответ: 120.
Пример №29
Сколько шестизначных чётных чисел можно составить из цифр 1,3,4,5, если цифры в записи числа могут повторяться?
Решение. Чтобы число было чётным, последняя его цифра (число единиц) должна быть чётной. Из заданных цифр только одна чётная – это 4. Поэтому последней цифрой искомого числа может быть только 4.
Остальные пять цифр могут быть любыми из предложенных, причём могут повторяться. Значит, задача сводится к нахождению числа размещений с повторениями из четырёх элементов по пять в каждом:
Ответ: 1024.
Пример №30
Сколькими способами можно выбрать 3 книги из 10 книг по математике, имеющихся в библиотеке?
Решение. Искомое число способов равно числу сочетаний из 10 элементов по 3 элемента в каждом, так как интересующие нас комбинации из трёх книг отличаются друг от друга только содержащимися в них книгами, а порядок расположения книг в этих комбинациях роли не играет.
Следовательно, находим:
Ответ: 120.
Пример №31
Сколько трёхзначных чётных чисел можно составить из цифр 0,1,2,3,4,5,6, если цифры в записи числа могут повторяться?
Решение. При составлении трёхзначного числа из данных цифр в качестве первой цифры (числа сотен) можно взять любую цифру, кроме 0.
Значит, есть шесть возможностей выбора первой цифры. В качестве второй цифры (числа десятков) можно выбрать любую из данных в условии цифр.
Значит, есть семь возможностей выбора второй цифры. В качестве последней цифры (числа единиц) можно взять любую из цифр 0,2,4,6.
Значит, есть четыре возможности выбора третьей цифры. Следовательно, согласно правилу произведения находим количество способов составления числа, удовлетворяющего условию задачи: 6∙7∙4 = 168.
Ответ:168.
Пример №32
Сколько различных чисел можно составить из цифр 4 и 5, если количество цифр в записи числа не более пяти и не менее трёх?
Решение. По условию задачи количество цифр в записи числа не более пяти и не менее трёх. Значит, их либо три, либо четыре, либо пять.
Если число, записанное четвёрками и пятёрками, содержит три цифры, то таких чисел будет:
Если число, записанное четвёрками и пятёрками, содержит четыре цифры, то таких чисел будет:
Если число, записанное четвёрками и пятёрками, содержит пять цифр, то таких чисел будет:
Следовательно, согласно правилу суммы, находим количество способов составления числа, удовлетворяющего условию задачи: 8+16+32 = 56.
Ответ: 56.
Статистическое определение вероятности
Определение вероятности, отправляющееся от частоты появления события в большом количестве испытаний.
Не всякий опыт может быть сведен к схеме случаев. Например, вероятность выпадения определенной грани у неправильной несимметричной игральной кости не будет равна 
Каждое из перечисленных событий обладает определенной степенью объективной возможности, которую можно измерить численно и которая при повторении подобных опытов будет отражаться в относительной частоте соответствующих событий.
Пусть опыт может быть воспроизведен многократно, в каждом из которых по воле случая происходит или не происходит событие А. Обозначим за


Определение 20. Отношение 
При небольшом числе опытов частота события носит случайный характер и может заметно изменяться. Если количество опытов бесконечно много, то применима теорема Бернулли.
Теорема Бернулли (закон больших чисел)
При неограниченном увеличении числа однородных независимых опытов с практической достоверностью можно утверждать, что частота события будет сколь угодно мало отличаться от некоторого постоянного значения — вероятности события в отдельном опыте: 
Если 

Частоты удовлетворяют всем аксиомам Колмогорова.
Примеры:
1. Устойчивость частот доказана на явлениях демографического характера: а) в древнем Китае за 2238 лет до нашей эры было посчитано, что отношение числа рождений мальчиков к числу всех рождений равно 

2. Устойчивость частот доказана на примере бросания монеты:
Частота и вероятность в случайных событиях
Сочетание слов «теория вероятностей» для неискушённого человека производит несколько странное впечатление. В самом деле, слово «теория» связывается с наукой, а наука изучает закономерные явления; а слово «вероятность» в обычном языке связывается с чем-то неопределённым, случайным, незакономерным и, казалось бы, не поддающемуся никакому научному предсказанию.
Зарождение теории вероятностей, как науки, связано с определенными потребностями человеческого общества.
Пожалуй, первый толчок к развитию теории вероятностей как науки, возможно объяснить потребностями зарождающегося буржуазного общества в XVfr-XVII веках и связан он с возникновением потребностей страхования.
К этому времени относятся первые попытки создания общей теории страхования, основанной на анализе закономерностей в таких массовых случайных явлениях, как заболеваемость, смертность, статистика несчастных случаев и т.д.
Однако определение закономерностей теории вероятностей на обработке такого рода статистической информации было затруднено: законы управления массой случайных явлений прослеживались недостаточно отчётливо.
Наиболее простым материалом для изучения законов зарождавшейся науки явились азартные игры.
Игры давали весьма простой и наглядный материал для выработки и установления таких основных понятий, как вероятность и средне ожидаемый результат из опыта. Примеры из области игр широко применяются при изучении теории вероятностей как исключительно по простоте и прозрачности модели случайных явлений.
Работы Паскаля, Ферма, Гюйгенса в области теории азартных игр явились основой и началом теории вероятностей, как науки.
Паскаль и Ферма понимали, что на основе решения ряда частных задач из области игр вырисовывается некоторая новая область математики со своеобразным содержанием и методом исследования.
Дальнейшее развитие теории вероятностей связано со становлением, развитием и обобщением так называемого закона больших чисел. Так, швейцарский математик Якоб Бернулли во второй половине XVII в. впервые показал, что с увеличением числа испытаний частота (частность) какого-либо случайного события приобретает свойство устойчивости и определенным образом приближается к некоторому безразмерному числу, объективно отражающего возможность появления случайного события.
В начале XVIII века английский математик французского происхождения Абрахам де Муавр впервые рассмотрел простейший случай нормального закона, который в настоящее время нашёл широкое применение для решения многих научных и практических задач.
Большое значение в развитии теории вероятностей в первой половине XIX века имели работы Лапласа, Гаусса, Пуассона, которые продолжили исследования нормального закона, закона больших чисел и разработку вопросов приложения теории вероятностей к исследованию результатов наблюдений (в частности, астрономических).
Бурное развитие в России теория вероятностей получила в XIX веке с созданием Петербургской математической школы, представителями которой стали Пафнутий Львович Чебышев и его ученики Андрей Андреевич Марков и Александр Михайлович Ляпунов. П.Л. Чебышев и его ученики последовательно работали над расширением и обобщением закона больших чисел. П.Л. Чебышев ввёл в теорию вероятностей понятие случайной величины и метод моментов, что привело к созданию аппарата теории вероятностей. А. А. Марков положил основу новой области теории вероятностей — теории случайных процессов. А.М. Ляпунов известен своим доказательством так называемой центральной предельной теоремы и разработкой метода характеристических функций.
В настоящее время теория вероятностей широко применяется при решении многих вопросов научной и практической деятельности. Среди учёных — виднейших математиков нашей страны, занимавшихся разработкой вопросов теории вероятностей, стоит отметить Сергея Натановича Бернштейна, Александра Яковлевича Хинчина, Андрея Николаевича Колмогорова, Всеволода Ивановича Романовского, Бориса Владимировича Гнеденко.
Предмет и задачи теории вероятностей
Любому закономерному явлению присущи какие-то случайные отклонения, которые определяются второстепенными факторами, изменяющимися от опыта к опыту, что, соответственно, и вносит случайные различия получаемых результатов. И, тем не менее, при решении ряда практических задач этими случайными факторами можно пренебречь и рассматривать вместо реального явления его упрощённую «модель». В этом случае из бесчисленного множества факторов, оказывающих влияние на его исход, выделяют основные условия опыта, которые сохраняются неизменными, и которые определяют в общих и грубых чертах его протекание. Такая схема изучения явлений применяется в «точных науках» (физике, механике и т.д).
Однако для решения ряда вопросов классическая схема исследования закономерных явлений «точными» науками, которая предполагает выявление основной закономерности путём выделения основных условий, определения их параметров и построение математических моделей исследуемого явления, не всегда приемлема. Существуют такие задачи, где интересующий нас исход опыта зависит от очень большого числа условий, когда учесть все факторы становится практически невозможным, а полученный результат будет зависеть от взаимного их случайного переплетения.
Примером такого случайного явления может служить рассеивание снарядов при стрельбе, которое зависит от таких факторов как направление и сила ветра, атмосферное давление, температура воздуха и заряда, масса снаряда, химический состав пороха и других условий.
Приведенный пример позволяет сделать вывод, что случайные вариации результатов опыта всегда связаны с наличием каких-то второстепенных факторов, влияющих на его исход, но не заданных в числе его основных условий. Эти второстепенные условия опыта и вносят случайные различия в полученный результат.
Вернёмся к рассеиванию снарядов при стрельбе.
Если в результате небольшой группы выстрелов наблюдается хаотичность расположения точек падения (рис. 1а), то при наличии нескольких десятков выстрелов беспорядочное распределение точек падения снарядов на площади начинает приобретать некоторую закономерность -точки падения группируются около некоторого воображаемого центра -центра рассеивания снарядов, причём, чем ближе к центру, тем гуще и кучнее они располагаются (рис. 16). С ещё большим увеличением выстрелов наблюдается то, что точки разрывов снарядов по обе стороны от любой прямой, проведенной через центр рассеивания, располагается поровну на некотором удалении от центра рассеивания (рис.1в).
Наблюдая массу однородных случайных событий (а в данном примере — точек падения снарядов при стрельбе из орудия в аналогичных условиях) можно выявить определенную закономерность — рассеивание снарядов симметрично и небеспредельно т.е. ограниченно.
Подобные так называемые «статистические» закономерности наблюдаются всегда, когда мы имеем дело со случайными явлениями массового характера, которые оказываются независимыми от индивидуальных особенностей отдельных случайных явлений, входящих в эту массу.
Таким образом, определённые закономерности в наступлении случайных событий обнаруживаются лишь при проведении достаточно большого числа испытаний, т.е. при многократной реализации одного и того же комплекса условий.
Очевидно, что должна существовать принципиальная разница в методах учёта основных, решающих факторов, определяющих в главных чертах течение явления, и вторичных, второстепенных факторов, влияющих на его исход. Элемент неопределенности, многопричинности, присущий случайным явлениям, потребовал и создания специальных методов для изучения такого явления. Многократно подтверждённая опытом устойчивость массовых случайных явлений служит базой для применения вероятностных «статистических» методов исследования. Поэтому методы теории вероятностей по своей природе приспособлены только для исследований массовых случайных явлений; они не дают возможности предсказать исход отдельного случайного явления, но дают возможность предсказать средний суммарный результат массы однородных случайных явлений, предсказать средний исход массы аналогичных опытов, конкретный исход каждого из которых останется неопределённым, случайным.
Во всех случаях, когда применяются вероятностные методы исследования их цель в том, чтобы, минуя слишком сложное, а иногда и невозможное изучение отдельного явления, обусловленное большим количеством факторов, осуществить научный прогноз на основании законов, управляющих массами случайных явлений.
Вероятностный или «статистический» метод в науке не противопоставляет себя классическому, обычному методу «точных» наук, а является его дополнением, позволяющим глубже анализировать явление с учётом присущих ему элементов случайности.
В заключении первого вопроса дадим определение теории вероятностей.
Теория вероятностей — это математическая наука, изучающая закономерности в случайных явлениях массового характера. Она отражает в абстрактной форме закономерности, присущие случайным явлениям (событиям) массового характера, т.е. таким явлениям (событиям), которые в повседневной жизни повторяются неограниченно большое число раз. Единичные случайные явления (события) теорией вероятностей не рассматриваются.
Для изучения закономерностей, которым подчиняются случайные явления (события), теория вероятностей применяет вероятностные методы исследования, которые столь же точны и строги, как и методы других «точных» наук.
Основные понятия теории вероятностей. События и соотношения между ними. Классификация событий
В основе теории вероятностей, как и в любой науке, лежат некоторые определённые начальные понятия, при помощи которых даются логическое определение последующих более сложных понятий. Одними из основных понятий теории вероятностей являются: испытание и случайное событие, или (как говорят чаще) событие. Дадим определение события.
Событием называется всякий результат (исход), который может произойти или не произойти в результате испытания.
Испытание — это совокупность условий и действий, при которых получен или может быть получен тот или иной результат. Есть и другая интерпретация испытания — это действие, которое может повторяться при неизменных условиях любое количество раз.
Качественная и количественная стороны испытания представлены на рисунке 2.
Целью испытания является получение тех или иных результатов или
исходов.
Примеры:
- 1) Испытание: выстрел из орудия, событие: попадание в цель.
- 2) Испытание: попадание в цель, событие: поражение цели.
Отличительной чертой теории вероятностей является то, что она рассматривает появление события в ходе испытания не отвлечённо, а при выполнении всех или практически всех условий, которое можно повторять большое число раз.
Совокупность условий, при которых повторяется испытание, называют комплексом условий.
Пользуясь понятием комплекса условий, всякое испытание можно понимать как реализацию определённого комплекса условий.
Очевидно, что при одном и том же испытании в зависимости от сочетания условий, определяющих течение наблюдаемого процесса, могут наступать различные события. В зависимости от комплекса условий и характера интересующего нас исхода, события могут быть достоверными, невозможными или случайными.
Достоверным называется такое событие, которое наступает каждый раз при реализации данного комплекса условий (обозначается заглавной греческой буквой омега —
Пример: реализация комплекса условий: взрыв гранаты, достоверное событие: разрушение её оболочки.
Невозможным называется такое событие, которое никогда не наступает при реализации данного комплекса условий (обозначается —
Пример: реализация комплекса условий: подбрасывание игрального кубика, невозможное событие: выпадение семёрки.
Случайным называется такое событие (обозначается А, В, С…), которое при реализации данного комплекса условий может произойти (наступить, осуществиться) или не произойти (не наступить, не осуществиться).
Пример: реализация комплекса условий: подбрасывание игрального кубика, случайное событие: выпадение двойки.
Для того чтобы разработать аппарат и методику исследования случайных событий в теории вероятностей, устанавливается ряд соотношений между ними и проводится их классификация.
Рассмотреть соотношения между событиями значит ввести операции, позволяющие выражать одни случайные события через другие. Такое представление одного события через другое (или другие) событие называется комбинацией событий.
Однако перед тем как рассмотреть соотношения между событиями возникает необходимость введения определенных операций, позволяющих не только упростить форму записей, но и существенно облегчить логическое построение научных выводов.
Во многих областях точных наук применяются символические операции над различными объектами, которые получают свои названия по аналогии с арифметическими действиями, рядом свойств которых они обладают. В теории вероятностей принято вводить такие операции над событиями, как их сумма и произведение.
Дадим определение суммы и произведения событий.
Суммой двух событий А и В называется событие, состоящее в наступлении хотя бы одного из этих событий (наступлении события А или события В или обоих вместе).
Обозначается А + В = С.
Пример: орудие производит два выстрела по танку. Событие
А={попадание в танк при первом выстреле}, событие В={попадание в танк при втором выстреле}, событие С={попадание в танк}.
Произведением двух событий А и В называется событие С, состоящее в совместном выполнении события А и события В.
Обозначается
Пример: реализация комплекса условий: подбрасывание игрального кубика, случайное событие: выпадение двойки.
Для того чтобы разработать аппарат и методику исследования случайных событий в теории вероятностей, устанавливается ряд соотношений между ними и проводится их классификация.
Рассмотреть соотношения между событиями значит ввести операции, позволяющие выражать одни случайные события через другие. Такое представление одного события через другое (или другие) событие называется комбинацией событий.
Однако перед тем как рассмотреть соотношения между событиями возникает необходимость введения определенных операций, позволяющих не только упростить форму записей, но и существенно облегчить логическое построение научных выводов.
Во многих областях точных наук применяются символические операции над различными объектами, которые получают свои названия по аналогии с арифметическими действиями, рядом свойств которых они обладают. В теории вероятностей принято вводить такие операции над событиями, как их сумма и произведение.
Дадим определение суммы и произведения событий.
Суммой двух событий А и В называется событие, состоящее в наступлении хотя бы одного из этих событий (наступлении события А или события В или обоих вместе).
Обозначается А + В = С.
Пример: орудие производит два выстрела по танку. Событие
А={попадание в танк при первом выстреле}, событие В={попадание в танк при втором выстреле}, событие С={попадание в танк}.
Произведением двух событий А и В называется событие С, состоящее в совместном выполнении события А и события В.
Обозначается
Пример: реализация комплекса условий: подбрасывание игрального кубика, случайное событие: выпадение двойки.
Для того чтобы разработать аппарат и методику исследования случайных событий в теории вероятностей, устанавливается ряд соотношений между ними и проводится их классификация.
Рассмотреть соотношения между событиями значит ввести операции, позволяющие выражать одни случайные события через другие. Такое представление одного события через другое (или другие) событие называется комбинацией событий.
Однако перед тем как рассмотреть соотношения между событиями возникает необходимость введения определенных операций, позволяющих не только упростить форму записей, но и существенно облегчить логическое построение научных выводов.
Во многих областях точных наук применяются символические операции над различными объектами, которые получают свои названия по аналогии с арифметическими действиями, рядом свойств которых они обладают. В теории вероятностей принято вводить такие операции над событиями, как их сумма и произведение.
Дадим определение суммы и произведения событий.
Суммой двух событий А и В называется событие, состоящее в наступлении хотя бы одного из этих событий (наступлении события А или события В или обоих вместе).
Обозначается А + В = С.
Пример: орудие производит два выстрела по танку. Событие
А={попадание в танк при первом выстреле}, событие В={попадание в танк при втором выстреле}, событие С={попадание в танк}.
Произведением двух событий А и В называется событие С, состоящее в совместном выполнении события А и события В.
Обозначается
Пример: орудие производит один выстрел по танку. Событие А={попадание в танк }, событие В={поражение танка при попадании в него}, событие С={поражение танка при одном выстреле}.
Кроме аналогий с арифметическими действиями, в теории вероятностей широкое применение нашла теоретико-множественная терминология, когда обычные свойства операций над множествами переносятся на операции над событиями.
Теоретико-множественной терминология в теории вероятностей, позволяет представить операции над событиями как операции над подмножествами.
Используя терминологию теории множеств некоторое основное множество 



Кроме того, действия над событиями (множествами) могут быть представлены и геометрическим отображением. Принятая геометрическая интерпретация случайных событий называется диаграммой Эйлера-Венна, на которой достоверное событие 
Используя теоретико-множественную терминологию, трактовка суммы и произведения событий может быть представлена в следующем виде:
Объединением (суммой) событий А и В называется событие С, состоящее из всех элементов А и всех элементов В (совокупность элементов, принадлежащих хотя бы одному из них). Обозначается 
Пересечением (произведением) событий А и В называется событие С, состоящее из элементов, входящих одновременно и в А и в В. Обозначается 
При составлении комбинаций событий весьма удобна определённая классификация событий, указывающая на отношения различных событий между собой.
События А и В называют совместными, если появление одного из них не исключает возможности появления другого.
Пример: два орудия производят по одному выстрелу по танку. События А={попадание в танк из первого орудия} и событие В={попадание в танк из второго орудия} — совместные, так как попадание в танк из первого орудия не исключает возможности попадания в танк из второго орудия.
События А и В называют несовместными, если появление одного из них исключает возможность появления другого.
Пример: Пример: бросается игральный кубик. При этом возможны следующие исходы: выпадение 1, 2, 3, 4, 5, 6. Событие А={выпадение 1}, событие В={ выпадение 2}, событие С={ выпадение 3}, событие
D={выпадение 4}, событие Е={выпадение 5} и событие F={выпадение 6} несовместные, так как выпадение одной цифры исключает возможность выпадения остальных других цифр.
Несовместные события должны удовлетворять условию: произведение несовместных событий есть событие невозможное
Говорят, что несколько событий образуют полную группу событий, если при каждом испытании обязательно наступает хотя бы одно из них.
Пример 1: студент сдаёт экзамен по математике, при этом может быть получена оценка либо «отлично», либо «хорошо», либо «удовлетворительно», либо «неудовлетворительно». Событие 



Пример 2: в ящике находятся три исправных и две неисправных лампочки. Вынимают четыре лампочки. Событие А = {вынуть хотя бы одну исправную лампочку} и событие В = {вынуть хотя бы одну неисправную лампочку} составляют полную группу событий, так как при вынимании четырёх лампочек неизбежно одна будет либо исправна, либо неисправна.
Сумма событий, образующих полную группу, есть событие достоверное.
В примере 1 имеют место несовместные события (т.к. наступление любого из них исключает появление другого). В примере 2 даны два события, которые не исключают друг друга. При этом вне зависимости от того, какие события составляют полную группу — совместные или
несовместные, опыт не может кончиться помимо них.
Несовместные события, образующие полную группу, называют единственно-возможными.
События 
Про опыт, в котором имеют место равновозможные события, образующие полную группу несовместных событий, говорят, что он обладает симметрией возможных исходов.
С опытами, обладающими симметрией возможных исходов, связывают группу событий, обладающих всеми тремя свойствами. Если события образуют полную группу, несовместны и равновозможны, то такие события называют случаями (или «шансами»), а про опыт говорят, что он сводится к «схеме случаев» (к «схеме урн»).
Достаточно часто на практике приходится сталкиваться с наступлением двух несовместных событий, образующих полную группу. Если по условиям предыдущего примера объединить получение оценок «отлично», «хорошо» и «удовлетворительно» как сдачу экзамена, то мы будем иметь только два события, образующих полную группу: сдачу экзамена и не сдачу экзамена.
Два несовместных события А и В, образующие полную группу событий называют противоположными (обозначают 
Противоположные события должны удовлетворять следующим условиям:
Говорят, что событие А влечёт за собой событие В (событие А благоприятствует событию В), если из наступления события А следует наступление события В. (
Для того, чтобы событие А влекло за собой наступление события В необходимо, чтобы были выполнены следующие условия:
Пример: орудие производится выстрел по танку. Событие
А={попадание в танк}, событие В={попадание в башню танка}. Для того, чтобы попасть в башню танка, необходимо попасть в танк, но при этом, попадание в танк не означает попадание в его башню. Таким образом, можно говорить о том, что событие В содержится в событии А или является его частью.
Несомненно, для того, чтобы попасть в башню танка, необходимо попасть в танк. Таким образом, событие В={попадание в башню танка} содержится в событии А или является его частью и обозначается
Легко проверить, что для того, чтобы событие В содержалось в событии А, необходимо и достаточно выполнить следующие условия:
- Если снаряд попадает либо в танк, либо в башню, он всё равно попадёт в танк (А + В = А).
- Для того чтобы попасть в башню, необходимо попасть в танк,
.
- Если снаряд не попадёт в танк, то соответственно он и не попадёт и в башню танка
Если событие А содержится в событии В, а событие В содержится в событии Л, то такие события равносильны. (Если 
Пример: для поражения цели достаточно одного попадания. Событие Л={попадание в цель хотя бы одним снарядом}, событие £={поражение цели} равносильны.
Способы определения вероятности
При повторении испытаний случайные события могут наступать или не наступать. При этом можно заметить, что одни события наступают чаще, т.е. имеют большую возможность появления, а другие — реже, т.е. имеют меньшую возможность появления. Этот факт позволяет установить такую характеристику случайного события, как частоту.
Частотой случайного события в данной серии испытаний называется отношение числа испытаний, в которых появилось данное событие к общему числу испытаний.
где: р — частота появления события А,

n — число проведенных испытаний.
При небольшом числе испытаний частота события в значительной степени носит случайный характер и может заметно изменяться от одной группы опытов от другой. Однако с увеличением числа испытаний частота события все более теряет случайный характер, а абсолютная величина отклонений частот в общем становится все меньшей и меньшей.
Таким образом, при большом числе испытаний частота для случайных событий массового характера обладает так называемым свойством устойчивости, при достаточно большом числе наблюдений 
Следовательно, можно говорить о том, что частота события А колеблется около одного и того же числа, которое характеризует данное событие А.
Наглядным примером свойства устойчивости частоты может служить выпадение герба при бросании монеты. Так известный французский естествоиспытатель XVIII века Бюффон бросил монету 4040 раз, в результате получил частоту выпадения герба 0,50693, а английский биолог Пирсон в 2400 бросания получил частоту 0,5005. При многократном бросании монеты частота появления герба обладает устойчивостью, колеблясь около числа 0,5, в тем меньших границах, чем больше проведено опытов.
Таким образом, с событием, обладающим устойчивой частотой, можно связать некоторую постоянную, около которой группируются частоты и которая является характеристикой объективной связи между комплексом условий, при котором производится испытание, и событием. Эту постоянную величину принято называть вероятностью события (обозначается Р(А) или
Понятие вероятности вводится путём обобщения многочисленных наблюдений за частотой. Отсюда следует, что в самом существе понятие вероятности лежит связь с частотой. Эта связь заключается в том, что, с одной стороны, частота может рассматриваться как приближённое значение вероятности, найденное по опытным данным, а с другой — знание вероятности некоторого события позволяет оценить частоту его появления в достаточно большой серии опытов в аналогичных условиях.
На основе этого положения и различаются основные способы определения вероятности: статистический и классический.
Однако перед тем как рассмотреть возможные способы определения вероятности, мы с вами рассмотрим основные аксиомы, которые позволят определить условия, которым должна удовлетворять вероятность наступления случайного события.
Аксиомы теории вероятностей
1. Вероятность случайного события есть неотрицательное число (неотрицательность Р).
2. Вероятность достоверного события равна 1 (нормированность Р).
Из 1 и 2 аксиом нетрудно вывести следствие, что вероятность есть неотрицательное число, заключенное между нулём и единицей
Статистический способ определения вероятности основан на наблюдаемом факте устойчивости частоты при проведении достаточно большого числа испытаний. Если число испытаний достаточно велико, то можно приблизительно считать, что
где: Р(А) — вероятность наступления события А;
Р — частота появления события А;

п — число проведенных испытаний.
Приближённое равенство 
Легко проверить, что данный способ определения вероятности удовлетворяет всем трём аксиомам.
Таким образом, при статистическом способе, определение вероятности можно сформулировать следующим образом: вероятностью случайного события называется постоянное число, около которого группируется частота этого события.
Статистический способ определения вероятности имеет то преимущество, что он опирается на реальный эксперимент, однако и он имеет существенный недостаток — для надёжного определения вероятности необходимо проделать большое число опытов, что не всегда возможно или целесообразно.
В условиях, когда нет необходимости (или возможности) определить вероятность наступления события путём проведения многочисленных опытов, представляется возможным (при определенных условиях) определить численную меру возможности наступления данного события. Такой способ определения вероятности является классическим.
В условиях, когда опыт сводится к «схеме случаев» а его исходы составляют полную группу несовместных равновозможных событий, вероятность наступления события можно определить как:
где: Р(А) — вероятность наступления события А;
m — число случаев, благоприятствующих появлению события А;
n — число всех равновозможных случаев, образующих полную группу событий.
Легко проверить, что данный способ определения вероятности так же удовлетворяет всем трём аксиомам.
Таким образом, при классическом способе определение вероятности можно сформулировать следующим образом: вероятность события равна отношению числа случаев благоприятствующих появлению данного события, к общему числу равновозможных случаев.
Классический способ определения вероятности имеет то преимущество, что вероятность наступления события может быть определена без проведения опыта, однако и он имеет существенный недостаток: возможность его использования только в том случае, когда какой-либо опыт обладает свойством «симметрии» (обладает симметрией возможных исходов) и сводится к «схеме случаев».
Пример №33
В коробке лежат 4 лампочки, из них две неисправны «н», а другие две — неисправны «и». Какова вероятность того, что одновременно будут взяты две лампочки: а) обе неисправны, б) исправна и неисправна?
Решение:
Каждый исход получается последовательным выполнением двух действий: одновременным выбором одной и другой лампочек. Пространство исходов опыта (элементарных событий) в данной задаче давайте представим простым перечислением исходов 
Событие А={одновременное взятие двух неисправных лампочек} однозначно представляется подмножеством одного исхода
Таким образом, вероятность наступления события А равна:
Событие B={одновременное взятие двух лампочек — одной исправной, а другой неисправной} представляется подмножеством двух исходов
Таким образом, вероятность наступления события В равна
Вывод: Полученный результат означает, что при проведении достаточно большого числа опытов в аналогичных условиях в среднем при одновременном взятии двух лампочек в половине случаев из 100 будут взяты одна исправная и одна неисправная лампочки и в 25 случаев из 100 — только неисправные лампочки.
Основные формулы для вычисления вероятностей
Ограниченность классического и статистического способов определения вероятности событий, приемлемых, главным образом, для определения вероятности простых событий, приводит к тому, что в подавляющем большинстве случаев ни один из этих способов в чистом виде для решения задачи определения наступления событий применить не удаётся.
Например, требуется определить вероятность поражения движущегося танка. Определить эту вероятность по частоте наступления события на практике невозможно — необходимо провести большое число стрельб. При этом надо не только определить вероятность попадания в движущийся танк (что сделать не сложно), но и определить вероятность поражения его экипажа, если будет иметь место попадание в танк (а это выполнить на практике невозможно).
Факт сложности или невозможности определения вероятности сложных событий явился стимулом разработки аппарата теории вероятностей, с помощью которого вероятность определяется не прямым, а косвенным методом через вероятность более простых событий.
Сущность косвенного метода определения вероятности сложного события заключается в следующем: вначале анализируют условия испытания и устанавливают события 


Однако определению вероятности наступления сложного события как комбинации более простых событий должны предшествовать твёрдые знания правил применения рассмотренных в лекции теорем сложения (объединения) и умножения (пересечения) событий.
Этому вопросу и будет посвящён вопрос нашего занятия.
Пример №34
Для того что бы вывести из строя артиллерийскую батарею необходимо поразить либо два взвода с орудиями либо центр управления огнём. Используя операции сложения (объединения) и умножения (пересечения) событий представим сложное событие D={ поражение артиллерийской батареи} как комбинацию простых событий. Результат проиллюстрируем диаграммой Эйлера-Венна.
Решение:
Обозначим через событие А = {поражение первого взвода орудий}, через событие В = {поражение второго взвода орудий}, С = {поражение центра управления огнём}. Тогда событие D = {поражение артиллерийской батареи} определится как поражение либо центра управления огнём (событие С) либо одновременно первого взвода орудий (событие А) и второго взвода орудий (событие В), т.е. будет иметь место следующая комбинация событий
Для решения такого типа задач необходимо усвоить ряд основных свойств, которыми обладают действия над событиями.
Операции сложения (объединения) и умножения (пересечения) событий обладают рядом свойств, аналогичным свойствам сложения и умножения чисел.
1. Переместительное свойство:
А + В = В + А;
2. Сочетательное свойство:
3. Распределительное свойство:

4. Операции прибавления пустого множества и умножения на пустое множество аналогичны операциям над числами, если считать пустое множество за ноль.
Ряд операций над событиями уже не обладают свойствами по аналогии с арифметическими действиями, например:
5. 
6. 

7. 
Заключение по лекции:
В лекции мы рассмотрели принципиальные вопросы теории вероятностей применительно к случайным событиям, ввели основной понятийный аппарат, необходимый для дальнейшего изучения дисциплины: определение события, их классификацию; понятия частоты и вероятности события, а так же способов определения вероятности.
Статистика и вероятность
Дисперсии и стандартное отклонение:
До настоящего момента для анализа статистических данных мы использовали такие показатели, как среднее арифметическое, мода и медиана.
Среднее арифметическое находится использованием всех значений данных.
- Значения, которые выходят за пределы, могут привести к ложным результатам о совокупности.
- Медиана является средним значением упорядоченных данных.
- Медиана делит данные на две половины — нижнюю и верхнюю.
- Она является более надежным показателем, если присутствует резких отклонений от среднего значения.
- Пригодна для анализа ограниченного количества данных.
Мода определяет характер данных для совокупности.
- Дает возможность создать мнение о среднем арифметическом.
- Очень удобна для анализа категориальных данных (гендер, цвет и т.д.).
- Данные могут иметь более одной моды или вообще не иметь моду.
При обработке статистической информации для получения более точного результата используются такие характеристики, как отклонение, дисперсия, стандартное отклонение.
Отклонением называется разность значения данных и среднего арифметического: 


Дисперсия равна отношению суммы квадратов отклонений к количеству
значений данных 

Стандартным отклонением называется квадратный_корень из дисперсии и обычно обозначается буквой 
Стандартное отклонение — один из важных показателей, отвечающий за характер распределения.
- Стандартное отклонение показывает распределение данных относительно среднего арифметического.
- Чем больше (длиннее) промежуток, на котором расположены друг от друга значения данных, тем больше будет стандартное отклонение.
- Чем меньше промежуток, на котором расположены друг от друга значения данных, тем меньше будет стандартное отклонение. Другими словами, если данные сконцентрированы вокруг среднего арифметического, то стандартное отклонение будет маленьким.
Пример №35
Ниже представлена еженедельная заработная плата (в ман.) случайным образом выбранных 10 работников фирмы: 120, 160, 90, 175, 110, 80, 220, 150, 300, 95. Найдите отклонения, дисперсию и стандартное отклонение. Объясните соответственно к ситуации.
Решение: 1. Построим таблицу, соответствующую зарплате.
2. Вычислим среднее арифметическое: 
3. Вычитая из каждой зарплаты среднее арифметическое, найдем отклонение от среднего арифметического. Например, 

4. Вычислим все 

5. Чтобы найти стандартное отклонение заработной платы надо извлечь квадратный корень из дисперсии:
Объяснение: при помощи стандартного отклонения можно оцепить изменение зарплаты. Например, человек, который получает зарплату 300 манат, получает зарплату больше средней еженедельной зарплаты (140 манат) на 2 стандартных отклонения 
Сформировать мнение о стандартном отклонении можно, представляя данные в форме гистограммы или полигона частот. Ниже представлены соответствующие рисунки.
Хотя на всех трех диаграммах среднее арифметическое одинаково, но стандартное отклонение различно. На первом графике стандартное отклонение 0. Значение всех 8 данных равно 5. Стандартное отклонение на втором графике меньше, чем на третьем, так как данные сконцентрированы вокруг среднего арифметического.
Пример №36
Нахождение стандартного отклонения сгруппированной информации. В таблице представлена ежедневная информация об учеников, пропустивших уроки в течении 50 дней в одном из классов. Найдите стандартное отклонение.
Решение:
1. Сначала сгруппируем данные о пропущенных уроках и запишем их в таблице частоты. Например, количество дней, в которых вообще уроков не пропущено — 10, в которых 1 ученик пропустил уроки — 19 и т.д.
2. По данным таблицы найдем среднее арифметическое
3. Для каждого значения данных найдем:
a) отклонение от среднего значения:
b) возведем его в квадрат
c) Полученный результат умножаем на количество, складываем и делим на
После чего находим квадратный корень.
Как видно, стандартное отклонение количества детей не посещающих школу, 1,71, при среднем значении 1,8.
Использование калькулятора. Чтобы вычислять статистические данные на калькуляторе, надо перейти в статистический режим. Для вычисления среднего арифметического 
Нормальное распределение
Как видно из рисунка, формы графического представления распределения частот (гистограмма или полигон частот), могут быть симметричными или асимметричными.
Примером нормального распределения могут служить данные о росте и массе новорожденных.
Рассмотрим более подробно формы нормального распределения.
Нормальное распределение:
Нормальное распределение также называется распределение правилом
В зависимости от среднего значения график нормального распределения может перемещаться вправо или влево. При изменении стандартного отклонения, для одних и тех же значений среднего арифметического, график сжимается или растягивается.
Например, среднее арифметическое для графика 




Пример №37
Среднее арифметическое нормального распределения, соответствующего совокупности 
Решение: по условию 


b) Число 30 расположено на 

Диаграмма «ящик с усами»
Построение диаграммы «Ящик с усами» рассмотрим на следующем примере.
Пример №38
15 работников фирмы при сдаче экзамена по технике безопасности, получили следующие баллы: 13 9 18 15 14 21 7 10 11 20 5 18 37 16 17.
Представьте данную информацию в виде диаграммы «ящик с усами».
Решение: 1. Расположите данные в порядке возрастания, определите медиану и отметьте ее через
2. Данные слева от медианы расположены в первой нижней половине, справа от медианы — в верхней половине. Т. е. медиана делит данные на две половинки.
3. Медианы половинок, называемые квартилями (здесь 
4. Определяют изменение между квартилями
5. Отметим на числовой оси наименьшее и наибольшее значения, квартили и медиану — 5 важных точек. Нарисуем прямоугольник, длина которого равна разности изменению между квартилями. Этот прямоугольник делится медианой на две части. Теперь нарисуем «усы», соединив наибольшее и наименьшее значения с соответствующими квартилями.
Мы построили диаграмму «ящик с усами» в соответствии с представленными данными. Теперь, по диаграмме, представим данные. Из диаграммы видно, что приблизительно половина, 50 % , из 15 человек набрали от 10 до 18 баллов, 25% — меньше 10 баллов и 25% — больше 10 баллов.
Разница длин левого и правого «уса» зависит от разницы значений данных в соответствующих частях.
Для построения диаграммы «ящик с усами» из заданной совокупности выделяют 5 значений:
Медиану 


Шаги построения диаграммы «ящик с усами»
1. Проводится горизонтальная прямая.
2. В зависимости от диапазона изменения данных проводится деление.
3. На прямой отмечают 5 значений — 
4. От 

5. Рисуем «усы» от 

Пример №39
Ниже представлены данные возраста участниц женской паралимпийской команды по волейболу 24, 30, 30, 22, 25, 22, 18, 25, 28, 30, 25, 27. Представьте данные в виде диаграммы «ящик с усами».
Решение: 1. Расположим данные и найдем медиану и квартили.
2. Изобразим числовую ось и отметим эти следующие данные.
3. При помощи разности квартилей 
4. Представление диаграммы. Возраст 50% баскетболисток между 23-29 годами, 25% меньше 23 лет, 25% — больше 29 лет. Длинными или короткими являются «усы» ящика показывает, близко ли или далеко расположены друг от друга данные внутри 25% — го интервала. Например, левый «ус» длиннее, правый — короче. Так как в 25%-интервале значения изменяются между 18-23, а в левом «усе» мы встречаем только два значения 29-30.
Данные, которые сильно отличаются от основных данных совокупности, называются выбросами. Выбросы можно определить относительно верхнего и нижнего квартиля. В этом случае выбросом считается, значение в 1,5 раза больше или меньше разности 
Что такое случайные события и вероятность
Теория вероятности устанавливает математические отношения между случайными событиями, происходящими вокруг, и вероятностью их наступления. При помощи этих отношений вероятность наступления события оценивается на основе вероятности более простых событий. В повседневной жизни мы можем наблюдать различные события, многочисленные опыты, испытания и результаты наблюдений. Неразделимый результат опыта, испытания и наблюдения называется элементарным событием. Множество всех элементарных событий называется пространством элементарных событий (ПЭС) и обозначается буквой 


Определения
Событием называется любое подмножество множества элементарных событий. Например, если событие 
Если количество элементарных событий ПЭС равно 




Результаты, принадлежащих хотя бы одному из событий 




События, не имеющие общих результатов, называются несовместными событиями. Если события 

Множество всех событий, не принадлежащих множеству 
Если наступление события 


В опыте с равновозможными исходами вероятность события 
При решении задач на вероятность обратите внимание на следующее:
- Для любого случайного события
справедливо
- Сумма вероятностей наступления элементарных событий равна 1:
- Справедлива формула
Вероятность несовместных событий. Для любых несовместных событий 

Это правило называется правилом сложения вероятностей.
Пример №40
В мешке шары желтого, красного и белого цветов. Вероятность, того, что из мешка вытащат белый шар 0,25, красный шар — 0,3. Найдите вероятность того, что вытащенный шар желтый.
Решение: если из мешка вытащить один шар, то вероятность того, что он будет красным или белым равна: 



Вероятность двух событий
В общем случае для любых событий 

Пример №41
56% студентов института проживают в студенческом городке, 62% гам только обедают, а 42% и проживают, и обедают в городке. Найдите вероятность, что случайно выбранный студент:
a) проживает, но не обедает в студенческом городке;
b) не проживает и не обедает в студенческом городке.
Решение: а) пусть 

Из диаграммы видно, что пересечение равно 



b) вероятность, что студент не проживает и не обедает в городке равна
Условная вероятность
Иногда дополнительная информация может повлиять на результат испытания. Например, если известно, что при
бросании зары выпадет четное очко, то вероятность события равна 
Значит, при вычислении вероятности какого-либо события надо учитывать события, которые могут повлиять на данное событие. Вероятность события 

Пример №42
Психологи провели опрос среди случайно выбранных 478 школьников, 1/3 часть которых учится в деревне, 1/3 — в пригороде и 1/3 — в центре города. Один из вопросов и варианты представлены ниже.
Что для вас важнее? Стать известным Получить высшее образование Стать мастером Результаты опроса представлены в таблице:
Вероятность того, что случайно выбранный ученик из участников опроса:
• Вероятность того, что случайно выбранная девочка хочет стать мастером
• Вероятность того, что случайно выбранный мальчик хочет стать мастером
Вычислим заново некоторые вероятности, которые были вычислены выше.
Например,
Значит, 
Значит,
Обобщая полученные примеры, запишем формулу условной вероятности.

здесь
Из формулы условной вероятности получаем:

Пример №43
В семье два ребенка. Если один из них мальчик, то найдите вероятность того, что мальчиками окажутся оба ребенка.
Решение: введем обозначения мальчик — м, девочка — д. Найдем пространство элементарных событий 


Формула условной вероятности не связана с тем являются ли события зависимыми или независимыми. По данной формуле можно вычислить вероятность любого события.
Пример №44
В общежитии студенческого городка на 3 этаже расположены самые комфортабельные комнаты, 3 из которых пустые. Всего в общежитии 12 пустых комнат и студенты, чтобы получить право занять комнату, тянут номера. Сначала номер вытянул Эльмир, а затем его друг. Какова вероятность того, что они оба попадут на 3-й этаж.
Решение:
Известно, что номер, который вытянул Эльмир не возвращается и его друг будет выбирать не из 12 номеров, а уже из 11. Вероятность того, что Эльмир попадет на 3-й этаж равна 
Найдем по формуле вероятность того, что друг Эльмира также попадет на 3-й этаж, если Эльмир уже выбрал 3-ий этаж .
Если 






Пример №45
Ежедневно фирма но обеспечению продуктами должна завозить в столовую свежий хлеб. Директор столовой утверждает, что вероятность этого события равна 0,85. Если вы 4 дня подряд будете завтракать в данной столовой, то найдите вероятность того, что каждое утро на завтрак вы получите свежий хлеб.
Решение: вероятность, что на завтрак будет свежий хлеб не зависит от того, привезут ли свежий хлеб в другой день и равна:
Пример №46
В мешке 3 белых и 7 черных шара. Из мешка извлекают два шара (без возврата). Найдите вероятность того, что второй шар будет белого цвета.
Решение: обозначим через 


Значит,
Тогда
Сведения о статистике
Статистика — это наука, которая занимается сбором, обработкой и изучением различных данных, связанных с массовыми явлениями, процессами и событиями. Статистические сведения о какой-то большой совокупности объектов (генеральной совокупности) получают в основном в результате анализа только незначительной её части — выборки. Чтобы узнать, например, о наиболее распространённом размере мужской обуви, достаточно опросить несколько десятков мужчин. Предположим, что, опросив 60 мужчин, получили результаты, приведённые в таблице:
Это — частотная таблица, в ней числа второй строки — частоты. Например, частота обуви размера 29 равна 6. Относительная частота этого размера
Проанализировав такую выборку, делают общий вывод: примерно 10 % мужской обуви надо делать 29 размера, а размера 26 — вдвое меньше. Это — приближённые отношения, но для практики таких приближений бывает достаточно.
Математическим анализом различных выборок занимается математическая статистика. Её основная задача — разрабатывать эффективные методы изучения больших совокупностей объектов па основе сравнительно небольших выборок.
Каждый элемент выборки называют её вариантой. Выборка, полученная в результате наблюдений, бывает неупорядоченной. Упорядочив её, получают вариационный ряд. Разность между крайними членами вариационного ряда — размах выборки. Пусть дано выборку
Упорядочив её по возрастанию вариант, получим вариационный ряд:

Мода выборки — её варианта с наибольшей частотой (обозначается 
Следовательно, для данной выборки
Средним значением выборки называют среднее арифметическое всех её вариант.
Например, если дано выборку 
Если варианты выборки повторяются, то суммы равных слагаемых можно заменить произведениями.
Пример №47
7 рабочих бригады ежемесячно получают по 3000 руб, 8 — по 4500 руб,, а 5 — по 5000 руб,. Определите среднюю месячную зарплату рабочего этой бригады.
Решение:
Всего рабочих в бригаде 
Ответ. 4100 руб,.
Моду, медиану и среднее значение выборки называют центральными тенденциями выборки.
В статистике часто используют и среднее квадратичное. Если дано 


С помощью среднего квадратичного чаще оценивают совокупности погрешностей или отклонений от нормы. Рассмотрим пример. Желая выточить деталь радиуса 

- первый: 2, -5, 4, -3, -3, 5;
- второй: 3, -1, 4, 1, 1, 2.
Кто из них выполнил задание качественнее?
Чтобы ответить на вопрос, вычисляют средние квадратичные допущенных отклонений:
Качественнее работу выполнил второй токарь.
Если разности между вариантами выборки и её средним значением равны 
Подробнее о дисперсии см. на с. 325.
В математике, в частности в математической статистике, нередко используют также среднее геометрическое 

Для любого количества положительных чисел 
Например, для положительных чисел 
Докажите эти неравенства и приведите их геометрическую модель.
Пример №48
В результате выборочного анализа выручки (в тыс. руб) туристической фирмы за неделю получили выборку объёмом
Для заданной выборки: а) найдите размах выборки; б) составьте частотную таблицу.
Решение:
а) Выпишем различные значения вариант, попавших в выборку: 87, 94, 99, 90, 85, 82, 81, 97.
Разместим варианты выборки в порядке возрастания: 81, 82, 85,87,90,94,97,99.
Размах выборки равен
б) Вычислим частоту каждой варианты и составим частотную таблицу:
Пример №49
В результате анализа производства мяса (тыс. т) в январе-октябре 2010 года во всех областях получили такую совокупность данных.
Найдите: моду, медиану и размах выборки.
Решение:
Разместим варианты выборки в порядке возрастания: 34,41,44,47,47,47,47, 50, 50, 50, 52, 52, 55, 55, 63, 73, 73, 90, 90,115, 129,166, 206, 211,363.
Тогда мода выборки равна 47 (встречается 4 раза), медиана — 55 (имеет 13-й порядковый номер из 25), а размах — 329 (363 — 34).
Графические представления информации о выборке
Статистические данные сводят в таблицы. Статистическая таблица — это особая форма рационального и систематизированного изложения обобщающих характеристик статистической совокупности. Как и грамматическое предложение, статистическая таблица имеет подлежащее и сказуемое. В подлежащем приводится перечень элементов, явлений, признаков, указанных в таблице. В сказуемом таблицы подаются количественные характеристики. Например, в приведённой ниже таблице сбора зерна в некоторых странах в 1995 г. подлежащим является левая колонка. Числовые данные в других — сказуемое таблицы.
Информацию о той или иной выборке часто подают графически, чаще всего в форме диаграмм. Слово диаграмма в переводе с греческого означает рисунок, чертёж. Правда, теперь этим словом называют не любой рисунок, а схематическое изображение отношений между множествами, различные структуры, алгоритмы действий и т. д. Отношения (соотношения) между множествами и объёмами понятий зачастую изображают в виде диаграмм-деревьев или диаграмм Эйлера (рис. 137,135).
Структуры моделей, различные диаграммы классов, состояний удобно подавать в виде круговых (секторных) диаграмм.
На рисунках 144 и 145 на секторной и столбчатой диаграммах изображены соотношения между численностью граждан разных национальностей (согласно переписи 2001 г.).
Столбчатую диаграмму из соединённых прямоугольников называют гистограммой. На рисунке 146 изображена гистограмма, которая соответствует приведённой ниже таблице распределения рабочих цеха по тарифным разрядам.
Иногда вместо гистограммы строят полигон распределения, соединяя отрезками середины верхних оснований последовательных прямоугольников гистограммы (рис. 147). Бывают и другие диаграммы.
Информацию о динамике того или иного явления графически удобно изображать с помощью столбчатых диаграмм или графиков. Например, на рисунке 148 приведена диаграмма динамики рождаемости от 1960 до 2002 года; на рисунке 149 графики, отражающие динамику количества учеников, классов и школ в сёлах.
В социологии диаграммы часто строят на основе полярной системы координат. На двух следующих диаграммах {рис. 150. 151) большим расстояниям от полюса 0 соответствуют большие значения величин. Проанализируйте эти диаграммы.
Пример №50
По данным таблицы «Структура валового сбора зерновых культур в мире (%)» постройте секторную диаграмму.
Решение:
На 100 % приходится 



Как решать случайные события
Построением и исследованием моделей различных процессов, связанных с понятием случайности, занимаются математическая статистика и теория вероятностей. К таким процессам, например, относятся риски (рискованные операции) на производстве и в банковском деле, массовые заболевания среди растений, животных или людей, азартные игры.
Из предыдущих классов вы уже имеете некоторые представления о теории вероятностей, теперь немного расширим и углубим их.
Важнейшими понятиями теории вероятностей являются вероятностный эксперимент (испытание, наблюдение), событие (следствие испытания) и вероятность события. Приведём примеры испытаний и их отдельных последствий — некоторых событий.
Последнее событие невозможное, поскольку на гранях игрального кубика нет нуля. Событие 3 достоверное, так как после зимы всегда наступает весна. События 1 и 2 случайные.
Вообще, событие называется невозможным, если оно никогда не может произойти, достоверным — если оно всегда происходит. Если событие может произойти или не произойти, его называют случайным.
Принято считать, что невозможное и достоверное события — частные случаи случайного события.
События обозначают большими латинскими буквами 

Сказать заранее о случайном событии, что оно состоится или не состоится, нельзя. Если же это событие массовое, выполняется много раз и при одинаковых условиях, то вероятность его наступления можно характеризовать некоторым числом.
Это можно сделать тогда, когда последствия испытаний рав-новозможные и составляют конечное множество, т.е. в условиях проведённого испытания нет оснований считать появление одного из следствий более или менее возможным, чем других.
Пример:
Бросают один раз правильный однородный игорный кубик {рис.159) и фиксируют количество очков на грани, оказавшейся вверху. Результатом такого испытания могут стать 6 различных событий:
Эти шесть событий охватывают и исчерпывают все возможные последствия эксперимента. Они попарно несовместимы, ибо каждый раз выпадает только одно количество очков. Все шесть событий одинаково возможны, поскольку речь идёт об однородном кубике правильной формы и ловкость игрока исключается. В таком случае говорят, что для осуществления каждого из этих событий существует один шанс из шести.
Каждое из событий 
Элементарным событием называют каждый возможный результат вероятностного эксперимента. Множество всех возможных последствий эксперимента называют пространством элементарных событии и обозначают греческой буквой 
Если пространство элементарных событий для некоторого испытания состоит из 







Есть события не элементарные. Рассмотрим, например, такое событие:
Поскольку пластинок домино всего 28, то испытание, связанное с выбором одной пластинки, исчерпывается 28 равновозможными и независимыми последствиями. Следовательно, пространство элементарных событий для данного испытания состоит из 28 элементарных событий 

Говорят, что событию 

Рассмотрим общий случай. Пусть испытание имеет конечное количество 

Будем называть элементарное событие 


Если количество последствий (элементарных событий), благоприятных событию 


Вероятностью случайного события 



Такое определение вероятности называют классическим.
Свойства вероятности случайного события
Перечислим важнейшие свойства вероятности случайного события:
- Если
— событие невозможное, то
- Если
— событие достоверное, то
- Если
— событие случайное, то
- Если
— элементарные события, исчерпывающие некоторое испытание, то
Пример №51
Во время тестирования стиральной машины выяснилось, что одна из пяти деталей 





Решение:
Построим пространство элементарных событий для данного испытания (из 5 деталей выбирают 3). Имеем:
а) Событию 

б) Событию 


в) Событию 


Вычислять вероятности событий часто помогают правила и формулы комбинаторики.
Пример №52
На вершину горы ведут 4 одинаково удобные тропы. Какова вероятность того, что вы подниметесь на гору и спуститесь с неё тем же маршрутом, которым проходил там ваш товарищ?
Решение:
Всего существует 
Ответ.
Пример №53
Ученик цифрами 1, 2, 3, 4, 5 написал неизвестное вам пятизначное число. Какова вероятность того, что вы сразу отгадаете это число?
Решение:
Всего таких чисел есть 
Ответ
Пример №54
В корзине есть 20 яблок, одинаковых на вид, 15 из них — сладкие, а 5 — кислые. Какова вероятность того, что взятые наугад два яблока окажутся кислыми?
Решение:
Выбрать пару из всех 20 яблок можно 

Следовательно, искомая вероятность
Пример №55
Есть карточки с цифрами 3, 4, 5, 6, 7. Три из них выбирают наугад. Какова вероятность того, что из них можно составить арифметическую прогрессию?
Решение:
Три карты из пяти можно выбрать 

Пример №56
Из перевёрнутых 28 костяшек домино наугад берут одну. Какова вероятность того, что на одной из её частей окажется 1 очко (событие
Решение:
Подсчитаем, сколько существует костяшек домино, содержащих одно очко:
Всего возможностей выбора 28, поскольку взять можно любую из
28 костяшек. Следовательно,
Ответ. 0,25.
Пример №57
На каждой из четырёх карточек написано одну из букв А, Й, Р, К. Карточки перемешивают и раскладывают в ряд. Какова вероятность того, что образуется слово КРАЙ?
Решение:
Из четырёх данных букв можно образовать 
Ответ.
Пример №58
На 1000 билетов лотереи приходится 1 выигрыш в 5000 руб, 10 выигрышей по 1000 руб, 50 — по 200 руб, 100 — по 50 руб. Остальные билеты невыигрышные. Найдите вероятность выигрыша на один билет, не менее чем 200 руб.
Решение:
Билетов, на которые приходятся выигрыши, не меньше 200 руб, всего 
Ответ. 0,061.
Пример №59
Студент пришёл на экзамен, зная ответы только на 20 из 25 вопросов программы. Найдите вероятность того, что он из трёх предложенных вопросов знает ответы минимум на два.
Решение:
Всего вариантов троек вопросов 


Если к каждой такой паре вопросов присоединить один из 5 вопросов, которые он не знает, получим еще 
Ответ.
Относительная частота события и случайные величины
До сих пор речь шла о классическом понимании вероятности. Её вычисляют, исходя из того, что все рассматриваемые элементарные события одинаково вероятны. Такое случается сравнительно редко.
Представьте, что игральный кубик сделан так, что его грань с шестью очками находится дальше от центра масс, чем противоположная грань. Такой кубик и падает чаще вверх гранью с 6 очками. При этом наблюдается интересная и очень важная закономерность. Когда кто-то один подбросил такой кубик 1000 раз и он упал, например, 300 раз вверх гранью с 6-ю очками, то и другие экспериментаторы имели бы примерно такие же результаты. Много массовых случайных событий имеют свойство устойчивости.
При достаточно большом числе независимых испытаний частота появления наблюдаемого события колеблется около одного и того же числа. В справедливости этого многие специалисты убедились экспериментально. А математики Я. Бер-нулли, П. Чебышев и др. обосновали это утверждение и теоретически (закон больших чисел). Поэтому для таких (статистически устойчивых) событий есть смысл ввести понятие вероятности.
Если в 








Таково статистическое определение вероятности. Объём определённого им понятия гораздо шире того, что соответствует классическому определению (см. с. 314). Классическая вероятность — отдельный вид статистической. И всё же отличаются они существенно. Классическую вероятность вычисляют математическими методами, а статистическую в основном определяют экспериментально.
Теперь, говоря о вероятности, специалисты в основном подразумевают статистическую вероятность. Поэтому современная теория вероятностей тесно связана с математической статистикой. Объединение математической статистики и теории вероятностей называют стохастикой. Стохастический — значит случайный, вероятный.
Что такое экзит-пол? На каких основаниях ему доверяют? Экзит-пол — это опрос социологическими службами избирателей на выходе их из избирательных участков с целью предсказать результаты выборов до получения их от избирательных комиссий. Ему доверяют на основе устойчивости относительной частоты события. Если за какую-то партию или кандидата из правильно выбранных 100 избирателей проголосовали, например, 20 % избирателей участка, то можно надеяться (с погрешностью около 5 %), что так проголосовали и все избиратели участка.
Одно из важнейших понятий стохастики — случайная величина. Величину называют случайной, если она может принимать заранее неизвестные числовые значения, зависящие от случайных обстоятельств. Примеры:
- выигрыш на лотерейный билет;
- расстояние от точки попадания пули к центру мишени.
Значение первой из этих случайных величин — некоторые целые числа. Такие величины называют дискретными. Множество значений второй величины — некоторый непрерывный отрезок числовой прямой. Такие величины называют непрерывными.
Рассмотрим задачу. Выпущено 100 лотерейных билетов. Из них 5 должны выиграть по 10 руб, 10 — по 5 руб, 40 — по 1 руб, остальные — без выигрышные. Какой средний выигрыш приходится на один билет?
Решить эту задачу можно арифметическим способом:
Мы проиллюстрируем на этой задаче понятие случайной величины. Здесь выигрыш — случайная величина, которая может принимать значения 0, 1. 5, 10 (руб,) соответственно с вероятностями 0,45; 0,4; 0,1 и 0,05. Это — дискретная случайная величина 
Обратите внимание! Сумма вероятностей, имеющихся во второй строке таблицы, равна 1. Говорят, что данную случайную величину 
Если случайная величина 



Её среднее значение называют математическим ожиданием и обозначают
Например, для предыдущей задачи
Меру рассеиваний случайной величины вокруг её математического ожидания называют её дисперсией. Дисперсию случайной величины 








Например, чтобы найти дисперсию рассмотренной выше случайной величины 
Квадраты этих отклонений: 
Это и есть дисперсия рассматриваемой случайной величины:
Если случайная величина дискретная и вероятности всех её значений равны, то говорят, что она имеет равномерное дискретное распределение вероятностей. По равномерному распределению выпадает число очков при подбрасывании правильного игрального кубика. А бывают другие распределения.
Для многих природных и общественных явлений характерны биномиальные распределения вероятностей. Биномиальное распределение возникает при последовательном проведении в одинаковых независимых условиях случайных опытов.
Английский математик А. Муавр ещё в XVIII в. измерил рост 1375 наугад выбранных женщин. На рисунке 164 изображена диаграмма, которая соответствует результатам его измерений. Если «успехом» назвать тот факт, что следующая встреченная женщина имеет рост, который находится в определённых пределах, то число женщин такой категории среди 1375 встреченных является случайной величиной с биномиальным распределением. Относительно параметра 

Скатываясь по наклонной доске и обходя равномерно забитые в неё колышки, шарики заполняют нижние ячейки согласно биномиальному распределению вероятностей.
Если шариков достаточно много, то внизу они образуют симметричную горку колоколообразной формы. Верхний предел этой горки образует полигон, который при росте числа шариков приближается к кривой Гаусса —гак называемой кривой плотности стандартного нормального закона.
В рассмотренном выше примере результаты измерения роста
женщин разбиты на 18 групп с разностью 

Понимание сути нормального распределения необходимо всем учёным, исследующим закономерности живой или неживой природы и особенно — человеческого общества. Не случайно это распределение называют нормальным, оно — естественное. Именно так чаще всего распределяются не только массы, возрасты, физические возможности людей и человеческих сообществ, но и многие другие их характеристики. Не понимая этого, нельзя быть настоящим учёным.
Пример №60
Найдите математическое ожидание случайной величины 
Решение:
Ответ: 7,2
Исторические сведения:
Простейшие комбинаторные задачи учёные Древней Греции решали ещё в IV в. до н. э. Отдельные индийские математики умели находить число комбинаций из 

Начиная с XVII века, европейские математики интересовались комбинаторикой в связи с развитием теории вероятностей. Термин «комбинаторика» получил распространение после опубликования работы Г. Лейбница «Рассуждение о комбинаторном искусстве» (1666 г.). Термины и символы комбинаторики устанавливались не сразу. Произведение 






Формулу для разложения бинома 

этого равенства вытекает правильность треугольника Паскаля для всех натуральных значений 
В отдельную математическую дисциплину комбинаторика оформилась после XVIII века. С её помощью учёные расшифровали много различных кодов, прочитали крито-микенские иероглифы, разгадали структуру дезоксирибонуклеиновой кислоты (ДНК) и т.д. В данном учебнике рассмотрены только простейшие комбинаторные задачи и способы их решения; в полных курсах есть много других формул и решаются намного тяжелее и интереснее задачи.
Собирать и анализировать статистические данные некоторые люди начали давно. В Китае переписи населения предпринимались ещё более 4 тыс. лет назад. В Киевской Руси переписи проводились с 1245 г.
В Европе в XVII в. появилась отдельная наука «Политическая арифметика». Её инициировала книга Дж. Граунта «Естественные и политические наблюдения, сделанные по бюллете-нюсмертности … относительно управления, религии, торговли, роста, воздуха, болезней и различных изменений …» (1662). В ней впервые введено понятие частоты события, выявлено, что мальчики рождаются чаще, чем девочки (в отношении 14: 13). Автор книги исследовал, что в тогдашнем Лондоне из каждых 100 новорождённых жили до:
Теорию вероятностей как отрасль математики основали французские математики Б. Паскаль и П. Ферма.
ПАСКАЛЬ Блез (1623-1662)
Выдающийся французский математик, физик, философ. В 16 лет сформулировал основную теорему проективной геометрии. Один из создателей теории вероятностей, разработал новые методы в комбинаторике и математическом анализе. «Паскаль — человек большого ума и большого сердца, один из тех, которых называют пророками».
Л. Толстой
Впоследствии большой вклад в развитие математической статистики сделали У. Петти, А. Муавр, Л. Эйлер, Я. Бернулли, Г1. Лаплас, С. Пуассон и др. В Российской империи в XIX в. проблемами статистики больше занимались математики М. Остроградский и В. Буняковский. В частности, М. Остроградский разработал статистические методы браковки товаров, составил «Таблицы для облегчения вычисления траектории тела в среде с сопротивлением ». В. Буняковский исследовал статистические характеристики народонаселения, вероятных контингентов русской армии, пенсий, правдоподобия показаний в судопроизводстве, погрешностей в наблюдениях и т. п. Он был главным экспертом правительства по вопросам статистики и страхования.
В XX в. из математиков в области теории вероятностей и математической статистики плодотворно работали Е. Слуцкий, М. Кравчук, С. Бернштейн, И. Гихман, К). Линник и другие учёные. Современное государство не может функционировать без статистики. Существует Государственный комитет статистики, тысячи специалистов собирают, анализируют и используют различные статистические сведения.
Задачи, в которых надо определить, сколько различных подмножеств или упорядоченных подмножеств можно образовать из элементов данного множества, называют комбинаторными.
Если элемент некоторого множества 





Если первый компонент пары можно выбрать 


Произведение всех натуральных чисел от 1 до 

Упорядоченные 



Для любых натуральных 
Число размещений из 


Размещения из 


Число перестановок из 
Комбинацией из 






Статистика — это наука, которая занимается сбором, обработкой и изучением различных данных, связанных с массовыми явлениями, процессами и событиями.
Мода выборки — её варианта с наибольшей частотой. Медиана выборки — число, которое «разделяет» соответствующий вариационный ряд пополам. Средним значением выборки называют среднее арифметическое всех её вариант.
Элементарным событием называют каждый возможный результат вероятностного эксперимента. Множество всех возможных последствий эксперимента называют пространством элементарных событий и обозначают греческой буквой 
Вероятностью случайного события 



Такое определение вероятности называют классическим.
Важнейшие свойства вероятности случайного события:
- Если
— событие невозможное, то
- Если
— событие достоверное, то
- Если
— событие случайное, то
- Если
— элементарные события, исчерпывающие некоторое испытание, то
Если в 









Понятие случайного события. Классическое определение вероятности
1. Случайные события
Понятия:
Под экспериментами со случайными результатами (или, коротко говоря, случайными экспериментами) понимают различные эксперименты, опыты, испытания, наблюдения, измерения, результаты которых зависят от случая и которые можно повторить много раз в одинаковых условиях.
Примеры:
Эксперименты с рулеткой, бросанием игрального кубика, подбрасыванием монеты, серия выстрелов одного и того же стрелка по одной и той же мишени, участие в лотерее и др
Понятия:
Любой результат случайного эксперимента называют случайным событием. Вследствие такого эксперимента это событие может или произойти, или не произойти. Случайные события обычно обозначают прописными буквами латинского алфавита A, B, C, D, … .
Примеры:
Выпадение «герба», выпадение «числа» при подбрасывании монеты; выигрыш в лотерею, выпадение определенного количества очков при бросании игрального кубика и т. п.
2. Понятия, связанные со случайными событиями в некотором эксперименте
Понятия:
События 
Примеры:
В эксперименте с однократным подбрасыванием однородной монеты правильной формы равновозможными являются события: A — выпал «герб», B — выпало «число».
Понятия:
События А и В называют несовместными, если они не могут произойти одновременно в данном эксперименте.
Примеры:
В эксперименте с подбрасыванием монеты события A — выпал «герб» и B — выпало «число» — несовместные.
Понятия:
События 
Примеры:
Для эксперимента с подбрасыванием игрального кубика события 



Понятия:
Событие U называют достоверным, если в результате данного эксперимента оно обязательно произойдет.
Примеры:
Выпадение меньше 7 очков при бросании игрального кубика (на гранях обозначено от 1 до 6 очков).
Понятия:
Событие ∅ называют невозможным, если оно не может произойти в данном эксперименте.
Примеры:
Выпадение 7 очков при бросании игрального кубика.
3. Пространство элементарных событий
Понятия:
Пусть результатом некоторого случайного эксперимента может быть только одно из несовместных событий 

Примеры:
- Для эксперимента с подбрасыванием монеты элементарными будут события
— выпал «герб»,
— выпало «число». Тогда пространство элементарных событий будет состоять из двух событий:
(Эти события несовместные, и в результате эксперимента одно из них обязательно произойдет.)
- Для эксперимента с бросанием игрального кубика элементарными могут быть события
где
— выпадение k очков, k = 1, 2, 3, 4, 5, 6. В этом случае пространство элементарных событий будет состоять из шести событий:
4. Классическое определение вероятности (для равновозможных элементарных событий)
Понятия:
Пусть дано пространство элементарных событий, все из которых равновозможные. Вероятность события A — это отношение количества m элементарных событий, благоприятствующих этому событию, к количеству n всех равновозможных элементарных событий в данном эксперименте:
Пример:
Найдите вероятность выпадения больше четырех очков при бросании игрального кубика.
Рассмотрим как элементарные события шесть равновозможных результатов бросания кубика — выпало 1, 2, 3, 4, 5 или 6 очков (следовательно, n = 6). Событие A — выпало больше 4 очков. Благоприятствуют событию A только два элементарных события — выпало 5 или 6 очков (m = 2) . Тогда
Вероятность достоверного (U) и невозможного (∅) событий
P (U ) = 1
P ( ∅) = 0
Объяснение и обоснование:
Случайные эксперименты и случайные события
Нам часто приходится проводить различные наблюдения, опыты, принимать участие в экспериментах или испытаниях. Такие эксперименты могут завершаться результатом, который заранее предусмотреть невозможно. Например, мы покупаем лотерейный билет и не знаем, выиграет ли он; подбрасываем монету и не знаем, что выпадет — число или герб. Можно ли каким-то образом оценить шансы появления результата, который нас интересует? Ответ на этот вопрос дает раздел математики, который называется теорией вероятностей. Мы ознакомимся только с основами этой теории.
Одним из основных понятий, которые рассматриваются в теории вероятностей, является понятие эксперимента со случайными результатами. Примером такого эксперимента может служить подбрасывание монеты судьей футбольного матча перед его началом, чтобы определить, какая из команд начнет матч с центра поля.
Под экспериментами со случайными результатами (или, коротко говоря, случайными экспериментами) понимают различные эксперименты, опыты, испытания, наблюдения, измерения, результаты которых зависят от случая и которые можно повторить много раз в одинаковых условиях. Например, это серия выстрелов одного и того же стрелка по одной и той же мишени, участие в лотерее, вынимание пронумерованных шаров из коробки, эксперименты с рулеткой, бросанием игрального кубика, подбрасыванием монеты.
Любой результат случайного эксперимента называется случайным событием. В результате проводимого эксперимента это событие может произойти или не произойти. Заметим, что для каждого случайного эксперимента обычно заранее уславливаются, какие его результаты рассматриваются как элементарные события, а затем случайное событие рассматривается как подмножество получившегося множества (см. с. 288).
Далее, как правило, будем обозначать случайные события прописными буквами латинского алфавита A, B, C, D, … .
Говоря о случайных событиях, будем иметь в виду, что эти события связаны с одним вполне определенным случайным экспериментом.
Заметим, что много важных и нужных фактов теории вероятностей сначала были получены с помощью очень простых экспериментов. Большую роль в развитии теории вероятностей как науки сыграли обычные монеты и игральные кубики. Но те монеты и кубики, которые рассматривают в теории вероятностей, являются математическими образами настоящих монет и кубиков (потому о них иногда говорят, что это математическая монета и математический игральный кубик).
Например, математическая монета, которую используют в теории вероятностей, лишена многих качеств настоящей монеты. У математической монеты нет цвета, размера, веса и стоимости. Она не сделана ни из какого материала и не может служить платежным средством. Монета, с точки зрения теории вероятностей, имеет только две стороны, одна из которых называется «герб* », а другая — «число». Монету бросают, и она падает одной из сторон вверх. Никаких других свойств у математической монеты нет. Математическая монета считается симметричной. Это означает, что брошенная на стол монета имеет равные шансы выпасть «гербом» или «числом». При этом имеется в виду, что никакой другой результат бросания монеты невозможен она не может потеряться, закатившись в угол, и, тем более, не может «встать на ребро».
Настоящая металлическая монета (рис. 22.1) служит лишь иллюстрацией математической монеты. Настоящая монета может быть немного вогнутой, может иметь другие дефекты, которые влияют на результаты бросания. Однако, чтобы проверить на практике опыты с бросанием математической монеты, мы бросаем обычную монету (без явных дефектов).
Игральный кубик также служит прекрасным средством для получения случайных событий. Игральный кубик имеет удивительную историю. Игра с кубиками — одна из древнейших. Она была известна в глубокой древности в Индии, Китае, Лидии, Египте, Греции и Риме. Игральные кубики находили в Египте (XX в. до н. э.) и в Китае (VI в. до н. э.) при раскопках древних захоронений. Правильные (симметричные) кубики обеспечивают одинаковые шансы выпадения каждой грани. Для этого все грани должны иметь одинаковую площадь, быть плоскими
и одинаково гладкими. Кубик должен иметь кубическую форму, и его центр тяжести должен совпадать с геометрическим центром. Вершины и ребра кубика должны иметь правильную форму. Если они округлены, то все округления должны быть одинаковыми. Отверстия, которыми маркируют количество очков на гранях, должны быть просверлены на одинаковую глубину. Сумма очков на противоположных гранях правильного кубика равняется 7 (рис. 22.2).
Математический игральный кубик, который обсуждается в теории вероятностей, — это математический образ правильного кубика. Выпадение всех граней равновозможно. Подобно математической монете, математический кубик не имеет ни цвета, ни размера, ни веса, ни других материальных качеств.
Некоторые понятия, связанные со случайными событиями
Пусть проведен какой-то случайный эксперимент. Как отмечалось выше, его результатами являются некоторые случайные события. В результате такого эксперимента каждое из событий может или произойти, или не произойти. Говоря о случайных событиях, будем иметь в виду, что эти события связаны с одним вполне определенным экспериментом.
События называют равновозможными, если в данном эксперименте нет никаких оснований предполагать, что одно из них может произойти предпочтительнее, чем любое другое. Например, в эксперименте с однократным подбрасыванием однородной монеты правильной формы равновозможными являются события: A — выпал «герб» и B — выпало «число».
События А и В называют несовместными, если они не могут произойти одновременно в данном эксперименте. Так, в эксперименте с однократным подбрасыванием монеты события: A — выпал «герб» и B — выпало «число» — несовместные.
События 






Событие U называют достоверным, если в результате данного эксперимента оно обязательно произойдет. Например, выпадение меньше 7 очков при бросании игрального кубика (на гранях обозначено от 1 до 6 очков) является достоверным событием.
Событие ∅ называют невозможным, если оно не может произойти в данном эксперименте. Например, выпадение 7 очков при бросании игрального кубика невозможное событие.
Пространство элементарных событий
Пусть результатом некоторого случайного эксперимента может быть только одно из несовместных событий 

Например, для эксперимента с подбрасыванием монеты элементарными будут события: 


Для эксперимента с подбрасыванием игрального кубика элементарными событиями могут быть следующие события: 





Случайным событием А назовем любое подмножество пространства элементарных событий U.
Например, для эксперимента с подбрасыванием игрального кубика случайным является событие А — выпадение четного числа очков, поскольку 
Классическое определение вероятности
Пусть результатом некоторого случайного эксперимента может быть одно и только одно из п попарно несовместных и равновозможных элементарных событий 




Вероятность события А определим как отношение числа m элементарных событий, благоприятствующих событию А, к общему числу n элементарных событий в данном эксперименте, то есть как отношение
Вероятность события А принято обозначать Р (А) (буква Р -первая буква французского слова probabilité или латинского слова probabilitas, что в переводе означает «вероятность»). Тогда
Этим равенством выражается классическое определение вероятности, которое можно сформулировать следующим образом.
Если рассматривается пространство равновозможных элементарных событий, то вероятность события A — это отношение числа благоприятствующих ему элементарных событий к числу всех равновозможных элементарных событий в данном эксперименте.
Например, в эксперименте с подбрасыванием монеты равновозможными элементарными событиями являются два (n = 2) события: A — выпал «герб» и B — выпало «число». Событию А благоприятствует только один случай (m = 1), поэтому
Очевидно, что вероятность события В также равна 

Аналогично обосновывается, что в эксперименте с подбрасыванием игрального кубика вероятность события 

Заметим, что если в любом эксперименте рассмотреть невозможное событие ∅, то нет элементарных событий, благоприятствующих данному событию, то есть число элементарных событий, ему благоприятствующих, равно нулю (m = 0), и тогда 
Например, в эксперименте с бросанием игрального кубика вероятность невозможного события А -выпало 7 очков — равна 0.
Если в любом эксперименте рассмотреть достоверное событие U, то ему благоприятствуют все элементарные события в этом эксперименте (т = п), тогда 
Например, в эксперименте с бросанием игрального кубика событие А — выпало 1 очко, или 2 очка, или 3 очка, или 4 очка, или 5 очков, или 6 очков, достоверное, и его вероятность равна 1.
Пример №61
Пользуясь приведенным определением, найдем вероятность события A — выпало число очков, кратное 3, при бросании игрального кубика.
Решение:
Как отмечалось выше, в эксперименте с бросанием кубика существует шесть попарно несовместных равновозможных элементарных событий — выпало 1, 2, 3, 4, 5, 6 очков (также можно сказать, что пространство элементарных событий состоит из шести указанных попарно несовместных равновозможных событий). Благоприятствуют событию A только два элементарных события: выпало 3 очка и выпало 6 очков.
Следовательно, вероятность события A равна:
Пример №62
Петя и Паша бросают желтый и синий игральные кубики (рис. 22.3) и каждый раз подсчитывают сумму выпавших очков. Они договорились, что в случае, когда в очередной попытке в сумме выпадет 8 очков, то выигрывает Петя, а когда в сумме выпадет 7 очков — выигрывает Паша. Является ли эта игра справедливой?
Решение:
При бросании кубиков на каждом из них может выпасть 1, 2, 3, 4, 5 или 6 очков. Каждому числу очков, выпавших на желтом кубике (1, 2, 3, 4, 5 или 6 очков), отвечает шесть вариантов числа очков, выпавших на синем кубике. Следовательно, всего получаем 36 попарно несовместных равновозможных элементарных событий. Результаты этого эксперимента приведены в таблице:
Здесь в каждой паре чисел на первом месте записано число очков, выпавшее на желтом кубике, а на втором месте — число очков, выпавшее на синем кубике.
Пусть событие A состоит в том, что при бросании кубиков в сумме выпало 8 очков, а событие B — при бросании кубиков в сумме выпало 7 очков. Событию A благоприятствуют следующие 5 результатов (элементарных событий):
(2; 6), (3; 5), (4; 4), (5; 3), (6; 2).
Событию B благоприятствуют следующие 6 результатов (элементарных событий):
(1; 6), (2; 5), (3; 4), (4; 3), (5; 2), (6; 1).
Тогда
Таким образом, шансов выиграть у Паши больше, чем у Пети, значит, такая игра не будет справедливой.
Отметим, что результаты эксперимента с бросанием двух игральных кубиков, приведенные в задаче 2, позволяют вычислить вероятности появления той или иной суммы очков, выпадающих при бросании двух игральных кубиков.
Пример №63
Из 15 произведенных велосипедов 3 оказались с дефектами. Какова вероятность того, что 2 выбранных наугад велосипеда будут без дефектов?
Решение:
Пусть событие A состоит в том, что 2 выбранных наугад велосипеда будут без дефектов. Из 15 велосипедов выбрать 2 можно 


Пример №64
Группа туристов, в которой 6 юношей и 4 девушки, выбирает по жребию четырех дежурных. Какова вероятность того, что будут выбраны 2 юноши и 2 девушки?
Решение:
Число результатов (элементарных событий) при выборе четырех дежурных из 10 туристов равно 
Пусть событие A состоит в том, что среди 4 дежурных есть 2 юноши и 2 девушки. Выбрать двоих юношей из 6 можно 


Обратим внимание, что в зависимости от рассматриваемой задачи для одного и того же эксперимента пространство элементарных событий можно вводить по-разному. Для этого независимые элементарные события подбираются таким образом, чтобы событие, вероятность которого требуется найти, само было элементарным или выражалось через сумму элементарных событий. Но для того чтобы воспользоваться классическим определением вероятности, необходимо быть уверенным, что все выделенные элементарные события — равновозможные.
Например, как уже отмечалось в задаче о бросании игрального кубика, пространство элементарных событий может состоять из 6 независимых равновозможных событий — выпало 1, 2, 3, 4, 5, 6 очков. Однако если в задаче требуется найти вероятность выпадения четного числа очков, то пространством элементарных событий для этого эксперимента может быть множество только двух событий: 




Попробуем ввести для решения этой задачи следующее пространство элементарных событий: 



Операции над событиями
1. Противоположное событие
Определение:
Событие 
Пример:
Событие A — выпал «герб» при подбрасывании монеты, тогда событие 
Теоретико-множественная иллюстрация:
2. Сумма событий
Определение:
Суммой (или объединением) событий A и B называется событие A + B (другое обозначение A 
Пример:
Из колоды карт наугад вынимают 1 карту. Рассмотрим события: A — вынули бубновую карту, B — вынули червовую карту. Тогда событие A + B — вынули или бубновую, или червовую карту (то есть карту красной масти).
Теоретико-множественная иллюстрация:
3. Произведение событий
Определение:
Произведением (или пересечением) событий A и B называется событие A*B (другое обозначение A 
Пример:
При бросании игрального кубика рассматривают события: A — выпало четное число очков, B — выпало число очков, кратное 3. Тогда событие A*B — выпало число очков, одновременно четное и кратное 3 (то есть выпало 6 очков).
Теоретико-множественная иллюстрация:
4. Несовместные события
Определение:
Два случайных события A и B называются несовместными, если их произведение является невозможным событием, то есть A*B = ∅ (другое обозначение A
Пример:
При бросании игрального кубика рассматривают события: A — выпало четное число очков, B — выпало 1 очко, C — выпало число очков, кратное 3. События A и В и события B и C — несовместные (не могут происходить одновременно). События A и С — совместные (могут происходить одновременно, если выпадет 6 очков, то есть A*С ≠ ∅).
Теоретико-множественная иллюстрация:
5. Вероятность суммы двух несовместных событий
Если события A и B несовместные, то Р (А + B) = Р (А) + Р (B), то есть вероятность суммы двух несовместных событий равна сумме вероятностей этих событий.
Объяснение и обоснование:
Иногда приходится, зная вероятности одних случайных событий, вычислять вероятности других событий, которые получаются из данных с помощью определенных операций. Рассмотрим простейшие операции над случайными событиями, которые далее будем называть просто событиями.
Нахождение противоположного события
Пусть дано случайное событие A.
Событие A называется противоположным событию A, если оно состоит в том, что в рассматриваемом случайном эксперименте не происходит событие A.
Например, если событие A состоит в том, что выпал «герб» при подбрасывании монеты, то событие 

Учитывая, что в каждом эксперименте происходит одно и только одно из событий — A или 



Например, рассмотрим событие А — выпало 1 очко при бросании игрального кубика. Тогда, как отмечалось выше, событие 

При определении операций суммы и произведения событий будем рассматривать события, относящиеся к одному случайному эксперименту.
Нахождение суммы событий
Пусть заданы два случайных события A и B.
Суммой (или объединением) событий A и B называется событие A + B (другое обозначение A 
Например, пусть при бросании игрального кубика события A и B означают: A — выпало четное число очков, B — выпало число очков, кратное 3. Тогда событие A + B означает, что выпало или четное число очков, или число очков, кратное 3, то есть выпало 2, 3, 4 или 6 очков.
Аналогично вводится понятие суммы нескольких событий.
Суммой (или объединением) событий 


Нахождение произведения событий
Пусть заданы два случайных события A и B.
Произведением (или пересечением) событий A и B называется событие A*B (другое обозначение A 
В приведенном выше примере событие A*B означает, что выпало и четное число очков, и число очков, кратное 3, то есть выпало 6 очков.
Аналогично вводится понятие произведения нескольких событий.
Произведением (или пересечением) событий 



Замечание. Определения операций над событиями аналогичны соответствующим определениям операций над множествами (поэтому и обозначения операций над событиями совпадают с обозначениями операций над множествами). Операции над событиями (как и операции над множествами) удобно иллюстрировать с помощью кругов Эйлера–Венна (рис. 22.6–22.8).
Например, учитывая, что всегда выполняется или событие A, или событие 




Аналогично сумму двух событий A и B (напомним, что событие A + B заключается в том, что происходит событие A или событие B, или оба одновременно) можно проиллюстрировать в виде объединения множеств A и B (рис. 22.7), а произведение событий A и B (событие A*B заключается в том, что происходят оба события A и B) — в виде пересечения множеств A и B (рис. 22.8).
Свойства вероятностей событий
Вероятности событий обладают следующими свойствами.
- Вероятность любого события А удовлетворяет неравенству
- Вероятность достоверного события U равна 1: P (U) = 1.
- Вероятность суммы несовместных событий A и B равна сумме вероятностей этих событий: P (A + B) = P (A) + P (B).
Действительно, из определения (см. 22.1) следует, что вероятность P (A ), то есть дробь 
Чтобы обосновать свойство 3, уточним понятие несовместных событий, опираясь на введенные операции над событиями. Из определения несовместных событий получаем:
два случайных события A и B будут несовместными тогда и только тогда, когда их произведение является невозможным событием, то есть A*B = ∅ (другое обозначение A
Например, при бросании игрального кубика могут произойти события: A — выпадет четное число очков, B — выпадет 5 очков. Эти события несовместны, поскольку 5 — нечетное число; поэтому событие A*B, состоящее в том, что выпадет четное число очков и это будет 5 очков, — невозможное событие.
Рассмотрим несовместные события A и B в пространстве из п равновозможных элементарных событий. Пусть m — количество элементарных событий, благоприятствующих событию А, k — количество элементарных событий, благоприятствующих событию B. Так как события A и B несовместные, то элементарные события, благоприятствующие событию А, отличны от элементарных событий, благоприятствующих событию B, а следовательно, событию A + B благоприятствуют т + k элементарных событий. Тогда
Итак, для несовместных событий A и B выполняется равенство
Р (А + B) = Р (А) + Р (B), (1)
то есть вероятность суммы двух несовместных событий равна сумме вероятностей этих событий.
Свойство 1 можно обобщить.
Назовем события 

Если события 
то есть вероятность суммы несовместных событий равна сумме вероятностей этих событий. (Для обоснования этого свойства достаточно применить метод математической индукции.)
Отметим, что для несовместных событий А и В вероятность Р (A*B) = = 0 (так как A*B = ∅).
Опираясь на рассмотренные основные свойства, можно доказать другие свойства вероятностей событий.
Покажем, что справедливо равенство

Обозначим через AB событие, заключающиеся в том, что событие А происходит, а событие В не происходит.
Так как события А и ВА*В несовместны и A + B = A + (ВА*В), то
P (A + B ) = P (A) + P (ВА*В ). (3)
Аналогично, так как события ВА*В и А*В несовместны и очевидно, что В = (ВА*В) + А*В, то
P (B ) = P (ВА*В ) + P (А*В). (4)
Выражая из равенства (4) значение P (ВА*В ) и подставляя его в равенство (3), получаем равенство (2).
Пример №65
Имеется 36 игральных карт. Из колоды наудачу вынимают одну карту. Какова вероятность, что будет вынута козырная карта или дама?
Решение:
Пусть событие А заключается в том, что вынута козырная карта, событие В — вынута дама. Тогда событие A + В — вынута козырная карта или дама, а событие А*В — вынута козырная дама. Ясно, что
поэтому по формуле (2)
Относительная частота случайного события
1. Частота и относительная частота случайного события
Если случайный эксперимент проведен n раз и в n (A) случаях произошло событие A, то число n (A) называется частотой события A.
Относительной частотой случайного события называют отношение числа появлений этого события к общему числу проведенных экспериментов, то есть отношение
Событие A — выпадение «герба» при подбрасывании монеты.
2. Статистическое определение вероятности
Если при проведении большого количества случайных экспериментов, в каждом из которых может произойти или не произойти событие A, значение относительной частоты события А близко к некоторому определенному числу (которое зависит только от вида события А и не зависит от серии экспериментов), то это число называется вероятностью случайного события A и обозначается Р (А).
Событие A — выпал «герб» при подбрасывании монеты, Р (А) = 0,5
*Жорж Луи де Бюффон (1707–1782) — французский математик и естествоиспытатель; Карл Пирсон (1857–1936) — английский математик и биолог. Их труды способствовали развитию теории вероятностей и математической статистики.
Объяснение и обоснование:
Частота и относительная частота случайного события:
Статистическое определение вероятности. Пусть в результате случайного эксперимента может произойти событие А, имеющее вероятность р = Р (А), где 0 < р < 1. Повторим эксперимент п раз, и пусть при этом событие А произойдет m раз. Число m называют частотой события А (ее часто обозначают n (А)), а число 
Рассмотрим результаты экспериментов с подбрасыванием монеты, которые были проведены математиками Ж. Бюффоном и К. Пирсоном (п. 1 табл. 34). Как видно из таблицы, относительная частота выпадения «герба», полученная в экспериментах Бюффона и Пирсона, мало отличается от вероятности выпадения «герба» в указанном эксперименте, равной 0,5.
Тот факт, что вероятность появления «герба» равна 0,5, конечно, не означает, что в любой серии экспериментов герб появится в точности в половине случаев. Но если число экспериментов достаточно велико, мы можем дать прогноз, что «герб» выпадет приблизительно в половине случаев. Таким образом, зная вероятность события, мы можем прогнозировать частоту его появления в будущем при большом количестве соответствующих экспериментов.
Полученный результат отражает замечательный факт: при большом количестве экспериментов относительная частота события, как правило, мало отличается от вероятности этого события. Эту закономерность называют статистической устойчивостью относительных частот. Не всегда удается определить вероятность р события априори (от латинского a priori — независимо от опыта), как это имеет место с бросанием монеты или игральной кости. Но если возможно эксперимент повторить п раз, то при большом п относительная частота события

- если при проведении большого количества случайных экспериментов, в каждом из которых может произойти или не произойти событие A, значение относительной частоты события А близко к некоторому определенному числу (которое зависит только от вида события А и не зависит от серии экспериментов), то это число называется вероятностью случайного события A.
Статистические оценки вероятностей событий с использованием относительной частоты события широко используются в физике, биологии, социологии, в экономике и политике, в спорте и повседневной жизни каждого человека. Приведем пример использования такой оценки. В соответствии с законом «Об обязательном страховании гражданско-правовой ответственности собственников наземных транспортных средств» каждый владелец автомобиля должен заключить договор с какой-либо уполномоченной страховой компанией. Согласно этому договору владелец машины платит компании определенную сумму, а компания взамен этого обязуется компенсировать (до определенного предела) убыток, который может быть нанесен этим автовладельцем другому автовладельцу, городской собственности или пешеходам.
Чтобы по справедливости решить, кто и сколько должен платить, нужно учесть два обстоятельства:
- с какой вероятностью автомобиль (на протяжении срока страхования) может попасть в аварию;
- какой в среднем ущерб окружающим наносит одна авария. Зная это, можно вычислить страховые взносы.
В частности, вероятность случайного события — «на протяжении года автомобиль может попасть в аварию», была вычислена по статистическим данным, которые имели в своем распоряжении страховые компании, государственная инспекция безопасности дорожного движения и другие организации. Эта вероятность оказалась равной приблизительно 0,015.
Напомним, что приведенное в п. 18.1 определение вероятности событий называют классическим определением вероятности.
Существует еще и аксиоматическое определение вероятности, в котором определение вероятности задается перечислением ее свойств. При аксиоматическом определении вероятность задается как функция Р (А), которая определена на множестве М всех событий, определяемых данным экспериментом, которая (для экспериментов с конечным числом исходов) удовлетворяет следующим аксиомам:
для любого события А из М;
- Р (А) = 1, если А — достоверное событие;
- Р (А + В) = Р (А) + Р (В), если события А и В несовместны.
Теорию, изучающую вероятность событий лишь для экспериментов с конечным числом исходов, называют элементарной теорией вероятностей.
Конечно, существуют эксперименты и с бесконечным числом возможных событий. Теорию, изучающую вероятность таких событий, называют общей теорией вероятностей. В общей теории вероятностей свойство 3 понимается в расширенном смысле:
Свойства 1–3 называют аксиомами Колмогорова теории вероятностей. Именно А. Н. Колмогоров впервые в 1933 г. дал аксиоматическое построение теории вероятностей.
Геометрическое определение вероятности
1. Основные понятия
U — некоторая фигура на плоскости,
S (U) — площадь фигуры U.
Эксперимент — это случайный выбор какой-либо точки u из фигуры U (можно также представить, что эту точку u случайно бросили на фигуру U).
Элементарные события u — это точки фигуры U.
A — часть фигуры U
S (A) — площадь фигуры A.
Событие А — попадание точек u в фигуру А. Тогда элементарными событиями, благоприятствующими событию A, будут все точки фигуры A.
2. Определение геометрической вероятности
Геометрической вероятностью события A называется отношение площади фигуры, благоприятствующей событию A, к площади всей заданной фигуры. (Предполагается, что вероятность попадания точки в часть фигуры U пропорциональна площади этой части и не зависит от ее конфигурации и расположения в фигуре U.)
3. Общее определение
Если U — пространственная фигура (тело), то записи S (U) и S (A) следует понимать как объемы тела U и тела А — части тела U.
Если U — отрезок, то записи S (U) и S (A) следует понимать как длины отрезка U и его части — отрезка A. (Объем тела U в пространстве, площадь плоской фигуры U на плоскости, длину отрезка U на прямой назовем мерой фигуры U.)
Геометрической вероятностью события A называется отношение меры фигуры, благоприятствующей событию A, к мере всей заданной фигуры.
Объяснение и обоснование:
Приведенное классическое определение вероятности нельзя применить к случайным экспериментам с бесконечным количеством результатов (то есть в случае, когда множество U бесконечно).
Рассмотрим случай задания вероятностей P (A) с помощью так называемых геометрических вероятностей. Пусть U — некоторая фигура на плоскости, S (U) — ее площадь, A — часть фигуры U с площадью S (A), В — часть фигуры U с площадью S (B) (рис. 22.10). Элементарным событием u будем считать некоторую точку фигуры U, случайным образом выбранную на фигуре U или брошенную на фигуру U. Событием А будем считать попадание точек u в фигуру А. Также будем считать такой случайный выбор точек равномерным (или, как говорят, распределение вероятностей равномерно). Из этого следует, что вероятности попадания точки u в фигуры A и B, имеющие одинаковые площади, одинаковы и не зависят от расположения этих фигур 
Поскольку благоприятствующим элементарным событием для рассмотренного события является попадание выбранной точки в фигуру A, то фигуру A можно назвать благоприятствующей этому событию, и тогда определение геометрической вероятности можно сформулировать следующим образом: геометрической вероятностью события A называется отношение площади фигуры, благоприятствующей событию A, к площади всей данной фигуры.
Пример:
Пусть круглая мишень радиуса 20 см разделена концентрическими окружностями с радиусами 







Замечание 1. Назовем события A и B несовместными (событие A — точка попала в фигуру A, событие B — точка попала в фигуру B), если фигуры A и B не имеют общих точек (то есть множества точек фигур A и B не имеют общих элементов). Сумму событий A + B и произведение 



Действительно, 








Поскольку разные определения вероятности удовлетворяют одним и тем же основным свойствам (аксиомам), то следствия, которые могут быть получены с использованием этих аксиом, не зависят от способа определения вероятности. Поэтому далее обоснования общих свойств вероятностей мы будем проводить для одного определения — или, как говорят в математике, для одной вероятностной модели — и иметь в виду, что аналогичное обоснование можно провести и для других моделей. Хотя, конечно, для каждой модели можно указать и свои специфические свойства, которых нет у других моделей.
Замечание 2. Определение геометрической вероятности (5) можно использовать не только в том случае, когда U — плоская фигура. Если, например, U — пространственная фигура (тело), то в случае равномерного распределения вероятностей (в том понимании, что вероятности попадания точки u в части данного тела, имеющие одинаковые объемы, одинаковы и не зависят от положения этих частей в данном теле) в формуле (5) под записями S (U) и S (A) следует понимать объемы тела U и его части — тела A. Аналогично, если U — отрезок, то в случае равномерного распределения вероятностей (в том понимании, что вероятности попадания точки u в части данного отрезка, имеющие одинаковые длины, одинаковы и не зависят от положения этих частей на заданном отрезке) в формуле (5) под записями S (U) и S (A) следует понимать длины отрезка U и его части — отрезка A. Отметим, что объем тела U в пространстве, площадь плоской фигуры U на плоскости, длину отрезка U на прямой можно назвать мерой фигуры U.
Тогда в общем виде формулу (5) можно записать так:
то есть в общем случае геометрической вероятностью события A называется отношение меры фигуры, благоприятствующей событию A, к мере всей заданной фигуры.
Пример №66
Оля пообещала подруге Кате позвонить в промежутке от 9 ч до 10 ч. Найдите вероятность того, что их разговор начнется в промежутке от 9 ч 20 мин до 9 ч 25 мин.
Решение:
В этой задаче эксперимент — это фиксирование времени телефонного звонка. Изобразим все результаты эксперимента в виде отрезка AB (рис. 22.12). Элементарные события — это точки отрезка AB (Оля может позвонить Кате в любое время с 9.00 до 10.00). Если событие A — вызов произошел в промежутке 9.20–9.25, то элементарные события, благоприятствующие событию А, можно изобразить точками отрезка CD. Если считать, что время вызова в оговоренном промежутке распределяется равномерно, то
(При вычислении учтено, что в минутах мера CD равна 5, а мера AB равна 60 (1 ч = 60 мин).)
Пример №67
К сигнализатору поступают сигналы от двух устройств, причем поступление каждого из сигналов равно-возможно в любой момент промежутка времени длительностью T мин. Моменты поступления сигналов независимы один от другого. Сигнализатор срабатывает, если разность между моментами поступления сигналов меньше 1 мин. Найдите вероятность того, что сигнализатор срабатывает за время T, если каждое из устройств пошлет по одному сигналу.
Решение:
Выберем промежуток времени длительностью T, например [0; T]. Обозначим моменты поступления сигналов первого и второго устройств соответственно через х и у. Из условия задачи следует, что должны выполняться двойные неравенства: 
Неравенства (9) выполняются для координат точек фигуры G, лежащих выше прямой y = x и ниже прямой y = x + 1. Неравенства (10) имеют место для координат точек, расположенных ниже прямой y = x и выше прямой y = x – 1. Как видно из рис. 22.13, все точки, координаты которых удовлетворяют неравенствам (9) и (10), принадлежат закрашенному шестиугольнику OABCDF. Таким образом, этот шестиугольник можно рассматривать как фигуру g, координаты точек которой являются благоприятными моментами времени х и у для срабатывания сигнализатора. Учитывая, что площадь
получаем, что искомая вероятность равна
Независимые события
1. Понятие независимости двух событий
Определение B называется независимым от события A, если событие A не изменяет вероятности события B.
Событие:
События A и B называются независимыми, если выполняется равенство P (AB) = P (A)*P (B) (вероятность их произведения, то есть совместного появления, равна произведению вероятностей этих событий).
2. Независимость нескольких событий
Несколько событий называются независимыми, если для любого подмножества этих событий (содержащего два или больше событий) вероятность их произведения равна произведению их вероятностей.
В частности, если события 
3. Свойство независимых событий
Если мы имеем совокупность независимых событий, то, заменив некоторые из этих событий на противоположные им события, снова получим совокупность независимых событий. Например, если события A и B независимы, то независимыми будут также события
4. Вероятность того, что произойдет хотя бы одно из независимых событий
Объяснение и обоснование:
Событие B называется независимым от события A, если появление события A не изменяет вероятности события B. Общее определение независимости событий чаще всего формулируют следующим образом.
События A и B называются независимыми, если выполняется равенство
P (AB) = P (A)*P (B), (8)
то есть два события называются независимыми, если вероятность их произведения (то есть совместного появления) равна произведению вероятностей этих событий.
Равенство (8) обязательно будет выполняться, если одно из событий невозможно или достоверно. Например, если событие B — невозможное, то есть B = ∅, то AB = ∅. Следовательно, P (AB) = 0 и P (B) = 0, то есть равенство (13) выполняется. Если событие B — достоверное, то есть B = U, то AB = AU = A. Тогда P (AB) = P (A) и P (B) = 1, следовательно, равенство (8) выполняется и в этом случае. Таким образом, если хотя бы одно из двух событий невозможное или достоверное, то такие два события независимы.
Обратим внимание, что в случае, когда события A и B независимы, независимыми будут также события
Докажем, например, что будут независимыми события A и 






Тогда
А это и означает, что события A и 
Аналогично обосновывается независимость событий
Понятие независимости событий может быть распространено на любое конечное количество событий.
Несколько событий называются независимыми (еще говорят: «независимыми в совокупности»), если для любого подмножества этих событий (содержащего два или более событий) вероятность их произведения равна произведению их вероятностей.
Например, три события A, B, C будут независимыми, если выполняются условия:
Из определения следует, что в случае, когда события 
(но выполнение этого равенства при n > 2 еще не означает, что события 
Как и в случае двух событий, можно доказать, что если в некоторой совокупности независимых событий заменить какие-либо из них противоположными им событиями, то получится также совокупность независимых событий.
Отметим, что приведенные определения независимости событий в теоретико-вероятностном понимании соответствуют обычному пониманию независимости событий как отсутствию влияния одних событий на другие. Поэтому при решении задач можно пользоваться следующим принципом: причинно-независимые события являются независимыми и в теоретико-вероятностном понимании.
Пример №68
Прибор состоит из трех узлов, каждый из которых на протяжении суток может выйти из строя независимо от других. Прибор не работает, если не работает хотя бы один из узлов. Вероятность безотказной работы в течение суток первого узла равна 0,95, второго — 0,9, третьего — 0,85. Найдите вероятность того, что в течение суток прибор будет работать безотказно.
Решение:
Пусть событие 




Пример №69
Два стрелка сделали по одному выстрелу в одну мишень. Вероятность попасть в мишень для первого стрелка равна 0,9, для второго — 0,8. Найдите вероятность того, что мишень будет поражена.
Решение:
Рассмотрим такие события: A — первый стрелок попал в мишень, B — второй стрелок попал в мишень, C — мишень поражена. События A и B независимые, но непосредственно использовать в данном случае умножение вероятностей нельзя, поскольку событие C наступает не только тогда, когда оба стрелка попали в мишень, но и тогда, когда в мишень попал хотя бы один из них.
Будем рассуждать иначе. Рассмотрим события 



P(B) = 0,8, то
Учитывая, что мишень не будет поражена тогда и только тогда, когда в нее не попадет ни первый стрелок, ни второй, получаем, что 
Поскольку события C и 
Замечание. Рассуждения, приведенные при решении задачи 2, можно обобщить.
Если события












Учитывая, что 

Разумеется, приведенную формулу необязательно запоминать, достаточно при решении задач на нахождение вероятности появления хотя бы одного из независимых событий провести вышеизложенные рассуждения.
Понятия случайной величины и ее распределения. Математическое ожидание случайной величины
1. Понятие случайной величины.
Под случайной величиной в теории вероятностей понимают переменную величину, которая в данном случайном эксперименте может принимать те или иные числовые значения с определенной вероятностью. Обозначают случайные величины прописными буквами латинского алфавита: X, Y, Z, …, а их значения — соответствующими строчными буквами: x, y, z, … . Тот факт, что случайная величина X приняла значение x, записывают так: X = x.
Например, в п. 22.1 (c. 295) были найдены вероятности появления той или иной суммы очков при бросании двух игральных кубиков. Появляющаяся сумма очков — случайная величина. Обозначим ее через X.
Тогда 

С помощью этой таблицы легко увидеть, какие значения величина X принимает с одинаковыми вероятностями, какое значение величины X появляется с большей вероятностью и т. д. Такую таблицу называют таблицей распределения значений случайной величины по их вероятностям и говорят, что эта таблица задает закон распределения рассматриваемой случайной величины.
Приведем определение рассмотренных понятий. Отметим, что случайную величину можно задать в любом случайном эксперименте. Для этого достаточно каждому элементарному событию из пространства элементарных событий эксперимента поставить в соответствие некоторое число (в этом случае говорят, что задана числовая функция, областью определения которой является пространство элементарных событий).
Случайной величиной называется числовая функция, областью определения которой является пространство элементарных событий.
Например, в эксперименте с подбрасыванием монеты пространство элементарных событий состоит из двух событий: 





Закон распределения этой случайной величины задается таблицей:
Таким образом, через 


Отметим, что закон распределения каждой случайной величины устанавливает соответствие между значениями случайной величины и их вероятностями, то есть является функцией, область определения которой — все значения случайной величины. Поэтому законом распределения случайной величины X называется функция, которая каждому значению x случайной величины X ставит в соответствие число P (X = x) (вероятность события, состоящего в том, что случайная величина X приняла значение x).
В общем случае закон распределения случайной величины, принимающей только n значений, можно записать в виде таблицы:
Здесь 


Это равенство часто используют для проверки правильности задания закона распределения случайной величины, особенно в тех случаях, когда он задается не в результате теоретического расчета вероятностей событий с использованием классического определения вероятности, а в результате использования статистического определения вероятности.
Например, в экспериментах с подбрасыванием пуговицы с ушком для пришивания падение пуговицы на ушко или на лицевую сторону может быть рассмотрено как случайная величина Y с условными значениями 

Замечание. В том случае, когда приходится находить сумму всех значений некоторой величины, можно использовать знак 

*Указанная сумма точнее записывается так:
Используя это обозначение, проверку правильности составления последней таблицы можно записать следующим образом:
S P = 0,45 + 0,55
Рассмотренные в этом пункте случайные величины принимали изолированные друг от друга значения. Такие величины называют дискретными (от латинского discretus — раздельный, прерывистый), а распределение вероятностей такой величины называется дискретным распределением вероятностей.
Если случайная величина может принимать любое значение на некотором промежутке, то такая величина называется непрерывной. Например, время Т ожидания автобуса на остановке является непрерывной случайной величиной.
Математическое ожидание случайной величины
Дадим определение этого понятия для дискретной случайной величины.
Пусть случайная величина X, принимающая значения 

Сумма произведений всех значений случайной величины на соответствующие вероятности называется математическим ожиданием величины X (и обозначается MX (или M (X)):
Если значения случайной величины X имеют одну и ту же вероятность p, то, учитывая, что 

то есть в этом случае математическое ожидание случайной величины X равно среднему арифметическому всех ее значений.
Говорят, что математическое ожидание случайной величины есть среднее взвешенное (вероятностями) ее значений.
Математическое ожидание называют еще средним значением случайной величины. Иногда также говорят, что математическое ожидание случайной величины есть ее значение в среднем.
Математическое ожидание показывает, на какое среднее значение случайной величины X можно надеяться в результате длительной серии экспериментов. С помощью математического ожидания можно сравнивать случайные величины, заданные законами распределения.
Например, пусть количества очков, выбиваемых при одном выстреле каждым из двух ловких стрелков, имеют следующие законы распределения:
Чтобы выяснить, какой из стрелков стреляет более метко, находят математическое ожидание для каждой случайной величины:
Следовательно, среднее количество очков, выбиваемое при одном выстреле, у второго стрелка несколько больше, чем у первого. Это дает основание сделать вывод о том, что второй стрелок стреляет немного лучше, чем первый.
Понятие математического ожидания возникло в связи с изучением азартных игр. Приведем примеры.
Пример №70
Игрок вносит в банк игорного дома 1000 руб. Бросают игральный кубик. По правилам игры игрок может получить 1800 руб., если случится событие 




Математическое ожидание случайной величины X равно
Математическое ожидание — очень важный показатель игры. Многочисленные опыты показывают, что в нашем случае число МХ = 700 — это та сумма, которую в среднем игорный дом выплачивает каждому игроку. Но это означает, что каждый игрок в среднем теряет 300 руб. из внесенных в банк игорного дома 1000 руб.
Пример №71
Игрок вынимает из колоды (в 36 карт) одну карту. Он получает (то есть выигрывает) 10 руб., если вынет бубнового туза; 5 руб., если вынет бубнового короля, и кладет на стол 1 руб. (то есть проигрывает, но можно сказать, что выигрывает –1 руб.) в остальных случаях. Будем считать, что игрок получает х руб., где X — случайная величина, которая может принимать значения 
Математическое ожидание случайной величины X равно
MX = + 10 5 1 + − = − 1 36 1 36 34 36 19 36 i i ( ) i .
Это означает, что каждый игрок в среднем теряет 19 36 руб.
Пример №72
Задача Паскаля. Два игрока А и В согласились, что в их игре вся ставка достанется тому, кто первый выиграет 5 партий. Но игра оказалась прерванной, когда игрок А имел 4 выигрыша, а игрок В — 3 выигрыша. В каком отношении игроки должны разделить ставку в этой прерванной игре? В каждой партии выигрывает один из игроков — ничьих нет; вероятность выигрыша каждого игрока в одной партии считается равной 0,5.
Рассмотрим, какие случаи могли бы произойти, если бы игроки сыграли еще две партии (независимо от их первоначальной договоренности):
1) игрок В выиграет обе партии; 2) игрок В выиграет первую партию, но проиграет вторую; 3) игрок В проиграет первую партию, но выиграет вторую; 4) игрок В проиграет обе партии.
По первоначальному соглашению всю игру выиграет первый игрок в трех из этих четырех случаев, второй — лишь в одном.
Следовательно, вероятность события А (игрок А выиграл всю игру) равна 
Если ставка равна m руб., то игрок А получил бы 






Найдем математическое ожидание величин 
Следовательно, в среднем игроки разделили бы ставку m в отношении 3 : 1, поэтому ставку надо разделить в отношении математических ожиданий 
Теория вероятностей и случайные эксперименты
1. Случайные эксперименты и случайные события
Понятия:
Экспериментами со случайными результатами, или коротко случайными экспериментами, называют различные эксперименты, опыты, испытания, наблюдения, измерения,результаты которых зависят от случая и которые можно повторить многократно в одинаковых условиях.
Примеры. Выстрелы по мишени, участие в лотерее, многолетние наблюдения за погодой в один и тот же день в одном и том же месте, опыты с рулеткой, с бросанием игрального кубика, побрасыванием монеты, кнопки и т. д.
Понятия. Событие, которое может произойти, а может и не произойти в ходе наблюдения или эксперимента в одних и тех же условиях, называется случайным событием.
Любой результат случайного эксперимента является случайным событием. Случайные события обозначают прописными буквами латинского алфавита А, В, С, D,…
Примеры. Выпадение «герба», выпадение «числа» при подбрасывании монеты; выигрыш в лотерею, выпадение определенного количества очков при бросании игрального кубика и т. д.
2. Частота и относительная частота случайного события
Если при неизменных условиях случайный эксперимент проведен п раз ив п (А) случаях произошло событие А, то число 
Относительной частотой случайного события называют отношение числа появлений этого события к общему числу проведенных экспериментов, то есть отношение
Событие А — выпадение «герба» при подбрасывании монеты.
* Жорж Луи де Бюффон (1707-1782) — французский математик и естествоиспытатель, Карл Пирсон (1857-1936) — английский математик и биолог. Их труды способствовали развитию теории вероятностей и математической статистики.
3. Статистическое определение вероятности
Если при проведении большого количества случайных экспериментов, в каждом из которых может произойти или не произойти событие А, значение относительной частоты события А близко к некоторому определенному числу, то это число называется вероятностью случайного события А и обозначается Р (А).
Событие А — выпал «герб» при подбрасывании монеты.
Р (А) = 0,5
4. Достоверные и невозможные события
Достоверное событие — это событие U, которое обязательно происходит при каждом повторении эксперимента.
Выпадение меньше 7 очков при бросании игрального кубика (на гранях обозначено от 1 до 6 очков).
Невозможное событие (его часто обозначают 
Выпадение 7 очков при бросании игрального кубика.
5. Равновозможные события
Равновозможные (равновероятные) события — это такие события, каждое из которых не имеет никаких преимуществ в появлении чаще других в многократных экспериментах, проводимых в одинаковых условиях.
Вероятности равновозможных событий одинаковы.
В эксперименте по однократному подбрасыванию однородной монеты правильной формы равновоз-можными являются события: А — выпал «герб» и В — выпало «число».
Объяснение и обоснование:
Понятия случайного события и случайного эксперимента
В повседневной жизни, в практической и научной деятельности мы часто наблюдаем те или иные явления, проводим определенные эксперименты (опыты).
Событие, которое может произойти, а может и не произойти в процессе наблюдения или эксперимента в одних и тех же условиях, называется случайным событием. Вы покупаете лотерейный билет и можете выиграть, а можете и не выиграть; на выборах может победить один кандидат, а может и другой; автобус может подойти вовремя или опоздать — все это примеры случайных событий. Вы подбрасываете монету. Может выпасть «герб», а может — «число». Если монета однородна и имеет правильную геометрическую форму, то возможности того, что эти события произойдут, одинаковы. Такие события называются равновозможными, или равновероятными. То есть равновозможные события — это такие события, каждое из которых не имеет никаких преимуществ в появлении чаще других при многократных экспериментах, проводимых в одинаковых условиях.
Однако не все события равновозможные. Может не зазвонить будильник, перегореть лампочка, сломаться автобус, но в обычных условиях такие события маловероятны. Более вероятно, что будильник зазвонит, лампочка загорится, автобус поедет.
Существуют и такие события, которые в обычных условиях происходят всегда, обязательно. Такие события называются достоверными. Например, при давлении р = 101 325 Па (нормальная атмосфера) при 
Есть и такие события, которые в данных условиях никогда не происходят. Такие события называются невозможными. Невозможно в обычных условиях не вылить воду, опрокинув банку с водой вверх дном; кошка не может поймать солнечный зайчик и т. д.
Достоверные и невозможные события встречаются в жизни сравнительно редко, можно сказать, что мы живем в мире случайных событий. Поэтому важно понять: можно ли найти какие-то закономерности в мире случайного? Можно ли какими-то способами оценить шансы появления случайного события, которое нас интересует?
Ответ на эти вопросы дает раздел математики, который называется теория вероятностей. Мы ознакомимся только с основами этой теории.
Одним из важных понятий, которые рассматриваются в теории вероятностей, является понятие эксперимента со случайными результатами.
Перед началом футбольного матча судья подбрасывает монету, чтобы определить, какая из команд начнет матч с центра поля. У команд равные шансы начать игру. А имеет ли право судья вместо монеты подбросить, например, кнопку?
Подбрасывание кнопки, как и подбрасывание монеты, — это эксперимент со случайными результатами, поскольку его результат зависит от случая.
Кнопка может упасть как на острие, так и на кружок (рис. 127). Но можно ли считать эти события равновозможными или одно из них более вероятно, чем другое?
Чтобы ответить на эти вопросы, необходимо много раз повторить эксперимент с подбрасыванием кнопки.
Такое исследование провела группа из 20 учащихся одного из харьковских лицеев в 2000 году. Каждый из учащихся 100 раз подбросил кнопку, таким образом, всего было проведено 2000 экспериментов. В результате кнопка упала на острие 909 раз, а на кружок — 1091 раз.
Эти эксперименты показывают, что кнопка чаще падает на кружок. Следовательно, судья не имеет права перед матчем заменить монету кнопкой — у команд в такой ситуации были бы неравные шансы начать игру.
Экспериментами со случайными результатами (или коротко случайными экспериментами) называют различные эксперименты, опыты, испытания, наблюдения, измерения, результаты которых зависят от случая и которые можно повторить много раз в одинаковых условиях.
Например, это серия выстрелов одного и того же стрелка по одной и той же мишени, участие в лотерее, вынимание пронумерованных шаров из коробки, многолетние наблюдения за погодой в один и тот же день в одном и том же месте, опыты с рулеткой, с бросанием игрального кубика, подбрасыванием монеты, кнопки.
Любой результат случайного эксперимента является случайным событием. Вследствие такого эксперимента это событие может или произойти, или не произойти. Далее будем обозначать случайные события прописными буквами латинского алфавита А, В, С, D…..
Частота и относительная частота случайного события. Статистическое определение вероятности
Одним из важных понятий, используемых в теории вероятностей, является понятие частоты случайного события.
Если при неизменных условиях случайный эксперимент проведен п раз и в л. (А) случаях произошло событие А, то число 
Например, учащиеся одной из школ в 2000 году провели 8000 экспериментов с подбрасыванием монеты, каждый раз записывая результат — выпал «герб» или выпало «число». В их экспериментах «герб» выпал 3962 раза. Следовательно, частота события А (выпал «герб») равна 3962.
В XVIII в. такие эксперименты с монетой проводил французский естествоиспытатель Жорж Луи де Бюффон. В его экспериментах «герб» выпал 2048 раз при 4040 подбрасываниях монеты. В начале XX в. английский математик Карл Пирсон провел уже 24 ООО экспериментов, при этом «герб» выпал 12 012 раз.
Для каждой серии рассмотренных экспериментов вычислим, какую часть число событий, состоящих в том, что выпал «герб», составляет от общего числа подбрасываний монеты, или, как говорят, подсчитаем относительную частоту выпадания «герба».
Относительной частотой случайного события называют отношение числа появлений этого события к общему числу проведенных экспериментов.
Например, для рассмотренных экспериментов частота выпадения «герба»:
Нетрудно заметить, что серии экспериментов, проведенных в разные эпохи и в разных странах, дают похожие результаты: при многократном подбрасывании монеты частота появления «герба» приблизительно равна 0,5. Следовательно, хотя каждый результат подбрасывания монеты — случайное событие, при многократном повторении эксперимента заметна закономерность.
Число 0,5 — это вероятность случайного события (выпал «герб»). Но в этих экспериментах «число» появляется также приблизительно в половине случаев, значит, и вероятность выпадания «числа» равна 0,5. В общем, если при проведении большого количества случайных экспериментов, в каждом из которых может произойти или не произойти событие А, значение относительной частоты события А близко к некоторому определенному числу, то это число называется вероятностью случайного события А.
Приведенное определение обычно называют статистическим определением вероятности.
Вероятность события обозначается прописной буквой Р латинского алфавита (первой буквой французского слова probabilite или латинского слова probabilitas, что в переводе означает «вероятность»).
Если обозначить событие— «выпал «герб» —буквой Л, а событие— «выпало «число» — буквой В, то утверждение о том, что вероятности выпадания «герба» или «числа» равны 0,5, можно записать так:
Р (А) = 0,5, Р (В) = 0,5.
Иногда вероятность выражают в процентах, то есть Р (А) = 50 % , Р (В) = 50 % .
Тот факт, что вероятность появления «герба» равна 0,5, конечно, не означает, что в любой серии экспериментов «герб» появится в точности в половине случаев. Но если число экспериментов достаточно велико, мы можем дать прогноз, что «герб» выпадет приблизительно в половине случаев. То есть, зная вероятность события, мы можем прогнозировать частоту его появления в будущем при большом количестве соответствующих экспериментов.
Замечание. Если при проведении большого числа случайных экспериментов значения относительной частоты случайного события близки к некоторому определенному числу, то говорят, что относительная частота имеет статистическую устойчивость, а такие случайные эксперименты называют статистически устойчивыми. Следовательно, в каждом случае, когда мы можем определить статистическую вероятность результатов случайных экспериментов, эти случайные эксперименты будут статистически устойчивыми. Отметим также, что чем больше число проведенных случайных экспериментов, тем ближе значение относительной частоты случайного события к вероятности этого события.
Напомним, что в каждой серии случайных экспериментов с подбрасыванием монеты мы сначала вычисляли относительную частоту рассматриваемого события с помощью формулы:
- относительная частота
Затем с помощью найденного значения относительной частоты, оценивали вероятность данного события.
Оценить вероятность случайного события по его относительной частоте можно, используя результаты других экспериментов — с кнопками, игральным кубиком, рулеткой, автомобильными или телефонными номерами. При этом чем больше проведено экспериментов, тем точнее можно оценить вероятность события по его относительной частоте.
Ниже представлены результаты экспериментов, проведенных учащимися одного из лицеев, которые оценивали вероятность случайного события — кнопка упала острием вниз.
По данным таблицы можно сделать вывод, что вероятность падения кнопки острием вниз приблизительно равна 0,45, или 45 % .
Вероятностные оценки широко используются в физике, биологии, социологии, в экономике и политике, в спорте и повседневной жизни каждого человека. Если в прогнозе погоды сообщают, что завтра будет дождь с вероятностью 70 % , это означает, что не обязательно пойдет дождь, но шансы этого велики и стоит, выходя из дома, захватить зонт или плащ.
Замечание. Если синоптики прогнозируют, что завтра будет дождь с вероятностью 70 % , это означает, что в прошлые годы в дни этого времени года при аналогичных показателях состояния атмосферы (температура и влажность воздуха, скорость и направление ветра, облачность и т. п.) дождь был приблизительно в 70 % случаях.
Вероятности достоверных, невозможных и любых случайных событий
Напомним, что достоверное событие — это событие U, которое обязательно происходит при каждом повторении эксперимента, а невозможное событие (его часто обозначают
Но если интересующее нас невозможное событие 

А если достоверное событие U происходит в каждом из п экспериментов, то относительная частота его появления равна:
Поэтому естественно считать, что вероятность достоверного события равна единице:
а вероятность невозможного события равна нулю:
вероятность случайного события А может принимать любые значения от 0 до 1.
Действительно, при проведении 

Тогда и вероятность Р (А) должна удовлетворять условию
Этому факту можно дать геометрическое толкование с помощью так называемой вероятностной шкалы (рис. 129).
Следовательно, вероятность случайного события может быть любым числом от 0 до 1. Чем больше вероятность, тем чаще наступает случайное событие при многократном повторении эксперимента.
Значительный интерес вызывают случайными события, имеющие вероятности, близкие к 1 или 0. События, вероятности которых близки к 1, часто называют практически достоверными событиями, а события с малыми вероятностями — практически невозможными событиями. Вопросы о том, какие вероятности можно считать такими малыми, чтобы ими можно было пренебречь, решается в зависимости от конкретных обстоятельств.
Например, при массовом производстве электрических лампочек или гвоздей 0,5 % брака можно считать допустимо малым (в этом случае вероятность того, что выпущенное изделие будет бракованным, равна 0,005). Если Жбкакая -нибудь бракованная деталь в сложном механизме может привести к аварии или катастрофе с человеческими жертвами, то в этом случае допустимо малыми следует считать те значения, которые не превышают десятитысячных или даже миллионных частей единицы.
Операции над событиями
Определение:
1. Противоположное событие
Событие 
Пример:
Событие А — выпал «герб» при подбрасывании монеты, тогда событие А — не выпал «герб» при подбрасывании монеты (то есть выпало «число»).
Теоретико-множественная иллюстрация
Пример:
Если вероятность купить исправный прибор равна 0,95, то вероятность купить неисправный прибор равна: 1- 0,95 = 0,05.
2. Сумма событий
Определение:
Суммой (или объединением) событий А и В называется событие А + В (другое обозначение A U В ), которое происходит тогда и только тогда, когда происходит событие А или событие В.
Пример:
Из колоды карт наугад вынимают 1 карту. Рассмотрим события: А — вынули бубновую карту, В — вынули червовую карту. Тогда событие А + В — вынули или бубновую, или червовую карту (то есть карту красной масти).
Теоретико-множественная иллюстрация:
3. Произведение событий
Определение:
Произведением (или пересечением) событий А и В называется событие 

Пример:
При бросании игрального кубика рассматривают события:А — выпало четное число очков, В — выпало число очков, кратное 3. Тогда событие 
Теоретико-множественная иллюстрация:
4. Несовместные события
Два случайных события А и В называются несовместными, если их произведение является невозможным событием, то есть
При бросании игрального кубика рассматривают события: А — выпало четное число очков, В — выпало 1 очко, С — выпало число очков, кратное 3. События А и В и события В и С — несовместные (не могут происходить одновременно). События А и С — совместные (могут происходить одновременно, если выпадет 6 очков, то есть
5. Вероятность суммы двух несовместных событий
Если события А и В несовместные, то Р (А + В) = Р (А) + Р (В), то есть вероятность суммы двух несовместных событий равна сумме вероятностей этих событий.
Объяснение и обоснование:
Иногда приходится, зная вероятности одних случайных событий, вычислять вероятности других событий, которые получаются из заданных с помощью определенных операций. Рассмотрим простейшие операции над случайными событиями, которые далее будем называть просто событиями.
Нахождение противоположного события
Пусть задано случайное событие А.
Событие 
Например, если событие А состоит в том, что выпал «герб» при подбрасывании монеты, то событие 

Учитывая, что в каждом эксперименте происходит одно и только одно из событий: 


Отсюда
Например, рассмотрим событие А — кнопка упала острием вниз. Тогда противоположное событие

Нахождение суммы событий
Пусть заданы два случайных события А и В.
Суммой (или объединением) событий А и В называется событие А + В (другое обозначение A U В ), которое происходит тогда и только тогда, когда происходит событие А или событие В.
Например, пусть при бросании игрального кубика события А и В означают: А — выпало четное число очков, В — выпало число очков, кратное 3. Тогда событие А + В означает, что выпало или четное число очков, или число очков, кратное 3, то есть выпало 2, 3, 4 или 6 очков.
Аналогично вводится понятие суммы нескольких событий. Суммой (или объединением) событий 


Нахождение произведения событий
Пусть заданы два случайных события А и В.
Произведением (или пересечением) событий А и В называется событие А • В (другое обозначение 
В приведенном выше примере событие А • В означает, что выпало и четное число очков, и число очков, кратное 3, то есть выпало 6 очков. Аналогично вводится понятие произведения нескольких событий. Произведением (или пересечением) событий 


Несовместные события и их вероятности
Два случайных события А и В называются несовместными, если их произведение является невозможным событием, то есть 
Например, пусть при бросании игрального кубика могут произойти события: А — выпадет четное число очков, В — выпадет 5 очков. Эти события несовместны, поскольку 5 — нечетное число: поэтому событие А • В, состоящее в том, что выпадет четное число очков и это будет 5 очков, невозможное событие.
Если события А и В несовместные, то их частоты 


Поскольку при больших значениях п относительные частоты в этом равенстве близки к соответствующим вероятностям, то для несовместных событий А и В должно выполняться равенство
Р(А + В) = Р (А) +Р (В). (3)
То есть вероятность суммы двух несовместных событий равна сумме вероятностей этих событий.
Свойство (3) можно обобщить.
Назовем события 

Если события 

Отметим, что свойства (1)-(3) обязательно должны выполняться при любом способе определения вероятности случайного события. Наиболее общим из таких способов есть аксиоматическое определение вероятности, рассмотренное в следующем пункте.
Замечание. Определение операций над событиями аналогичны соответствующим определениям операций над множествами (поэтому и обозначения операций над событиями совпадают с обозначениями операций над множествами). Операции над событиями (как и операции над множествами) удобно иллюстрировать с помощью кругов Эйлера-Венна.
Например, учитывая, что всегда выполняется или событие А, или событие 


Аналогично сумму двух событий А и В (напомним, что событие А + В происходит тогда и только тогда, когда происходит событие А или событие В, или оба одновременно) можно проиллюстировать в виде объединения множеств А и В (рис. 134), а произведение событий А и В (событие А • В происходит тогда и только тогда, когда происходят оба события А и В) — в виде пересечения множеств А и В (рис. 135).
Аксиоматическое построение теории вероятностей. Классическое определение вероятности
1. Пространство элементарных событий
Понятие:
Пусть результатом некоторого случайного эксперимента может быть только одно из попарно несовместных событий 



Пример:
1. Для эксперимента по подбрасыванию монеты элементарными событиями будут события: 






2″. Аксиомы вероятности
3. Классическое определение вероятности (для равновозможных элементарных событий)
Вероятность события А — это отношение количества элементарных событий 

Пример:
Найдите вероятность выпадения больше четырех очков при бросании игрального кубика.
Рассмотрим как элементарные события шесть равновозможных результатов бросания кубика — выпало 1, 2,3,4, 5 или 6 очков (следовательно, 

Тогда
Объяснение и обоснование
Аксиоматическое построение теории вероятностей
Аксиоматическое построение теории вероятностей аналогично аксиоматическому построению геометрии, в котором вместо реальных объектов или их изображений на бумаге (точек, прямых, плоскостей и т. п.) рассматриваются абстрактные понятия (точек, прямых, плоскостей и т. п.), удовлетворяющие определенным аксиомам (планиметрии и стереометрии). При аксиоматическом построении теории вероятностей понятие «случайное событие», «вероятность» и т. п. — это математические идеальные понятия, которые удовлетворяют условиям (1)—(3). Поясним сущность аксиоматического построения теории вероятностей на следующем примере.
Пусть в некоторой коробке U есть 


* Этот материал является обязательным только для классов физико-математического профиля.
Допустим, что вынули шар 


Тогда достоверным событием будем считать все множество U, то есть все множество шаров в коробке (поскольку любой вынутый шар будет принадлежать множеству U). Невозможным событием будем считать пустое множество 
Два события 



Каждому событию А некоторым образом (например, через статистическое определение) ставится в соответствие его вероятность — число Р (А), удовлетворяющее условиям (1)—(3).
Итак, можно сформулировать абстрактные вероятностные понятия, используя только термины теории множеств.
Рассмотрим конечное множество 



Сумма А + В событий А и В определяется как объединение 


Если произведение событий А и В является пустым множеством 
Событие А, противоположное событию А, определяется как дополнение 


Теперь определим вероятность Р (А) события А.
Пусть любым способом заданы числа
Эти числа называют элементарными вероятностями. Вероятность Р (А) события А =
Определенное таким образом понятие вероятности удовлетворяет следующим аксиомам.
Аксиома 1 (неотрицательности вероятности). Для случайного события А
Аксиома 2 (нормированности вероятности). Для достоверного события U
P(U)= 1.
Аксиома З (аддитивности вероятности). Для любых попарно несовместных событий


Фактически, это те же свойства (1)- (3), которым, как было указано выше, должны удовлетворять все определения вероятностей случайных событий. Из этих аксиом следует, что вероятность невозможного события 
Действительно, поскольку





Аналогично, если В = 


В соответствии с системой аксиом 1-3 в зависимости от решаемой задачи элементарные вероятности 
Классическое определение вероятности
В случае, когда элементарные события не являются равновероятными, приходится использовать статистическое определение вероятности. Но для того чтобы найти вероятность интересующего нас события при статистическом определении необходимо провести достаточно большое количество экспериментов или наблюдений. Вместе с тем, когда рассматриваются эксперименты со случайными результатами (то есть случайными событиями) и все эти результаты равновозможные (есть все основания считать, что шансы получения этих результатов одинаковы), то вероятность случайного события удается найти путем рассуждений, не выполняя экспериментов. Приведем соответствующие рассуждения и определение.
Пусть результатом некоторого случайного эксперимента может быть только одно из попарно несовместных событий 
Это следует из определения суммы событий, согласно которому если в результате заданного эксперимента обязательно происходит одно из событий 

Если все события 

Например, если бросать игральный кубик (см. рис. 128) и считать, что кубик имеет правильную форму и изготовлен из однородного материала, то шансы выпадения на его верхней грани любого числа очков от 1 до 6 одинаковы. В этом случае говорят, что существует шесть попарно несовместных равновозможных (или равновероятных) элементарных результатов (событий) этого эксперимента (событие 


Пусть событие А происходит тогда и только тогда, когда происходит одно из т попарно несовместных элементарных событий

событию А). Это можно записать следующим образом:



Полученное равенство
- вероятность события А — это отношение числа благоприятствующих ему элементарных событий к числу всех равновозможных элементарных событий в данном эксперименте.
Пример №73
Пользуясь этим определением, найдем вероятность события А —выпало число очков, кратное 3, при бросании игрального кубика.
Решение:
Как отмечалось выше, в эксперименте по бросанию кубика существует шесть попарно несовместных равновозможных элементарных событий — выпало 1, 2, 3, 4, 5, 6 очков (также можно сказать, что пространство элементарных событий состоит из шести указанных попарно несовместных равновозможных событий). Благоприятствуют событию Л только два элементарных события: выпало 3 очка и выпало 6 очков. Следовательно, вероятность события А равна:
Пример №74
Петя и Паша бросают белый и черный игральные кубики и каждый раз подсчитывают сумму выпавших очков. Они договорились, что в случае, когда в очередной попытке в сумме выпадет 8 очков, то выигрывает Петя, а когда в сумме выпадет 7 очков, то выигрывает Паша. Является ли эта игра справедливой?
Решение:
При бросании кубиков на каждом из них может выпасть 1, 2, 3, 4, 5 или 6 очков. Каждому числу очков, выпавших на белом кубике (1,2,3,4,5 или 6 очков), отвечает шесть вариантов числа очков, выпавших на черном кубике. Следовательно, всего получаем 36 попарно несовместных равновозможных элементарных событий — результатов этого эксперимента, приведенных в таблице:
(В каждой паре чисел на первом месте записано число очков, выпавшее на белом кубике, а на втором месте — число очков, выпавшее на черном кубике.)Пусть событие А означает, что при бросании кубиков в сумме выпало 8 очков, а событие В — что при бросании кубиков в сумме выпало 7 очков.Событию А благоприятствуют следующие 5 результатов (элементарных событий):
(2; 6), (3; 5), (4; 4), (5; 3), (6; 2).
Событию В благоприятствуют следующие 6 результатов (элементарных событий):
(1; 6), (2; 5), (3; 4), (4; 3), (5; 2), (6; 1).
Тогда
Следовательно, шансов выиграть у Паши больше, чем у Пети, значит, такая игра не будет справедливой.
Отметим, что результаты эксперимента по бросанию двух игральных кубиков, приведенные в задаче 2, позволяют вычислить вероятности появления той или иной суммы очков, выпадающих при бросании двух игральных кубиков. Сумма очков 2 3 4 5 6 7 8 9 10 11 12 Вероятность
Пример №75
Из 15 изготовленных велосипедов 3 оказались с дефектами. Какова вероятность того, что 2 выбранных наугад велосипеда будут без дефектов?
Решение:
Пусть событие А состоит в том, что 2 выбранных наугад велосипеда будут без дефектов. Из 15 велосипедов выбрать 2 можно 


Пример №76
Группа туристов, в которой 6 юношей и 4 девушки, выбирает по жребию четырех дежурных. Какова вероятность того, что будут выбраны 2 юношей и 2 девушки?
Решение:
Число результатов (элементарных событий) при выборе четырех дежурных из 10 туристов равно 
Пусть событие А состоит в том, что среди 4 дежурных есть 2 юношей и 2 девушки. Выбрать двоих юношей из 6 можно 


Обратим внимание, что в зависимости от рассматриваемой задачи для одного и того же эксперимента пространство элементарных событий можно вводить по-разному. Чаще всего для этого независимые элементарные события подбираем так, чтобы событие, вероятность которого необходимо найти, само было элементарным или выражалось через сумму элементарных событий. Но для того чтобы использовать классическое определение вероятности, необходимо быть уверенным, что все выделенные элементарные события — равновозможные.
Например, как уже отмечалось в задаче о бросании игрального кубика, пространство элементарных событий может состоять из 6 независимых равновозможных событий — выпало 1, 2, 3, 4, 5, 6 очков. Но если в задаче требуется найти вероятность выпадания четного числа очков, то пространством элементарных событий для этого эксперимента может быть множество только двух событий:



Попробуем ввести для решения этой задачи следующее пространство элементарных событий: 



Геометрическое определение вероятности
1. Основные понятия


А — часть фигуры 
2. Определение геометрической вероятности

3. Общее определение
Если U — пространственная фигура (тело), то записи
Если U — отрезок, то записи S (U) и S (А) следует понимать как длины отрезка U и его части — отрезка А. (Объем тела U в пространстве, площадь плоской фигуры U на плоскости, длину отрезка U на прямой назовем мерой фигуры U.)

Объяснение и обоснование:
Приведенное классическое определение вероятности нельзя применить к случайным экспериментам с бесконечным количеством результатов (то есть в случае, когда множество U бесконечно). В этом случае вероятность события Р (А) не всегда можно задать с помощью элементарных вероятностей.
Рассмотрим случай задания вероятностей Р (А) с помощью так называемых геометрических вероятностей. Пусть U — некоторая фигура на плоскости, S (U) — ее площадь, А — часть фигуры U с площадью S (А), В — часть фигуры U с площадью S (В) (рис. 139). Элементарным событием и будем считать некоторую точку фигуры U, случайным образом выбранную на фигуре U или брошенную на фигуру U. Событием А будем считать попадание точек и в фигуру А. Также будем считать такой случайный выбор точек равномерным (или, как говорят, распределение вероятностей равномерно). Иными словами, вероятности попадания точки и в фигуры А и В, имеющие одинаковые площади, одинаковы и не зависят от положения этих фигур (если 
Поскольку благоприятствующим элементарным событием для рассмотренного эксперимента является попадание выбранной точки в фигуру А, то фигуруА можно назвать благоприятствующей этому эксперименту, и тогда определение геометрической вероятности можно сформулировать следующим образом:
геометрической вероятностью события А называется отношение площади фигуры, благоприятствующей событию А, к площади всей заданной фигуры.
Пример №77
Пусть круглая мишень радиуса 20 см разделена концентрическими окружностями с радиусами





Решение:
Обозначим событие 


Если считать, что у плохого стрелка точки попадания пуль равномерно
распределены на круге мишени, то можно использовать геометрическое
определение вероятности. Получаем 
Замечание 1. Назовем события А и В несовместными (событие А — точка попала в фигуру А, событие В — точка попала в фигуру В), если фигуры А и Б не имеют общих точек (то есть множества точек фигур А и Б не имеют общих элементов). Сумму событий А + В и произведение 


Событие А, противоположное событию А, определим как дополнение 
Тогда приведенное определение геометрической вероятности удовлетворяет свойствам (1)-(3), а следовательно, и аксиомам 1-3.
Действительно, 
По свойству площади S (А) > 0, S (U) > 0, таким образом, 



Если события А и В несовместны, то фигуры А и В не имеют общих точек. Тогда 

Поскольку разные определения вероятности удовлетворяют одним и тем же основным свойствам (аксиомам), то следствия, которые могут быть получены с использованием этих аксиом, не зависят от способа определения вероятности. Поэтому далее обоснования общих свойств вероятностей мы будем проводить для одного определения — или, как говорят в математике, для одной вероятностной модели, — и иметь в виду, что аналогичное обоснование можно провести и для других моделей. Хотя, конечно, для каждой модели можно указать и свои специфические свойства, которых нет у других моделей.
Замечание 2. Определение геометрической вероятности (8) можно использовать не только в том случае, когда U — плоская фигура.
Если, например, U — пространственная фигура (тело), то в случае равномерного распределения вероятностей (в том понимании, что вероятности попадания точки и в части данного тела, имеющие одинаковые объемы, одинаковы и не зависят от положения этих частей в заданном теле), в формуле (8) под записями 
Аналогично, если U — отрезок, то в случае равномерного распределения вероятностей (в том понимании, что вероятности попадания точки и в части данного отрезка, которые имеют одинаковые длины, одинаковы и не зависят от положения этих частей на заданном отрезке), в формуле (8) под записями S (U) и -S (А) следует понимать длины отрезка U и его части — отрезка А.
Отметим, что объем тела U в пространстве, площадь плоской фигуры U на плоскости, длину отрезка U на прямой можно назвать мерой фигуры U. Тогда в общем виде формулу (8) можно записать так:
Пример №78
Две подруги договорились позвонить в промежутке от 9 ч до 10 ч. Найдите вероятность того, что их разговор начнется в промежутке от 9 ч 20 мин до 9 ч 25 мин.
Решение:
Одна подруга может позвонить другой в промежутке от 9.00 до 10.00. В этой задаче эксперимент — это фиксирование времени телефонного звонка. Изобразим все результаты эксперимента в виде отрезка АВ (рис. 141). Элементарные события — это точки отрезка АВ (одна подруга может позвонить другой в любое время с 9.00 до 10.00). Если событие А — вызов произошел в промежутке 9.20 — 9.25, то элементарные события, благоприятствующие событию А, можно изобразить точками отрезка CD. Если считать, что время вызова в оговоренном промежутке распределяется равномерно, то
(При вычислении учтено, что в минутах мера CD равна 5, а мера АВ равна 60 (1 ч = 60 мин).)
Пример №79
К сигнализатору поступают сигналы от двух устройств, причем поступление каждого из сигналов равновозможно в любой момент промежутка времени длительностью Т мин. Моменты поступления сигналов независимы один от другого. Сигнализатор срабатывает, если разность между моментами поступления сигналов меньше 1 мин. Найдите вероятность того, что сигнализатор срабатывает за время Т, если каждое из устройств пошлет по одному сигналу.
Решение:
Выберем промежуток времени длительностью Т, например [0; Т]. Обозначим моменты поступления сигналов первого и второго устройств соответственно через х и 
Введем прямоугольную систему координат 
Сигнализатор срабатывает, если разность между моментами поступления сигналов меньше 1 мин, то есть если 




Неравенства (9) выполняются для координат точек фигуры G, лежащих выше прямой у = х и ниже прямой у = х + 1; неравенства (10) имеют место для координат точек, расположенных ниже прямой у = х и выше прямой у = х — 1.
Как видно из рисунка 142, все точки, координаты которых удовлетворяют неравенствам (9) и (10), принадлежат заштрихованному шестиугольнику OABCDF. Таким образом, этот шестиугольник можно рассматривать как фигуру 
Учитывая, что площадь
получаем, что искомая вероятность равна
Условные вероятности
1. Понятие условной вероятности
Содержательное определение:
Число, выражающее вероятность события А при условии, что произошло событие В, называется условной вероятностью события А при условии события В и обозначается
Формула
2. Вероятность произведения двух событий (теорема умножения вероятностей)

условную вероятность другого события, которая вычисляется при условии, что первое событие уже произошло.
3. Вероятность произведения нескольких событий
Вероятность произведения (то есть совместного появления) нескольких событий равна произведению вероятности одного из них на условные вероятности остальных, причем вероятность каждого следующего события вычисляется при условии, что все предыдущие события уже произошли.
Объяснение и обоснование:
Понятие условной вероятности. Вероятность произведения двух событий
Оценивая вероятность случайного события А, иногда приходится учитывать какие-то дополнительные условия, влияющие на оценку вероятности этого события. Например, если событие А — это выпадание 3 очков при бросании игрального кубика, то его вероятность равна 

Таким образом, получение некоторой информации о результатах случайного эксперимента означает, что при вычислении вероятности события А вместо всего пространства элементарных событий U необходимо брать ту его часть, элементарные события которой благоприятствуют событию В (поэтому обозначим ее через В).
Число, выражающее вероятность события А при условии, что произошло событие В, называется условной вероятностью события А при условии события В и обозначается
Докажем эту формулу для классического определения вероятности. Пусть в результате случайного эксперимента мы можем получить 



В этом случае общее количество результатов эксперимента равно 

Отметим, что равенство (9) часто принимается за определение условной вероятности события А при условии, что произошло событие В. Из равенства (9) получаем, что
Поскольку событие ВА совпадает с событием АВ, то в правой части формулы (10) можно поменять местами А и В. Тогда
Вероятность произведения (то есть совместного появления) двух событий равна произведению вероятности одного из них на условную вероятность второго события, вычисленную при условии, что первое событие уже произошло.
Равенство (11) (или (10)) обычно называют теоремой умножения вероятностей. Если мы можем вычислить вероятность события А и условную вероятность 
Пример №80
В коробке находится 10 шаров, из них 4 белых. Наугад берут друг за другом два шара, причем взятый шар в коробку не возвращают. Вычислим вероятность того, что оба шара будут белые.
Решение:
Обозначим события: А — первый вынутый шар белый, В — второй вынутый шар белый. Тогда событие АВ — оба вынутых шара белые.
Вынимание (наугад) из коробки любого из 10 шаров — равновозможные события. Событию А благоприятствуют 4 события (в коробке всего 4 белых шара).
Тогда 

Пример №81
Среди однотипных деталей, выпускаемых в цеху, 1 % бракованных. Среди качественных деталей 40 % деталей высшего сорта. Какова вероятность того, что взятая наугад деталь высшего сорта?
Решение:
Обозначим события: А — деталь небракованная, В — деталь высшего сорта. Тогда событие АВ — выбрали качественную деталь высшего сорта.
Выбор одной детали из множества однотипных деталей — равновозможные события. Учитывая, что среди выпущенных деталей 99 % качественных, получаем Р (А) = 0,99, а учитывая, что среди качественных деталей 40 % деталей высшего сорта, получаем, что 
Формула умножения вероятностей (10) обобщается на случай нескольких событий 
где 


Пример №82
В коробке лежат 6 белых, 4 черных и 3 красных шара. Наугад один за другим вынимают три шара, причем вынутый шар в коробку не возвращают. Найдите вероятность того, что первый шар будет красным, второй — белым, а третий — черным.
Решение:
Пусть событие А — первый вынутый шар красный, событие В — второй шар белый, событие С — третий шар черный. Тогда событие ABC — вынули три шара, из которых первый красный, второй белый и третий черный.
В коробке всего 13 шаров. Вынимание (наугад) любого из 13 шаров — равновозможные события. Событию А благоприятствуют 3 события (в коробке
всего 3 красных шара). Тогда 


Независимые события
1. Понятие независимости двух событий
Событие В называется независимым от события А, если событие А не изменяет вероятности события В.
Определение:
События А и В называются независимыми, если выполняется равенство

2. Независимость нескольких событий
Несколько событий называются независимыми, если для какого-либо подмножества этих событий (содержащего два или больше событий) вероятность их произведения равна произведению их вероятностей. В частности, если события 
3. Свойство независимых событий
Если мы имеем совокупность независимых событий, то, заменив некоторые из этих событий на противоположные им события, снова получим совокупность независимых событий. Например, если события А и В независимы, то независимыми будут, также события
4. Вероятность того, что произойдет хотя бы одно из независимых событий
Объяснение и обоснование:
Событие В называется независимым от события А, если появление события А не изменяет вероятности события В. В этом случае
Тогда по формуле умножения вероятностей
События А и В называются независимыми, если выполняется равенство
то есть два события называются независимыми, если вероятность их произведения (то есть совместного появления) равна произведению вероятностей этих событий.
Равенство (13) обязательно будет выполняться, если одно из событий невозможное или достоверное. Например, если событие В — невозможное, то есть В = 

Отметим, что в случае, когда события А и В не являются невозможными или достоверными и выполняется равенство


Подставляя в последнее равенство вместо


Обратим внимание, что в случае, когда события А и В независимы, то независимыми будут также события
Докажем, например, что будут независимыми события А и






А это и означает, что события А и
Аналогично обосновывается независимость событий 
Несколько событий называются независимыми (еще говорят — «независимыми в совокупности»), если для любого подмножества этих событий (содержащего два или более событий) вероятность их произведения равна произведению их вероятностей.
Например, три события А, В, С будут независимыми, если выполняются условия:


(но выполнение этого равенства при 

Как и в случае двух событий, можно доказать, что если в некоторой совокупности независимых событий, заменить некоторые из них противоположными им событиями, то получится также совокупность независимых событий.
Отметим, что приведенные определения независимости событий в теоретико-вероятностном понимании соответствуют обычному пониманию независимости событий как отсутствию влияния одних событий на другие. Поэтому при решении задач можно пользоваться следующим принципом: причинно независимые события являются независимыми и в теоретико-вероятностном понимании.
Пример №83
Прибор состоит из трех узлов, каждый из которых на протяжении суток может выйти из строя независимо от других. Прибор не работает, если не работает хотя бы один из узлов. Вероятность безотказной работы в течение суток первого узла равна 0,95, второго — 0,9, третьего — 0,85.
Решение:
Найдите вероятность того, что в течение суток прибор будет работать безотказно.
Пусть событие 




Пример №84
Два стрелка сделали по одному выстрелу в одну мишень. Вероятность попасть в мишень для первого стрелка равна 0,9, для второго — 0,8. Найдите вероятность того, что мишень будет поражена.
Решение:
Рассмотрим такие события: А — первый стрелок попал в мишень, В — второй стрелок попал в мишень, С — мишень поражена. События А и В независимые, но непосредственно использовать в данном случае умножение вероятностей нельзя, поскольку событие С наступает не только тогда, когда оба стрелка попали в мишень, но и тогда, когда в мишень попал хотя бы один из них.
Будем рассуждать иначе. Рассмотрим события 


Учитывая, что мишень не будет поражена тогда и только тогда, когда в нее не попадет ни первый стрелок, ни второй, получаем, что 
Поскольку события С и 
Замечание. Рассуждения, приведенные при решении задачи 2, можно обобщить.
Если события 








Учитывая, что

Разумеется, приведенную формулу необязательно запоминать, достаточно при решении задач на нахождение вероятности появления хотя бы одного из независимых событий провести вышеизложенные рассуждения.
Схема Бернулли. Закон больших чисел
1. Понятие экспериментов, независимых относительно события А
Если вероятность события А в каждом эксперименте не зависит от результатов других экспериментов, то такие эксперименты называют независимыми относительно события А.
Пример:
Пусть событие А — выпал «герб». Тогда эксперименты по подбрасыванию одной и той же монеты в одинаковых условиях являются независимыми относительно события А.
2. Схема Бернулли (совокупность условий)
Пусть выполняется п независимых экспериментов, в каждом из которых событие А может произойти, а может и не произойти. Вероятность того, что произойдет событие А, в каждом из экспериментов одинакова и равна р, а вероятность того, что событие А не произойдет (то есть произойдет событие 
3. Формула Бернулли
Вероятность 


Пример:
Найдите вероятность того, что при 6 подбрасываниях монеты «герб» выпадет точно 4 раза.
Для этой задачи условия схемы Бернулли таковы: 
3*. Неравенство Чебышева
Пусть вероятность того, что в эксперименте произойдет событие А равна р (тогда вероятность того, что событие А не произойдет, равна

4. Закон больших чисел (простейшая форма)
При большом количестве экспериментов относительная частота события, как правило, мало отличается от вероятности этого события.
Математическая запись:
При условиях, сформулированных в неравенстве Чебышева,
Объяснение и обоснование:
Схема Бернулли:
Пусть проводятся несколько экспериментов, результатом каждого из которых может быть одно и то же событие А.
Если вероятность появления события А в каждом из экспериментов не зависит от результатов других экспериментов, то такие эксперименты называют независимыми относительно события А. Рассмотрим независимые эксперименты, в каждом из которых вероятность появления события А не изменяется от эксперимента к эксперименту. Обратим внимание, что вследствие независимых экспериментов всегда происходят независимые события.
Например, независимыми являются несколько экспериментов по бросанию одного и того же игрального кубика в одинаковых условиях. Пусть событие А — выпало 1 очко. Если кубик однородный и имеет правильную геометрическую форму, то в каждом из этих экспериментов вероятность
появления события А одинакова и равна


Некоторые практические задачи сводятся к построению математической модели проведения независимых экспериментов с двумя результатами, вероятности которых
*Материал является обязательным только для классов физико-математического профиля.
Пусть проводится п независимых экспериментов, в каждом из которых событие А может произойти, а может и не произойти. Вероятность того, что произойдет событие А в каждом из экспериментов одинакова и равна р, а вероятность того, что событие А не произойдет {то есть произойдет событие 



Искомую вероятность при указанных условиях можно вычислить по формуле Бернулли:
Сначала рассмотрим один набор из п экспериментов, в котором событие А произойдет точно т раз в первых т экспериментах (и соответственно событие 


Поскольку по условию результаты 

Если событие А произойдет точно 

















Учитывая, что
Пример №85
Найдите вероятность того, что при 10 бросаниях игрального кубика 1 очко выпадет точно 2 раза.
Решение:
Все условия схемы Бернулли выполнены. Событие А — выпало 1 очко при бросании игрального кубика. При всех бросаниях кубика вероятность выпадания 1 очка (события А) одинакова и равна 



Пример №86
Вероятность того, что расход электроэнергии в течение суток не превысит установленную норму, равна 0,75. Найдите вероятность того, что в ближайшие 6 суток расход электроэнергии за 4 суток не превысит норму.
Решение:
Событие А — расход электроэнергии в течение суток не превышает установленную норму. Каждые сутки вероятность события А одинакова: р = 0, 75, тогда вероятность события
Вычисления по формуле Бернулли при больших значениях 



По формуле Бернулли вероятность того, что в серии из 100 бросаний монеты все 100 раз выпадет «герб», равна

Теорема. Пусть вероятность появления события А в некотором эксперименте равна р (а вероятность не появления события А, то есть появления события 
Поясним смысл этого неравенства. Выражение 







Для доказательства этого утверждения достаточно заметить, что
Отметим, что по условию теоремы при любом значении
которое и означает, что при увеличении числа экспериментов 

Замечание. Под законом больших чисел обычно понимают не только приведенную формулировку, но и ряд других теорем, обосновыващих отмеченную закономерность для применения математики в естествознании. Эта закономерность состоит в том, что совместное действие многих случайных факторов часто приводит к результатам, почти не зависящим от этих случайных факторов.
Пример №87
Какое количество экспериментов достаточно провести, чтобы равенство 

Решение:
Для решения достаточно найти такое 


и поэтому достаточно указать п, удовлетворяющее неравенству
Отсюда
Как видим, получение вероятности события, даже с такой незначительной точностью, требует большого количества экспериментов. Правда, более глубокие теоремы показывают, что можно ограничиться меньшим числом экспериментов.
Понятия случайной величины и ее распределения
Под случайной величиной в теории вероятностей понимают переменную величину, которая в данном случайном эксперименте может принимать те или иные числовые значения с определенной вероятностью. Обозначают случайные величины прописными буквами латинского алфавита: X, У, Z, …, а их значения — соответствующими строчными буквами: 
Например, были найдены вероятности появления той или иной суммы очков при бросании двух игральных кубиков. Появляющаяся сумма очков — случайная величина. Обозначим ее через X. Тогда 

С помощью этой таблицы легко увидеть, какие значения величина X принимает с одинаковыми вероятностями, какое значение величины X появляется с большей вероятностью и т. д. Такую таблицу называют таблицей распределения значений случайной величины по их вероятностям и говорят, что эта таблица задает закон распределения рассмотренной случайной величины.
Приведем определение рассмотренных понятий. Отметим, что случайную величину можно задать в любом случайном эксперименте. Для этого достаточно каждому элементарному событию из пространства элементарных событий эксперимента поставить в соответствие некоторое число (в этом случае говорят, что задана числовая функция, областью определения которой является пространство элементарных событий).
Случайной величиной называется числовая функция, областью определения которой является пространство элементарных событий.
* Таким образом, через р обозначена вероятность события — случайная величина X приняла значение
Например, в эксперименте по подбрасыванию монеты пространство элементарных событий состоит из двух событий: 



Рассмотренную функцию — случайную величину X — можно задать также с помощью следующей таблицы:
Закон распределения этой случайной величины задается таблицей:
Отметим, что закон распределения каждой случайной величины устанавливает соответствие между значениями случайной величины и их вероятностями, то есть является функцией, область определения которой — все значения случайной величины. Поэтому
законом распределения случайной величины X называется функция, которая каждому значению х случайной величины X ставит в соответствие число 

В общем случае закон распределения случайной величины, принимающей только 
Здесь 


События

Это равенство часто используют для проверки правильности задания закона распределения случайной величины, особенно в тех случаях, когда он задается не в результате теоретического расчета вероятностей событий с использованием классического определение вероятности, а в результате использования статистического определения вероятности.
Например, в экспериментах по подбрасыванию кнопки, рассмотренных в пункте 19.1, падение кнопки на острие или на кружок может быть рассмотрено как случайная величина У с условными значениями 

Замечание. В том случае, когда приходится находить сумму всех значений некоторой величины, можно использовать знак 

Используя это обозначение, проверку правильности составления последней таблицы можно записать следующим образом:
Рассмотренные в этом пункте случайные величины принимали изолированные друг от друга значения. Такие величины называют дискретными** (от латинского discretus — раздельный, прерывистый), а распределение вероятностей такой величины называется дискретным распределением вероятностей.
Если случайная величина может принимать любое значение на некотором промежутке, то такая величина называется непрерывной. Например, время Т ожидания автобуса на остановке является непрерывной случайной величиной в случае, если пассажир знает, что автобусы ходят через 10 мин, и приходит на остановку случайным образом. Эта случайная величина принимает любое числовое значение
Очевидно, что число значений непрерывной случайной величины бесконечно независимо от того, является ли промежуток значений ограниченным (отрезком) или неограниченным. Поэтому мы не можем для этой величины задать закон распределения так, как мы его задавали для дискретной случайной величины (с помощью таблицы, устанавливающей соответствие между каждым значением случайной величины и его вероятностью). Однако существует способ, с помощью которого можно задать распределение и непрерывной случайной величины***. Для этого промежуток значений заданной непрерывной величины разбивают на части и считают вероятности попадания значений случайной величины в каждую из них.
- * Точнее указанная сумма записывается так:
- ** Случайная величина называется дискретной, если множество ее значений конечно или счётно (счётность означает, что мы можем установить взаимно однозначное соответствие между элементами заданного множества и натуральными числами, то есть можем указать, как можно пронумеровать все элементы множества).
- ** * Отметим, что в том случае, когда функция распределения непрерывной случайной величины является непрерывной, такое распределение вероятностей случайной величины называют непрерывным распределением вероятностей.
Например, пусть время горения X (в часах) электрической лампочки некоторого вида —

В последнем примере для вычисления вероятностей принятия случайной величиной определенных значений было использовано статистическое определение вероятности (вероятности были оценены по результатами 100 экспериментов, в которых лампочки горели непрерывно до перегорания нити накаливания).
В таких случаях удобно пользоваться расширенной таблицей распределения случайной величины, включая в нее распределения рассмотренной величины по частотам и относительным частотам. Тогда получим следующую таблицу распределений случайной величины X:
Учитывая, что по закону больших чисел при значительном количестве экспериментов значения относительных частот близки к соответствующим вероятностям (в последней таблице значения в третьей и четвертой строке просто совпадают), строку со значениями вероятностей не вносят в таблицу распределения, а вместо нее иногда записывают строку со значениями относительной частоты, выраженной в процентах. Тогда соответствующая таблица распределения значений случайной величины X будет следующей:
Для проверки правильности заполнения такой таблицы используют то, что сумма относительных частот (как и сумма соответствующих вероятностей) равна 1 (

Рассмотрим составление такой таблицы по результатам экспериментов.
Пример №88
Результаты измерения роста 30 гимнасток одного спортивного клуба внесены в следующую таблицу:
По этим данным составьте таблицу распределения значений случайной величины X — роста гимнасток клуба — по частотам (М) и относительным частотам
Решение:
Величина X принимает значения:
Подсчитываем число М гимнасток каждого роста, заносим данные в частотную таблицу, а затем для каждого значения X находим значения относительной частоты W, зная, что 
(проверка
Полигоны и гистограммы частот
1. Понятие полигона частот
Распределение случайных величин можно задавать и иллюстрировать графически.
Пусть случайная величина X — размер обуви 30 мальчиков 11 класса одной из школ — имеет распределение по частотам, данное в таблице:
Отметим на координатной плоскости точки с координатами 
То есть полигоном частот называют ломаную, отрезки которой последовательно соединяют точки с координатами

Аналогично определяется и строится полигон относительных частот для случайной величины X (строятся точки с координатами 


Если вычислить относительные частоты для каждого значения случайной величины, рассмотренной в примере в начале этого пункта, то распределение величины X по относительным частотам можно задать таблицей:
Также распределение случайной величины X по относительным частотам можно представить в виде полигона относительных частот (рис. 149), в виде линейной диаграммы (рис. 150) или в виде круговой диаграммы, предварительно записав значения относительной частоты в процентах (рис. 151).
Напомним, что для построения круговой диаграммы круг разбивается на секторы, центральные углы которых пропорциональны относительным частотам, вычисленным для каждого значения случайной величины. Обратим внимание, что круговая диаграмма сохраняет свою наглядность и выразительность только при небольшом количестве полученных секторов. В противном случае ее применение малоэффективно.
Если случайная величина принимает много разных значений, то ее распределение можно лучше себе представить после разбиения всех ее значений на классы. Количество классов может быть любым, удобным для исследования (обычно их выбирают в количестве от 4 до 12). При этом величины (объемы) классов должны быть одинаковыми.
Например, в следующей таблице представлены сведения о заработной плате 100 рабочих одного предприятия. При этом значения зарплаты (округлены до целого числа гривен) сгруппированы в 7 классов, каждый объемом в 100 руб.

Наглядно частотное распределение зарплат по классам можно представить с помощью полигона частот (рис. 152) или столбчатой диаграммы (рис. 153).
Обратим внимание, что во всех приведенных выше примерах полигоны частот строились для дискретных случайных величин.
Понятие гистограммы частот
Распределение значений непрерывной случайной величины также можно представлять графически. Для этого промежуток значений заданной непрерывной величины разбивают на несколько равных частей и считают частоты попадания значений случайной величины в каждую из этих частей.
Вернемся к таблице частот, напомним, что случайная величина X — время горения (в часах) электрической лампочки некоторого вида (до перегорания нити накаливания). 
Если основанием каждого столбца служит промежуток значений случайной величины длиной

называется плотностью частоты на рассмотренном промежутке), где М — частота значений величины X на соответствующем промежутке. Тогда площадь такого столбца будет равняться 
Замечание. Если договориться, что единица на горизонтальной оси соответствует величине 

Если по данным предыдущей таблицы заполнить таблицу относительных частот, то построенную на ее основании ступенчатую фигуру называют гистограммой относительных частот (рис. 155).
Гистограмму относительных частот строят обычно таким образом, чтобы площадь каждого столбца под ступенькой равнялась соответствующему значению W. Это делается аналогично построению гистограммы частот. Если основанием каждого столбца служит промежуток значений случайна ной величины длиной 


Замечание. Если договориться, что единица на горизонтальной оси соответствует величине 

Если не придерживаться договоренностей, приведенных в замечаниях, то для построения гистограммы необходимо найти плотность соответствующей частоты на каждом из рассмотренных промежутков. После этого на вертикальной оси откладывают уже не значения частоты или относительной частоты, а полученные значения плотности. (Обратим внимание, что длины промежутков разбиения мы выбираем одинаковыми, поэтому все полученные значения плотности будут пропорциональны значениям соответствующих частот на этом промежутке.)
Подчеркнем также различие между гистограммой и столбчатой диаграммой. В столбчатой диаграмме основания прямоугольников выбираются произвольно, а в гистограмме основания прямоугольников — это длины 
Следует отметить, что многие дискретные случайные величины, которыми мы пользуемся и которые связанные со временем, с ростом живых организмов (людей, растений и т. д.), являются средними значениями промежутков значений непрерывных случайных величин.
Например, размер одежды является не чем иным, как средним значением половины обхвата грудной клетки
- Системы случайных величин
- Вероятность и риск
- Определения вероятности событий
- Предельные теоремы теории вероятностей
- Интервальные оценки параметров распределения
- Алгебра событий — определение и вычисление
- Свойства вероятности
- Многомерные случайные величины
На этой странице вы узнаете
- Как кот может быть одновременно жив и мертв?
- Можно ли всегда выигрывать спор с монеткой?
- Если рандомно ответить на вопрос теста, какой шанс угадать ответ?
Какова вероятность выиграть в лотерею? Исследователи подсчитали: один на восемь миллионов. «Или выиграю, или проиграю», — решаю я, покупая лотерейный билет. Так понятие вероятности преследует нас в обычной жизни. И не только в лотерее. Давайте разберемся подробнее.
Вероятность
Выходя утром из дома, мы задумываемся: брать ли с собой зонт? Проверяем прогноз погоды — вероятность выпадения осадков 2%. Зонтик нам сегодня вряд ли понадобится. В пути нас настигает ливень…
Прогноз погоды — самый яркий пример вероятности. Он не всегда бывает точный, не всегда сбывается. Мы не можем с уверенностью сказать, что будет завтра. Зато можем по совокупности факторов определить, на какую погоду стоит ориентироваться.
Теория вероятности — один из разделов математики, в котором изучаются модели случайных экспериментов.
Случайными экспериментами называются такие, результаты которых неизвестны заранее. Подбрасывая монетку, мы не знаем, что выпадет — орел или решка. Только поймав монетку, мы узнаем результат.
Ученый по имени Эрвин Шредингер провел мысленный эксперимент. Он поместил кота в закрытый ящик, в котором был расположен механизм, содержащий атомное ядро и ёмкость с ядовитым газом.
По эксперименту с вероятностью 0,5 ядро распадется, емкость с газом откроется и кот умрет. Но при этом с вероятностью 0,5 ядро не распадается и кот останется жив.
Пока ящик закрыт, мы не знаем результат эксперимента — такой эксперимент в математике можно назвать случайным. Тем временем кот находится одновременно в двух состояниях: он и жив, и мертв.
Рассмотрим чуть подробнее пример с монеткой. Есть всего два варианта, какое событие может произойти:
- выпадет орел;
- выпадет решка.

Эти два события образуют множество элементарных событий.
Множество элементарных событий — множество всех возможных результатов случайного эксперимента.
В случае выше их всего два. А если мы будем подбрасывать игральную кость, то их будет уже 6. Множество элементарных событий будет менять в зависимости от ситуации.
Допустим, мы поспорили с друзьями, что выпадет орел. Для нас это событие будет благоприятным, поскольку мы выиграем спор. Второе событие будет неблагоприятным, потому что спор будет проигран.
Как найти вероятность, что мы выиграем спор? Нужно разделить число благоприятных событий на общее число событий. Таким образом, мы получили классическое определение вероятности.
Вероятность — отношение количества благоприятных событий к количеству всех возможных событий.
Пусть m — количество благоприятных исходов, а n — количество всех событий. Получаем следующую формулу.
(P = frac{m}{n})
Вероятность можно обозначить, как P(x), где х — некоторое событие.
Заметим, что количество благоприятных исходов должно быть либо меньше, либо равно количеству всех исходов. Если благоприятных событий больше, чем всех, значит, мы нашли не все множество элементарных событий.
Когда вероятность равна 1, то такое событие точно наступит. Иначе говоря, мы можем быть уверены на 100% — оно произойдет.
Можно, если хитро сформулировать условия. Например: «Орел — я выиграл, решка — ты проиграл». Вероятность выигрыша в этом случае будет равна (P = frac{2}{2} = 1), то есть мы точно выиграем спор.
Однако вероятность не так проста, и даже здесь подготовила ловушку.
В редких случаях есть и третий вариант событий — монетка встанет на ребро. Вероятность такого события составляет (frac{1}{6000}). То есть за миллион бросков это может случиться 150 раз или 1 раз в 2 дня, если подкидывать монету каждый день по 8 часов в течение года. Чтобы монета встала на ребро два раза подряд, придется подбрасывать ее в том же темпе около 35 лет.
Вероятность всегда будет меньше или равна 1. Но ее можно выразить и через проценты. Для этого достаточно умножить полученный результат на 100%.
Пример 1. На ресепшене одного из отелей стоит ваза с конфетами. В вазе 56 яблочных конфет, 49 апельсиновых и 35 малиновых. Гость отеля наугад тянет конфету. Какова вероятность, что ему попадется апельсиновая конфета?
Решение. Найдем, сколько всего конфет в вазе: 56 + 49 + 35 = 140. Вероятность вытащить апельсиновую конфету будет равна
(frac{49}{140} = 0,35)
Выразим в процентах:
0,35 * 100% = 35%
Задача решена. Обычно в ответе пишут значение вероятности через дробное число, а не проценты. Поэтому получаем следующий ответ.
Ответ: 0,35
Чтобы выразить вероятность через проценты в одно действие, достаточно воспользоваться следующей формулой.
(P = frac{m}{n} * 100%)
Но что, если нам нужно найти вероятность для более сложных экспериментов? Первым делом нужно определить, какие события перед нами.
Равновозможные и противоположные события
Когда мы бросаем игральную кость, вероятность выпадения любого из чисел равна 16. То есть вероятности выпадения чисел равны между собой. Такие события называются равновозможными.
Равновозможные события — такие события, что по условиям опыта ни одно из них не является более возможным, чем другие.
Вероятности появления событий равны.
Для игрального кубика существует всего шесть событий, которые могут произойти: выпадет число 1, 2, 3, 4, 5 или 6. Все эти события образуют полную группу событий.
Полная группа событий — такая группа событий, если в результате опыта обязательно появится хотя бы одно из них.
В результате подбрасывания монеты выпадет либо орел, либо решка. То есть полная группа событий состоит из двух событий.
Мы подбросили монету и выпал орел. Следовательно, не выпала решка.
А если не выпадет орел? Обязательно выпадет решка. Эти события будут называться противоположными.
Противоположные события — такие события, если при не наступлении одного обязательно наступает второе.
Обозначим событие “выпала решка” как A. Противоположное ему событие “выпал орел” обозначим как (overline{A}).
Заметим, что вероятность события A равняется 12, как и вероятность события (overline{A}). Чему равна их сумма?
)frac{1}{2} + frac{1}{2} = 1)
Так мы вывели связь между противоположными событиями. Поскольку они всегда образуют полную группу событий, то сумма их вероятностей будет равна 1.
(P(A) + P(overline{A}) = 1)
Какие еще примеры противоположных событий можно назвать? Ясная и дождливая погода. Если наступает одно из этих событий, то второе уже не может наступить.
Объединение и пересечение событий
Допустим, у нас есть два события: сегодня пойдет снег и сегодня пойдет дождь. Что будет, если мы их объединим?
Объединение событий — событие, состоящее из всех элементарных исходов, благоприятствующих хотя бы одному из событий.

В этом случае мы получим событие, которое будет выполняться при любом из исходов: и если пойдет снег, и если не пойдет снег.
Объединение событий обозначается знаком (cup). Объединение событий А и В можно записать как (A cup B).
Рассмотрим немного другой пример. В первое событие входит, что Илья получит пятерку по физике, а второе событие — Антон получит пятерку по физике. А как можно назвать событие, если оба мальчика получат пятерку по физике?
Пересечение событий — событие, состоящее из всех элементарных исходов, благоприятствующих обоим событиям.

Пересечение событий обозначается знаком (cap). Пересечение событий А и В можно записать как (A cap B).
Несовместные и совместные события
Рассмотрим два события: “чайник исправно работает” и “чайник сломался”. Могут ли эти события существовать одновременно? Нет, поскольку появление одного из них исключает появление другого.
Такие события называются несовместными. Название само говорит, что события не могут существовать одновременно.
Несовместные события — такие события, появление одного из которых исключает появление другого.
Решим небольшую задачу. На экзамене есть несколько билетов. С вероятностью 0,5 попадется билет по планиметрии. С вероятностью 0,3 попадется билет по экономике. При этом не существует билетов, которые включают обе эти темы. С какой вероятностью на контрольной попадется билет по одной из этих тем?

Представим билеты в виде схемы. Заметим, что нам нужно объединить два из трех кругов, то есть сложить их вероятности.

Следовательно, вероятность будет равна 0,5 + 0,3 = 0,8.
Сформулируем определение суммы вероятностей двух несовместных событий.
Если события А и В несовместны, то вероятность их объединения равна сумме их вероятностей:
(P(A cup B) = P(A) + P(B))
Если существуют несовместные события, то существуют и совместные.
Совместные события — события, наступление одного из которых не исключает наступления другого.
В магазине работают два консультанта. Один из них занят общением с клиентом. Означает ли это, что второй консультант тоже занят? Нет, поскольку они работают независимо друг от друга. Если занят первый консультант, второй может быть как занят, так и нет.
Подбросим игральный кубик и рассмотрим два вида событий. Пусть событие А — это “выпадет число 2”, событие В — “выпадет четное число”.
Найдем вероятность события А: (frac{1}{6}).
Для события В всего три благоприятных исхода из шести: выпадет число 2, 4 или 6. Тогда вероятность наступления события В равна (frac{3}{6} = frac{1}{2})
Исключают ли события А и В друг друга? Нет, поскольку если произойдет событие А, произойдет и событие В. Когда произойдет событие В, есть вероятность, что произойдет и событие А.
Найдем объединение совместных событий на примере кругов. Если мы наложим их друг на друга, то в середине получится как бы два слоя. Проверить это можно, если наложить друг на друга два листа бумаги.

А нужно получить вот такую картину:

Поэтому для объединения двух кругов нам нужно будет исключить одну из серединок.
Если события А и В совместны, то вероятность их объединения равна сумме их вероятностей без вероятности их пересечения:
(P(A cup B) = P(A) + P(B) — P(A cap B))
В каких случаях нужно пользоваться формулой со сложением? Достаточно, чтобы задачу можно было сформулировать с помощью “или”. Например, нужно, чтобы выпали темы по планиметрии или по экономике.
Независимые и зависимые события
Прогуляемся в магазин за булочками. В упаковке две булочки, а сама упаковка непрозрачная, то есть увидеть булочки до вскрытия упаковки мы не можем.
Известно, что на заводе, где изготавливаются булочки, 5 из 100 булочек подгорают. Значит, 95 из 100 булочек не подгорают. По классическому определению вероятности находим, что вероятность каждой булочки не подгореть равна (frac{95}{100} = 0,95).
Какова вероятность, что в упаковке попадутся только не подгорелые булочки? Как найти вероятность сразу для двух булочек?
Ответим на вопрос: зависят ли булочки друг от друга?
Если подгорит одна из булочек в упаковке, не обязательно подгорит другая. Следовательно, булочки не зависят друг от друга. Такие события называются независимыми.
Независимые события — такие события, появление одного из которых не зависит от появления другого события.
Определим вероятность независимых событий.
Пусть вероятность, что подгорела первая булочка, будет равна Р(А) = 0,95, а вероятность для второй булочки будет равна Р(В) = 0,95.
А чтобы найти вероятность независимых событий, нужно воспользоваться следующей формулой:
(P(A cap B) = P(A) * P(B))
Тогда вероятность, что булочки в одной упаковке не подгорят, равняется P = 0,95 * 0,95 = 0,9025.
В каком случае нужно пользоваться этой формулой? Нужно подставить союз “и”.
Мы хотим, чтобы в упаковке первая булочка была не подгорелой и вторая булочка была не подгорелой.
Приведем еще один пример. В здании два автомата с кофе на разных этажах. Даже если сломается один из них, работа второго не будет зависеть от первого.
Но если автоматы стоят рядом и включены в одну розетку, то при поломке одного из них есть вероятность выхода из строя розетки, а значит, и второй автомат тоже сломается. Такие события будут зависимыми: появление одного из них зависит от появления другого.
Предположим, что в мешке лежит семь кубиков: два из них оранжевые, а пять — фиолетовые. Из мешка дважды вытаскивают кубики. Какова вероятность, достать во второй раз именно фиолетовый кубик?

Нужная последовательность может быть в двух случаях:
- сначала вытащат фиолетовый кубик и потом снова фиолетовый;
- сначала вытащат оранжевый кубик, а потом фиолетовый.
Разберем первый случай. Вероятность в первый раз вытащить фиолетовый кубик равна (frac{5}{7}). После этого в мешке останется шесть кубиков, четыре из которых будут фиолетовые.

Вероятность вытащить во второй раз фиолетовый кубик равна (frac{5}{7} * frac{4}{6} = frac{20}{42} = frac{10}{21}).

Теперь рассмотрим второй случай. Вероятность в первый раз достать оранжевый кубик равна (frac{2}{7}). В мешке останется шесть кубиков, пять из которых будут фиолетовыми.

Вероятность вытащить во второй раз фиолетовый кубик будет уже равна (frac{2}{7} * frac{5}{6} = frac{10}{42} = frac{5}{21}).

В этом примере очень наглядно видно, что вероятность напрямую зависит от того, какой кубик попался первым. Следовательно, эти события зависимы.
Как отличить зависимые и независимые события? Если после наступления первого события меняется количество благоприятных и всех исходов, то такие события — зависимые. Если количество благоприятных и всех исходов не меняется, то события независимые.
Условная вероятность — вероятность некоторого события В при условии наступления некоторого события А.
Условная вероятность обозначается P(B|A). В нашем примере условной вероятностью будет вычисление, что во второй раз попадется именно фиолетовый кубик.
Найдем вероятность двух зависимых событий. Формула похожа на ту, что используется для независимых событий. Но в этот раз нам нужно применить условную вероятность.
Вероятность появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, при условии, что первое событие уже наступило:
(P(A cap B) = P(A) * P(B | A))
Формула Бернулли
Рассмотрим случаи, когда испытание повторяется многократно. Для этого еще раз обратимся к игральному кубику. Подбросим кубик 8 раз. Какова вероятность, что цифра 5 выпала ровно три раза?
Пусть p — вероятность, что выпадет цифра 5. Тогда (p = frac{1}{6}).
Теперь возьмем q — противоположное р событие — вероятность, что цифра 5 не выпадет. (q = frac{5}{6}).
Обозначим количество всех бросков за n, а количество выпадения цифры 5 за k.
Чтобы решить задачу, нужно воспользоваться формулой Бернулли.
(P_n(k) = C_n^k * p^k * q^{n — k})
Множитель (C_n^k) — это число сочетаний. Подробнее узнать про сочетания можно в статье «Основы комбинаторики».
Решим задачу, подставив значения в формулу:
(P_8(3) = C_8^3 * (frac{1}{6})^3 * (frac{5}{6})^5 = frac{8!}{5!3!} * frac{1}{6^3} * frac{5^5}{6^5} = frac{6 * 7 * 8}{1 * 2 * 3} * frac{5^5}{6^8} approx 0,1)
Фактчек
- Вероятность — отношение количества благоприятных событий к количеству всех возможных событий.
- События могут быть противоположными. Противоположные события — такие события, если при не наступлении одного обязательно наступает второе.
- События можно разделить на совместные и несовместные. Несовместные события — такие события, появление одного из которых исключает появление другого. Если события А и В несовместны, то вероятность их объединения равна сумме их вероятностей: P(A (cup) B) = P(A) + P(B). Совместные события — события, наступление одного из которых не исключает наступления другого. Если события А и В совместны, то вероятность их объединения равна сумме их вероятностей без вероятности их пересечения: P(A cup B) = P(A) + P(B) — P(A cap B).
- События также можно разделить на независимые и зависимые. Независимые события — такие события, появление одного из которых не зависит от появления другого события. Вероятность независимых событий можно найти по формуле P(A cap B) = P(A) * P(B). Зависимые события — это события, появление одного из которых зависит от появления другого. Вероятность появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, при условии, что первое событие уже наступило. P(A cap B) = P(A) * P(B | A).
- Условная вероятность — вероятность некоторого события В при условии наступления некоторого события А.
Проверь себя
Задание 1.
Какие события являются несовместными?
- Подбрасывание монетки.
- Брак батареек в одной упаковке.
- “Миша идет” и “Миша стоит”.
- Случайное вытаскивание конфет из вазы.
Задание 2.
Алена делает ошибку при решении задач по математике с вероятностью 0,17. С какой вероятностью она не сделает ошибку при решении задачи?
- 0,17
- 1
- 0,83
- 1,17
Задание 3.
Артем решал задачи на вероятность. Ниже приведены его ответы. В какой из задач он точно совершил ошибку?
- 1
- 0,216
- 0,45
- 1,5
Задание 4.
В упаковке три шариковые ручки. С вероятностью 0,1 такая ручка не будет писать. Найдите вероятность, что все три ручки в упаковке пишут.
- 0,3
- 0,001
- 2,7
- 0,729
Задание 5.
Перед Дашей лежит несколько карточек. Она случайно переворачивает одну из них. С вероятностью 0,5 на карточке окажется рисунок природы. С вероятностью 0,27 на карточке окажется мотивационная цитата. Карточек и с рисунком, и с цитатой нет. Найдите вероятность, что Дана перевернет карточку или с рисунком, или с цитатой.
- 0,77
- 0,135
- 0,23
- -0,23
Ответы: 1. — 3 2. — 3 3. — 4 4. — 4 5. — 1


























































































































.
































































































































— событие невозможное, то 
— событие достоверное, то 
— событие случайное, то 
— элементарные события, исчерпывающие некоторое испытание, то 
















































— событие невозможное, то 
— событие достоверное, то 
— событие случайное, то 
— элементарные события, исчерпывающие некоторое испытание, то 
— выпал «герб»,
— выпало «число». Тогда пространство элементарных событий будет состоять из двух событий:
(Эти события несовместные, и в результате эксперимента одно из них обязательно произойдет.)
где
— выпадение k очков, k = 1, 2, 3, 4, 5, 6. В этом случае пространство элементарных событий будет состоять из шести событий: 
































для любого события А из М;

















































































































































































































