И транскрипция, и трансляция относятся к матричным биосинтезам. Матричным биосинтезом называется синтез
биополимеров (нуклеиновых кислот, белков) на матрице — нуклеиновой кислоте ДНК или РНК. Процессы матричного биосинтеза относятся к пластическому обмену: клетка расходует энергию АТФ.
Матричный синтез можно представить как создание копии исходной информации на несколько другом или новом
«генетическом языке». Скоро вы все поймете — мы научимся достраивать по одной цепи ДНК другую, переводить РНК в ДНК
и наоборот, синтезировать белок с иРНК на рибосоме. В данной статье вас ждут подробные примеры решения задач, генетический словарик пригодится — перерисуйте его себе 

Возьмем 3 абстрактных нуклеотида ДНК (триплет) — АТЦ. На иРНК этим нуклеотидам будут соответствовать — УАГ (кодон иРНК).
тРНК, комплементарная иРНК, будет иметь запись — АУЦ (антикодон тРНК). Три нуклеотида в зависимости от своего расположения
будут называться по-разному: триплет, кодон и антикодон. Обратите на это особое внимание.
Репликация ДНК — удвоение, дупликация (лат. replicatio — возобновление, лат. duplicatio — удвоение)
Процесс синтеза дочерней молекулы ДНК по матрице родительской ДНК. Нуклеотиды достраивает фермент ДНК-полимераза по
принципу комплементарности. Переводя действия данного фермента на наш язык, он следует следующему правилу: А (аденин) переводит в Т (тимин), Г (гуанин) — в Ц (цитозин).

Удвоение ДНК происходит в синтетическом периоде интерфазы. При этом общее число хромосом не меняется, однако каждая из них
содержит к началу деления две молекулы ДНК: это необходимо для равномерного распределения генетического материала между
дочерними клетками.
Транскрипция (лат. transcriptio — переписывание)
Транскрипция представляет собой синтез информационной РНК (иРНК) по матрице ДНК. Несомненно, транскрипция происходит
в соответствии с принципом комплементарности азотистых оснований: А — У, Т — А, Г — Ц, Ц — Г (загляните в «генетический словарик»
выше).

До начала непосредственно транскрипции происходит подготовительный этап: фермент РНК-полимераза узнает особый участок молекулы ДНК — промотор и связывается с ним. После связывания с промотором происходит раскручивание молекулы ДНК, состоящей из двух
цепей: транскрибируемой и смысловой. В процессе транскрипции принимает участие только транскрибируемая цепь ДНК.
Транскрипция осуществляется в несколько этапов:
- Инициация (лат. injicere — вызывать)
- Элонгация (лат. elongare — удлинять)
- Терминация (лат. terminalis — заключительный)
Образуется несколько начальных кодонов иРНК.
Нити ДНК последовательно расплетаются, освобождая место для передвигающейся РНК-полимеразы. Молекула иРНК
быстро растет.
Достигая особого участка цепи ДНК — терминатора, РНК-полимераза получает сигнал к прекращению синтеза иРНК. Транскрипция завершается. Синтезированная иРНК направляется из ядра в цитоплазму.

Трансляция (от лат. translatio — перенос, перемещение)
Куда же отправляется новосинтезированная иРНК в процессе транскрипции? На следующую ступень — в процесс трансляции.
Он заключается в синтезе белка на рибосоме по матрице иРНК. Последовательность кодонов иРНК переводится в последовательность
аминокислот.

Перед процессом трансляции происходит подготовительный этап, на котором аминокислоты присоединяются к соответствующим молекулам тРНК. Трансляцию можно разделить на несколько стадий:
- Инициация
- Элонгация
- Терминация
Информационная РНК (иРНК, синоним — мРНК (матричная РНК)) присоединяется к рибосоме, состоящей из двух субъединиц.
Замечу, что вне процесса трансляции субъединицы рибосом находятся в разобранном состоянии.
Первый кодон иРНК, старт-кодон, АУГ оказывается в центре рибосомы, после чего тРНК приносит аминокислоту,
соответствующую кодону АУГ — метионин.
Рибосома делает шаг, и иРНК продвигается на один кодон: такое в фазу элонгации происходит десятки тысяч раз.
Молекулы тРНК приносят новые аминокислоты, соответствующие кодонам иРНК. Аминокислоты соединяются друг с другом: между ними образуются пептидные связи, молекула белка растет.
Доставка нужных аминокислот осуществляется благодаря точному соответствию 3 нуклеотидов (кодона) иРНК 3 нуклеотидам (антикодону) тРНК. Язык перевода между иРНК и тРНК выглядит как: А (аденин) — У (урацил), Г (гуанин) — Ц (цитозин).
В основе этого также лежит принцип комплементарности.

Движение рибосомы вдоль молекулы иРНК называется транслокация. Нередко в клетке множество рибосом садятся на одну молекулу
иРНК одновременно — образующаяся при этом структура называется полирибосома (полисома). В результате происходит одновременный синтез множества одинаковых белков.

Синтез белка — полипептидной цепи из аминокислот — в определенный момент завершатся. Сигналом к этому служит попадание
в центр рибосомы одного из так называемых стоп-кодонов: УАГ, УГА, УАА. Они относятся к нонсенс-кодонам (бессмысленным), которые не кодируют ни одну аминокислоту. Их функция — завершить синтез белка.
Существует специальная таблица для перевода кодонов иРНК в аминокислоты. Пользоваться ей очень просто, если вы запомните, что
кодон состоит из 3 нуклеотидов. Первый нуклеотид берется из левого вертикального столбика, второй — из верхнего горизонтального,
третий — из правого вертикального столбика. На пересечении всех линий, идущих от них, и находится нужная вам аминокислота 

Давайте потренируемся: кодону ЦАЦ соответствует аминокислота Гис, кодону ЦАА — Глн. Попробуйте самостоятельно найти
аминокислоты, которые кодируют кодоны ГЦУ, ААА, УАА.
Кодону ГЦУ соответствует аминокислота — Ала, ААА — Лиз. Напротив кодона УАА в таблице вы должны были обнаружить прочерк:
это один из трех нонсенс-кодонов, завершающих синтез белка.
Примеры решения задачи №1
Без практики теория мертва, так что скорее решим задачи! В первых двух задачах будем пользоваться таблицей генетического кода (по иРНК),
приведенной вверху.
«Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ЦГА-ТГГ-ТЦЦ-ГАЦ. Определите последовательность нуклеотидов
во второй цепочке ДНК, последовательность нуклеотидов на иРНК, антикодоны
соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода»

Объяснение:
По принципу комплементарности мы нашли вторую цепочку ДНК: ГЦТ-АЦЦ-АГГ-ЦТГ. Мы использовали следующие правила при нахождении второй нити
ДНК: А-Т, Т-А, Г-Ц, Ц-Г.
Вернемся к первой цепочке, и именно от нее пойдем к иРНК: ГЦУ-АЦЦ-АГГ-ЦУГ. Мы использовали следующие правила при переводе ДНК в иРНК:
А-У, Т-А, Г-Ц, Ц-Г.
Зная последовательность нуклеотидов иРНК, легко найдем тРНК: ЦГА, УГГ, УЦЦ, ГАЦ. Мы использовали следующие правила перевода иРНК в тРНК:
А-У, У-А, Г-Ц, Ц-Г. Обратите внимание, что антикодоны тРНК мы разделяем запятыми, в отличие кодонов иРНК. Это связано с тем, что
тРНК представляют собой отдельные молекулы (в виде клеверного листа), а не линейную структуру (как ДНК, иРНК).
Пример решения задачи №2
«Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет
следующую последовательность нуклеотидов: ТАГ-ЦАА-АЦГ-ГЦТ-АЦЦ. Установите нуклеотидную последовательность участка тРНК, который синтезируется
на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону
тРНК»

Обратите свое пристальное внимание на слова «Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой
синтезируется участок центральной петли тРНК «. Эта фраза кардинально меняет ход решения задачи: мы получаем право напрямую и сразу
синтезировать с ДНК фрагмент тРНК — другой подход здесь будет считаться ошибкой.
Итак, синтезируем напрямую с ДНК фрагмент молекулы тРНК: АУЦ-ГУУ-УГЦ-ЦГА-УГГ. Это не отдельные молекулы тРНК (как было
в предыдущей задаче), поэтому не следует разделять их запятой — мы записываем их линейно через тире.
Третий триплет ДНК — АЦГ соответствует антикодону тРНК — УГЦ. Однако мы пользуемся таблицей генетического кода по иРНК,
так что переведем антикодон тРНК — УГЦ в кодон иРНК — АЦГ. Теперь очевидно, что аминокислота кодируемая АЦГ — Тре.
Пример решения задачи №3
Длина фрагмента молекулы ДНК составляет 150 нуклеотидов. Найдите число триплетов ДНК, кодонов иРНК, антикодонов тРНК и
аминокислот, соответствующих данному фрагменту. Известно, что аденин составляет 20% в данном фрагменте (двухцепочечной
молекуле ДНК), найдите содержание в процентах остальных нуклеотидов.

Один триплет ДНК состоит из 3 нуклеотидов, следовательно, 150 нуклеотидов составляют 50 триплетов ДНК (150 / 3). Каждый триплет ДНК
соответствует одному кодону иРНК, который в свою очередь соответствует одному антикодону тРНК — так что их тоже по 50.
По правилу Чаргаффа: количество аденина = количеству тимина, цитозина = гуанина. Аденина 20%, значит и тимина также 20%.
100% — (20%+20%) = 60% — столько приходится на оставшиеся цитозин и гуанин. Поскольку их процент содержания равен, то
на каждый приходится по 30%.
Теперь мы украсили теорию практикой. Что может быть лучше при изучении новой темы? 
© Беллевич Юрий Сергеевич 2018-2023
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
- Главная
-
Биология
-
Решение задачи по цитологии
-
Подсчет количество азотистых оснований/нуклеотидов/аминокислот (правило Чаргаффа)
27. Решение задачи по цитологии
Формат ответа: цифра или несколько цифр, слово или несколько слов. Вопросы на соответствие «буква» — «цифра» должны записываться как несколько цифр. Между словами и цифрами не должно быть пробелов или других знаков.
Примеры ответов: 7 или здесьисейчас или 3514
Раскрыть
Скрыть
Полипептид состоит из 20 аминокислот. Определите число нуклеотидов на участке гена, который кодирует первичную структуру этого полипептида, число кодонов на иРНК, соответствующее этим аминокислотам, и число молекул тРНК, участвующих в биосинтезе этого полипептида. Ответ поясните.
ответ
1. Каждой аминокислоте соответствует 3 нуклеотида, значит, участок гена состоял из 20*3 = 60 нуклеотидов
2. На каждую аминокислоту приходится 1 кодон иРНК, соответственно их было 20
3. На каждую аминокислоту приходится 1 молекула тРНК, соответственно их тоже было 20.
Участок одной из двух цепей молекулы ДНК содержит 300 нуклеотидов с аденином (А), 100 нуклеотидов с тимином (Т), 150 нуклеотидов с гуанином (Г) и 200 нуклеотидов с цитозином (Ц). Какое число нуклеотидов с А, Т, Г и Ц содержится в двухцепочечной молекуле ДНК? Сколько аминокислот должен содержать белок, кодируемый этим участком молекулы ДНК? Ответ поясните.
ответ
1. По принципу комлементарности в двух цепях ДНК будет: А-400, Т- 400, Г-350, Ц-350
2. Белок, кодируемый этим участком содержит 250 а/к, т.к. 1 аминокислота кодируется тремя нуклеотидами, а иРНК синтезируется с одной цепи ДНК.
Фрагмент молекулы иРНК состоит из 87 нуклеотидов. Определите число нуклеотидов двойной цепи ДНК, число триплетов матричной цепи ДНК и число нуклеотидов в антикодонах всех тРНК, которые участвуют в синтезе белка. Ответ поясните.
ответ
1. Нуклеотидов в двойной цепи ДНК 174 по принципу комплементарности.
2. Число триплетов матричной цепи ДНК 29 т.к. триплет содержит 3 нуклеотида. А одна цепь содержит 87 нуклеотидов.
3. Число антикодонов всех тРНК 87 т.к. антикодон – тоже триплет.
иРНК состоит из 156 нуклеотидов. Определите число аминокислот, входящих в кодируемый ею белок, число молекул тРНК, участвующих в процессе биосинтеза этого белка, и количество триплетов в гене, кодирующем первичную структуру белка. Объясните полученные результаты.
ответ
1. Белок содержит 52 аминокислоты, т. к. одну аминокислоту кодирует один триплет (156:3).
2. тРНК транспортирует к месту синтеза белка одну аминокислоту, следовательно, всего в синтезе участвуют 52 тРНК.
3. В гене первичную структуру белка кодируют 52 триплета, так как каждая аминокислота кодируется одним триплетом
В пробирку поместили рибосомы из разных клеток, весь набор аминокислот и одинаковые молекулы иРНК и тРНК, создали все условия для синтеза белка. Почему в пробирке будет синтезироваться один вид белка на разных рибосомах?
ответ
1. Первичная структура белка определяется последовательностью аминокислот, зашифрованных на участке молекулы ДНК. ДНК является матрицей для молекулы и-РНК.
2. Матрицей для синтеза белка является молекула и-РНК, а они в пробирке одинаковые.
3. К месту синтеза белка т-РНК транспортируют аминокислоты в соответствии с кодонами иРНК.
Пора зарегистрироваться!
Так твой прогресс будет сохраняться.
Регистрация
Начало работы
Привет сейчас ты за 5 шагов узнаешь, как пользоваться платформой
Смотреть
Выбери тест
«Выбери тест, предмет и нажми кнопку «Начать решать»
1 / 6
Вкладки
После выбора предмета необходимо выбрать на вкладке задания, варианты ЕГЭ, ОГЭ или другого теста, или теорию
2 / 6
Задания
Решай задания и записывай ответы. После 1-ой попытки
ты сможешь посмотреть решение
3 / 6
Статистика
Сбоку ты можешь посмотреть статистику и прогресс по предмету
4 / 6
Решение
Нажми, чтобы начать решать вариант. Как только ты перейдешь
на страницу, запустится счетчик времени, поэтому подготовь заранее все, что может тебе понадобиться
5 / 6
Отметки
Отмечай те статьи, что прочитал, чтобы было удобнее ориентироваться в оглавлении
6 / 6
Молодец!
Ты прошел обучение! Теперь ты знаешь как пользоваться сайтом
и можешь переходить к решению заданий
Решение задач по цитологии на применение знаний о генетическом коде
Учитель биологии МАОУ «Кваркенская СОШ» Безлюдная М. А.
Задачи по цитологии, которые встречаются в ЕГЭ, можно разбить на несколько типов. Они встречаются как в части 1 (задание 3), так и в части 2.
Мы с вами подробнее разберем 27 задание. Нас с вами интересуют задания по цитологии, которые учащиеся решают с применение знаний о генетическом коде.
Задание 27 включает задачи по цитологии, связанные с процессами реализации наследственной информации и делением клетки. Эти задачи хороши тем, что вопросы в них конкретны и точны. С другой стороны, они достаточно сложны и требуют глубокого понимания тех процессов, о которых идет речь. Важным моментом при решении этих заданий является объяснение выполняемых действий, особенно если в задаче так и написано: «Ответ поясните». Наличие пояснений позволяет проверяющему сделать вывод о понимании учащимся данной темы, а их отсутствие может привести к потере очень важного балла.
Задание 27 оценивается в три балла, которые начисляются в случае полностью верного решения. Поэтому, приступая к задаче, в первую очередь необходимо выделить все вопросы. Количество ответов должно им соответствовать, иначе можно также лишиться балла.
При решении ряда задач данного раздела необходимо пользоваться таблицей генетического кода. Правила пользования таблицей обычно указываются в задании, но лучше научиться этому заранее.
Задачи на количественные соотношения
при реализации наследственной информации:
При решении задач этого типа необходимо помнить и обязательно указывать в пояснениях следующее:
-
каждая аминокислота доставляется к рибосомам одной тРНК, следовательно, количество аминокислот в белке равно количеству молекул тРНК, участвовавших в синтезе белка;
-
каждая аминокислота кодируется тремя нуклеотидами (одним триплетом, или кодоном), поэтому количество кодирующих нуклеотидов всегда в три раза больше, а количество триплетов (кодонов) равно количеству аминокислот в белке;
-
каждая тРНК имеет антикодон, комплементарный кодону иРНК, поэтому количество антикодонов, а значит и в целом молекул тРНК равно количеству кодонов иРНК;
-
иРНК комплементарна одной из цепей ДНК, поэтому количество нуклеотидов иРНК равно количеству нуклеотидов ДНК. Количество триплетов, разумеется, также будет одинаковым.
Задача 1. В трансляции участвовало 75 молекул тРНК. Определите число аминокислот, входящих в состав синтезируемого белка, а также число триплетов и нуклеотидов в гене, который кодирует данный белок.
Решение.
-
Одна молекула тРНК доставляет к рибосоме одну аминокислоту. В трансляции участвовало 75 молекул тРНК, следовательно, в состав синтезированного белка входит 75 аминокислот.
-
Каждая аминокислота кодируется одним триплетом ДНК, поэтому участок ДНК, кодирующий данный белок, содержит 75 триплетов.
-
Каждый триплет — это три нуклеотида, следовательно, указанный участок ДНК содержит 75 х 3 = 225 нуклеотидов.
Ответ: 75 аминокислот, 75 триплетов ДНК, 225 нуклеотидов ДНК.
Задачи на построение молекулы иРНК, антикодонов тРНК и определение аминокислот в белке.
При решении задач этого типа необходимо помнить и обязательно указывать в пояснениях следующее:
-
нуклеотиды иРНК комплементарны нуклеотидам ДНК;
-
вместо тимина во всех видах РНК записывается урацил;
-
нуклеотиды иРНК пишутся подряд, без запятых, т. к. имеется в виду одна молекула;
-
антикодоны тРНК пишутся через запятую, т. к. каждый антикодон принадлежит отдельной молекуле тРНК;
-
аминокислоты находим по таблице генетического кода;
-
если дана таблица генетического кода для иРНК, значит, используем кодоны иРНК:
-
аминокислоты в белке пишутся через дефис, т. к. имеется в виду, что они уже соединились и образовали первичную структуру белка.
Задача 2. Фрагмент цепи ДНК имеет последовательность АЦГТТГЦЦЦААТ. Определите последовательность нуклеотидов иРНК, антикодоны тРНК и последовательность аминокислот в синтезируемом белке.
Решение.

Пояснения. иРНК строим комплементарно ДНК; антикодоны тРНК комплементарны кодонам иРНК; аминокислоты находим по кодонам иРНК, используя таблицу генетического кода.
Задания на определение аминокислотной последовательности в белке
до и после изменений в ДНК.
При решении задач этого типа главное правильно убрать или, наоборот, добавить в зависимости от условий указанный нуклеотид или, возможно, целый триплет.
Задача 3. С какой последовательности аминокислот начинается белок, если он закодирован такой последовательностью нуклеотидов: ГАЦЦГАТГТАТГАГА. Каким станет начало цепочки, если под влиянием облучения четвертый нуклеотид окажется выбитым из молекулы ДНК? Как это отразится на свойствах синтезируемого белка?
Решение.

2).Получаем измененную последовательность нуклеотидов. Для этого считаем слева направо, находим четвертый нуклеотид и убираем его. Оставшаяся последовательность будет на один нуклеотид короче, поэтому последний триплет будет неполным. Значит, и последовательность аминокислот будет короче на одну аминокислоту.

3).Первичная структура белка изменилась (изменилось число аминокислот и их последовательность), что отразится на пространственной структуре молекулы, а значит, и на ее свойствах и функциях.
Задачи на определение структуры тРНК и переносимой ее аминокислоты
При решении задач данного типа следует помнить следующее:
-
тРНК синтезируются прямо на матрице ДНК по принципу комплементарности и без участия иРНК (обычно это указывается в условии задачи);
-
указанный в условии триплет тРНК является антикодоном;
-
чтобы узнать, какую аминокислоту переносит тРНК, необходимо построить кодон иРНК, комплементарный антикодону тРНК;
-
по кодону иРНК с помощью таблицы генетического кода определяем аминокислоту.
Задача 4. Известно, что все виды РНК синтезируются на ДНК- матрице. Фрагмент молекулы ДНК, на которой синтезировался участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: ЦГЦГАЦГТГГТЦГАА. Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК. Ответ поясните.
Решение.

Задачи на количественное соотношение нуклеотидов в молекуле ДНК и на расчет числа водородных связей между ними
При решении подобных задач необходимо помнить:
-
количество адениловых (А) нуклеотидов равно количеству тими- диловых (Т), а количество гуаниловых (Г) — количеству цитиди- ловых (Ц);
-
между аденином и тимином две водородные связи, между гуанином и цитозином — три.
Задача 5. Фрагмент молекулы ДНК состоит из 2000 нуклеотидов, при этом количество гуаниловых в полтора раза больше тими- диловых. Сколько нуклеотидов А, Т, Г и Ц содержится в данном фрагменте ДНК?
Решение.
-
Примем за X число тимидиловых нуклеотидов, тогда число аде- ниловых — тоже X, число гуаниловых — 1,5Х, число цитидиловых тоже 1,5Х.
-
X + X + 1,5Х + 1,5Х = 2000, X = 400.
-
Следовательно, количество Т = 400, А = 400, Г = 600, Ц = 600.
-
Ответ: Т = 400, А = 400, Г = 600, Ц = 600.
Задача 6. Фрагмент цепи ДНК имеет последовательность АЦТАТАГЦА. Определите нуклеотидную последовательность второй цепи и общее количество водородных связей, которые образуются между двумя цепями.
Решение.
2)Считаем количество пар аденин — тимин и умножаем на 2, т. к. между аденином и тимином образуются две водородные связи. 6×2 = 12 водородных связей.
3) Считаем количество пар гуанин — цитозин и умножаем на 3, т. к. между гуанином и цитозином образуются три водородные связи. 3×3 = 9 водородных связей.
4) Общее количество водородных связей в этом фрагменте 12 + 9 = 21.
Ответ: 21 водородная связь
В 2020 году появились следующие виды задач:
Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (верхняя цепь смысловая, нижняя транскрибируемая).
5’-ЦГААГГТГАЦААТГТ-3’
3’-ГЦТТЦЦАЦТГТТАЦА-5’
Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, обозначьте 5’ и 3’ концы этого фрагмента и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5’ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.
Схема решения задачи включает:
1. Нуклеотидная последовательность участка тРНК (верхняя цепь по условию смысловая):
ДНК: 3’-ГЦТ-ТЦЦ-АЦТ-ГТТ-АЦА-5’
тРНК: 5’-ЦГА-АГГ-УГА-ЦАА-УГУ-3’
2. Нуклеотидная последовательность антикодона УГА (по условию третий триплет) соответствует кодону на иРНК УЦА;
3. По таблице генетического кода этому кодону соответствует аминокислота -Сер, которую будет переносить данная тРНК.
Примечание.
1. По фрагменту молекулы ДНК, определяем нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте.
ДНК: 3’-ГЦТ-ТЦЦ-АЦТ-ГТТ-АЦА-5’
тРНК: 5’-ЦГА-АГГ-УГА-ЦАА-УГУ-3’
На ДНК с 3′ конца строится тРНК с 5′ — конца.
2. Определяем кодон иРНК, который будет комплементарен триплету тРНК в процессе биосинтеза белка.
Если третий триплет соответствует антикодону тРНК 5’- УГА-3’ , для нахождения иРНК сначала произведем запись в обратном порядке от 3’ → к 5’ получим 3’-АГУ- 5’, определяем иРНК: 5’–УЦА–3′.
3. По таблице генетического кода кодону 5′-УЦА-3′ соответствует аминокислота -Сер, которую будет переносить данная тРНК.
Пояснение к строению ДНК в условии:
Двойная спираль ДНК. Две антипараллельные ( 5’- конец одной цепи располагается напротив 3’- конца другой) комплементарные цепи полинуклеотидов, соединенной водородными связями в парах А-Т и Г-Ц, образуют двухцепочечную молекулу ДНК. Молекула ДНК спирально закручена вокруг своей оси. На один виток ДНК приходится приблизительно 10 пар оснований.
Смысловая цепь ДНК — Последовательность нуклеотидов в цепи кодирует наследственную информацию.
Транскрибируемая (антисмысловая) цепь по сути является копией смысловой цепи ДНК. Служит матрицей для синтеза иРНК (информацию о первичной структуре белка), тРНК, рРНК, регуляторной РНК.
Задача 2.
Фрагмент начала гена имеет следующую последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):
5’ − ТААТГАЦЦГЦАТАТАТЦЦАТ −3’
3’ − АТТАЦТГГЦГТАТАТАГГТА −5’
Ген содержит информативную и неинформативную части для трансляции. Информативная часть гена начинается с триплета, кодирующего аминокислоту Мет. С какого нуклеотида начинается информативная часть гена? Определите последовательность аминокислот во фрагменте полипептидной цепи. Ответ поясните. Для выполнения задания используйте таблицу генетического кода.
Ответ:
1. По принципу комплементарности находим цепь иРНК:
5’ − УААУГАЦЦГЦАУАУАУЦЦАУ − 3’.
2. Информативная часть начинается с третьего нуклеотида Т на ДНК, так как кодон АУГ кодирует аминокислоту Мет.
3. Последовательность аминокислот находим по кодонам иРНК в таблице генетического кода:
Мет-Тре-Ала-Тир-Иле-Гис.
Примечание. Алгоритм выполнения задания.
1. По принципу комплементарности на основе транскрибируемой цепи ДНК находим цепь иРНК:
ДНК 3’ − АТТАЦТГГЦГТАТАТАГГТА −5’
иРНК 5’ − УААУГАЦЦГЦАУАУАУЦЦАУ − 3’
2. По условию сказано, что синтез начинается с кодона, которым закодирована аминокислота МЕТ, по таблице генетического находим триплет иРНК, который кодирует МЕТ: АУГ (5’ −АУГ− 3’)
По принципу комплементарности определяем, что информативная часть гена в транскрибируемой цепи ДНК будет начинаться с нуклеотида Т (триплет 3’−ТАЦ−5’)
В ответ: Информативная часть начинается с третьего нуклеотида Т на ДНК, так как кодон АУГ кодирует аминокислоту Мет.
3. Последовательность аминокислот находим по кодонам иРНК в таблице генетического кода (начиная с триплета АУГ, т.е. «откидываем» два нуклеотида):
иРНК 5’ − АУГ-АЦЦ-ГЦА-УАУ-АУЦ-ЦАУ − 3’
белок: Мет-Тре-Ала-Тир-Иле-Гис
На чтение 3 мин Просмотров 2.7к. Опубликовано 18 октября, 2019
Итак, рассмотрим задачи ЕГЭ, относящиеся к генетическому коду клетки. Вы можете узнать эти задачи по вопросу об аминокислотных остатках, триплетах, нуклеотидах.
Содержание
- Задача 1.
- Задача 2.
- Задача 3.
- Задача 4.
- Задача 5.
- Задача 6.
- Задача 7.
- Задача 8.
- Задача 9.
- Задача 10.
Задача 1.
В синтезе белка принимает участие молекула иРНК, фрагмент которой содержит 33 нуклеотидных остатка. Определите число нуклеотидных остатков в участке матричной цепи ДНК.
Ответ: 33.
Решение: По принципу комлементарности иРНК синтезируется на матричной цепи ДНК, число нуклеотидов будет таким же.
Задача 2.
Участок полипептида состоит из 28 аминокислотных остатков. Определите число нуклеотидов в участке иРНК, содержащего информацию о первичной структуре белка.
Ответ: 84.
Решение: Одна аминокислота кодируется тремя нуклеотидами (триплетом), поэтому верный ответ 28 *3 = 84.
Задача 3.
Какое число аминокислот зашифровано в участке гена, содержащего 129 нуклеотидных остатков?
Ответ: 43
Решение: 1 аминокислота кодируется тремя нуклеотидами, поэтому количество аминокислот равно: 129 / 3 = 43.
Задача 4.
Какое число тРНК приняли участие в синтезе белка, который включает 130 аминокислот? В ответе напишите соответствующее число.
Ответ: 130.
Решение: 1 тРНК переносит 1 аминокислоту, поэтому их количество одинаково.
Задача 5.
Сколько нуклеотидов составляют один стоп-кодон иРНК?
Ответ: 3
Решение: Любой кодон иРНК состоит из трёх нуклеотидов, в том числе и стоп-кодон.
Задача 6.
Сколько нуклеотидов в участке гена кодируют фрагмент белка из 25 аминокислотных остатков? В ответ запишите только соответствующее число.
Ответ:75
Решение: Каждую аминокислоту кодирует три нуклеотида (триплет), значит, 25 аминокислот кодирует 75 нуклеотидов.
Задача 7.
Сколько аминокислот кодирует 900 нуклеотидов? В ответ запишите только соответствующее число.
Ответ: 300
Решение: Одну аминокислоту кодируют 3 нуклеотида, значит, 900 нуклеотидов = 300 триплетов = 300 аминокислот.
Задача 8.
В молекуле ДНК количество нуклеотидов с гуанином составляет 20% от общего числа. Сколько нуклеотидов в % с тимином в этой молекуле. В ответ запишите только соответствующее число.
Ответ: 30%
Решение: По правилу комплементарности количество гуанина равно количеству цитозина, значит, 20% (Г + Ц = 40%), на тимин и аденин остается 60%, их так же равное количество, значит, по 30% (А = Т = 30%).
Задача 9.
Какой процент нуклеотидов с цитозином содержит ДНК, если доля её адениновых нуклеотидов составляет 10% от общего числа. В ответ запишите только соответствующее число.
Ответ: 40%.
Решение: 10% аденина = 10% тимина по правилу комплементарности. Остается 80% на цитозин и гуанин. А так как их равное количество, то 40% цитозина = 40% гуанина.
Задача 10.
Какое число нуклеотидов в гене кодирует первичную структуру белка, состоящего из 300 аминокислот. В ответ запишите только соответствующее число.
Ответ: 900.
Решение: Каждую аминокислоту кодирует три нуклеотида (триплет). Значит, 300 аминокислот кодирует 900 нуклеотидов.
Таким образом, понятно как решать задачи ЕГЭ по биологии по кодированию генетического кода. Каждую аминокислоту кодирует три нуклеотида. Если спрашивают сколько аминокислот кодирует N количество нуклеотидов, то вам нужно это число N разделить на 3.
Если спрашивают, сколько нуклеотидов нужно для кодирования N аминокислот. То вам нужно N умножить на 3, так как на одну кислоту приходится 3 нуклеотида.
План урока:
Генетическая информация
Решение задач по расшифровке генетического кода
Биосинтез белка
Генетическая информация
Население Земли составляет более 7,6 млрд.человек, но найти одинаковых людей просто невозможно. Каждый человек обладает уникальными особенностями, которые сформировались в процессе его развития. У любого организма есть свой генотип, состоящий из определенного набора генов, которые определяют свойства организма или признаки.Все эти факторы являются решающими при формировании и развитии живых существ.
Носителем генетической информации считаются нуклеиновые кислоты. Подробно мы с ними знакомились в 5 уроке «Химический состав клетки».
На молекуле ДНК осуществляется хранение генетической информации, которая записана на ней в виде последовательности нуклеотидов.
Определенный участок ДНК, который выполняет функцию хранения генетической информации,получил название ген.
Информация о синтезе определенного вида белков записана на ДНК в виде сообщений, закодированных последовательностью нуклеотидов. Такие зашифрованные сообщения получили название генетического кода организма.
Генетический код разных организмов обладает рядом общих свойств. Остановимся подробнее на каждом из них.
1. Триплетность – каждая аминокислота кодируется сочетанием из трех расположенных нуклеотидов, получивших название кодон или триплет. Соответственно, единицей генетического кода будет триплет.
Мы уже знаем, что генетическая информация организма записана на молекуле ДНК посредством сочетания четырех нуклеотидов – аденин (А), гуанин (Г), цитозин (Ц), тимин (Т). Нетрудно посчитать, что число возможных комбинаций из четырех нуклеотидов по три составит 64, этого сочетания вполне достаточно для кодирования 20 аминокислот, входящих в состав белка. Вспомнить строение белка вам поможет урок 5 «Химический состав клетки». В настоящее время установлены кодоны для всех известных аминокислот и составлена таблица генетического кода. В следующем пункте остановимся подробнее на правилах пользования данной таблицы и решении задач по расшифровке генетического кода.
2. Код является множественным, или «вырожденным», в таком случае одна и та же аминокислота способна шифроваться несколькими триплетами. Избыточность генетического кода имеет значение для повышения надежности передачи генетической информации.
Специфичность генетического кода заключается в том, что каждый триплет шифрует только одну аминокислоту.
4. Код считается неперекрывающимся, при этом один и тот же нуклеотид не способен содержаться в составе двух рядом расположенных триплетов.
5. В генетическом коде отсутствуют запятые, то есть если произойдет выпадение одного нуклеотида, его место займет ближайший нуклеотид из соседнего кодона, благодаря чему изменится весь порядок считывания. Данный сбой приводит к появлению различных мутаций на генном уровне. Однако, молекула ДНК весьма длинная и складывается из миллионов нуклеотидных пар, поэтому генетическая информация о структуре белка должна быть разграничена. И действительно, существуют триплеты-инициаторы синтеза белковой молекулы и триплеты, которые прекращают синтез белка. Данные кодоны служат своеобразными знаками препинания генетического кода.
6. Нуклеотидный код является единым для всех живых организмов, в этом проявляется его универсальность. Это свойство кода считается убедительным доказательством общности происхождения живой природы.
Из всего вышесказанного можно сделать вывод о том, что такое генетической информации.
Генетической информации присущи определенные свойства:
Решение задач по расшифровке генетического кода
В молекулярной биологии широко используется таблица генетического кода. Ее применяют для определения последовательности аминокислот в белке.
Используя таблицу для расшифровки генетического кода, следует вспомнить сокращенные названия аминокислот, которые нам понадобятся при решении задач.
Рассмотри алгоритм действий при решении задач на определение генетического кода.
1. Разделим участок молекулы ДНК на отдельные триплеты: ААГ – ЦТТ – ТГЦ – ЦАГ.
2. Первый триплет начинается с аденина А ищем его в первом горизонтальном столбце. Учитываем, что нуклеотиды ДНК расположены в таблице генетического кода в скобках. Второе основание тоже аденинА расположен во втором горизонтальном столбце. Третье основание – гуанин Г, расположен в последнем столбце таблицы генетического кода. На пересечении столбцов мы находим необходимую аминокислоту – Фен, используя таблицу сокращений аминокислот, узнаем, что это фенилаланин.
3. Таким же способом определяем аминокислоты ещё для трех триплетов.
В итоге получаем для триплета ЦТТ – глутаминовая кислота, ТГЦ кодирует треонин, а ЦАГ – валин. Тогда у нас получилась следующая последовательность аминокислот: Фен – Глу – Тре – Вал. Соответственно, из данного отрезка молекулы ДНК образуется белок, состоящий из полученной последовательности аминокислот. Биосинтез белка сложный, многоступенчатый процесс, который рассмотрим в следующем пункте.
Биосинтез белка
Структура любого белка зашифрована в ДНК, которая не участвует в его биосинтезе. Данная молекула работает лишь матрицей для создания иРНК. Впервые в живых организмах мы сталкиваемся с реакциями матричного синтеза. Для неживой природы такие процессы не характерны. Такие реакции происходят очень быстро и точно. Рассмотрим их на примере сборки белковой молекулы.
Биосинтез белка происходит на рибосомах, пребывающих в большей степени в цитоплазме. Значит, с целью передачи генетической информации с ДНК к зоне формирования белка требуется проводник. В качестве его выступает иРНК.
Биосинтез белка включает в себя два последовательных этапа. Остановимся подробнее на каждой из этих стадий — транскрипции и трансляции белка.
1. Непосредственно образованию белка предшествует матричный синтез иРНК, который именуется транскрипция.
Установлено, что РНК синтезируется в ядре клетки на одной из цепочек ДНК согласно принципу комплиментарности. Подробно описан данный принцип в 5 уроке «Химический состав клетки».
Процесс транскрипции белка совершается никак не на целой молекуле ДНК, а только на небольшой ее зоне. Активная роль здесь отводится ферменту РНК-полимераза, которая способствует формированию РНК и распознает «знаки препинания». Транскрипция РНК, нужной с целью формирования белка, происходит в несколько последовательных этапов.
Сначала при содействии ферментов разрываются водородные связи в азотистых основаниях цепочки ДНК. В результате этого нити ДНК разъединяются. В этом месте начинается процесс транскрипции РНК – передача данных с ДНК, необходимых в синтезе определенного белка. Фермент перемещается по цепи ДНК и связывает между собой нуклеотиды в увеличивающуюся цепь иРНК. При биосинтезе белка транскрипция способна совершаться синхронно на некоторых генах одной хромосомы, а также на генах, размещенных на разных хромосомах. В следствие обмена генетической информацией формируется иРНК с последовательностью нуклеотидов, являющихся верной копией матрицы ДНК.
Синтезированная в ядре иРНК отделяется от своей матрицы и через поры ядерной оболочки поступает в цитоплазму, где прикрепляется к малой субъединице рибосом.
На специальных генах формируются и два других типа РНК – тРНК и рРНК. Начало и конец синтеза всех типов РНК строго зафиксирован специальными триплетами, выполняющими функцию «знаков препинания».
2. Вторым этапом синтеза белка считается трансляция. Проистекают данные реакции в рибосомах, куда доставляется информация о структуре белка на иРНК. Процесс трансляции заключается в переносе и реализации генетической информации в виде синтеза белка.
Зрелые молекулы иРНК, попав в цитоплазму, присоединяются к рибосомам и затем постепенно протягиваются через ее тело. В каждый момент биосинтеза белка в клетке внутри рибосомы находится незначительный участок иРНК.
Аминокислоты доставляются в рибосомы различными тРНК, которых в клетке несколько десятков.
Трансляция белка наступает со стартового кодона АУГ. Из этой зоны всякая рибосома прерывисто, триплет за триплетом, перемещается по иРНК, что сопровождается увеличением полипептидной цепочки. Количество аминокислот в белке соответствует числу триплетов иРНК.
Встраивание аминокислот исполняется при содействии тРНК – главных агентов биосинтеза белка в организме.
Цепь тРНК своей конфигурацией напоминает листик клевера. На вершине размещается особенный триплет – антикодон, который прикрепляется согласно принципу комплиментарности к конкретному кодону иРНК.
Рассмотрим последовательность ключевых процессов данного этапа биосинтеза белка.
Молекула тРНК, несущая первостепенную аминокислоту, подходит к рибосоме и примыкает антикодоном к комплиментарному ей триплету. Впоследствии к данной рибосоме присоединяется второй комплекс из тРНК и аминокислоты. В итоге между аминокислотами зарождается пептидная связь.
Первая тРНК, сбросив аминокислоту, оставляет рибосому. Затем к сформировавшейся цепочке прикрепляется третья аминокислота, доставленная в рибосому собственной тРНК, потом четвертая и так далее.
Течение биосинтеза белка не прекращается вплоть до тех пор, пока рибосома не достигнет одного из трех стоп-кодонов – УАА, УАГ или УГА.
На этом образование данной белковой цепочки прекращается, а иРНК под действием ферментов распадаются на нуклеотиды.
Всякий этап биосинтеза белка ускоряется подходящим ферментом и снабжается энергией за счет расщепления АТФ.
Большую роль в транспорте белка после его биосинтеза играет эндоплазматическая сеть. Образовавшиеся белки поступают в ее каналы, по которым перемещаются к определенным участкам клетки.
Синтез белковых молекул протекает непрерывно и с большой скоростью: в одну минуту образуется примерно 50-60 тысяч пептидных связей. Синтез одной молекулы длится всего 3-4 секунды.
Для сравнения можно привести пример синтезированного искусственно белка инсулина. Эта молекула состоит из 51 аминокислотного остатка, а для его синтеза потребовалось провести около 5000 операций. В этой работе принимали участие 10 человек в течении трех лет. Как видите, в лабораторных условиях синтез белка требует огромных усилий, времени и средств.
В результате биосинтеза половина белков нашего тела обновляются за 80 дней. За всю свою жизнь человек обновляет весь свой белок около 200 раз.
Синтез белка характерен только для живых существ, значит, является основным отражением свойств живого.




















