Как найти абсциссу точки лежащей на прямой

Содержание:

Общее уравнение прямой:

Пусть на плоскости дана декартова система координат. Движение точки с произвольными координатами х и у по этой плоскости порождает линию.

Определение: Любое соотношение Прямая линия на плоскости и в пространстве с примерами решения

Определение: Порядок линии определяется по высшему показателю степени переменных х и у или по сумме показателей степени в произведении этих величин.

Пример:

а) 2х + Зу-5 = 0 — линия первого порядка; точка A(l; 1) удовлетворяет этому соотношению, а точка, например, В(1; 0) — ему не удовлетворяет;

б) Прямая линия на плоскости и в пространстве с примерами решения

в) Прямая линия на плоскости и в пространстве с примерами решения — линии второго порядка.

Рассмотрим другое определение линии:

Определение: Геометрическое место точек, координаты которых удовлетворяют уравнению F(x; у)=0, называется линией, а само уравнение F(x; у) = 0 — уравнением линии.

Определение: Общим уравнением прямой называется уравнение первого порядка вида Прямая линия на плоскости и в пространстве с примерами решения

Рассмотрим частные случаи этого уравнения:

а) С = 0; Прямая линия на плоскости и в пространстве с примерами решения — прямая проходит начало системы координат (Рис. 20):

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 20. Прямая, проходящая через начало координат.

б) 5 = 0; Ах+С=0 — прямая проходит параллельно оси ординат Оу (Рис. 21):

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 21. Прямая, проходящая параллельно оси ординат Оу.

в) А = 0; Ву+С=0 — прямая проходит параллельно оси абсцисс Ох (Рис. 22):

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 22. Прямая, проходящая параллельно оси абсцисс Ох.

Виды уравнений прямой

1. Уравнение прямой с угловым коэффициентом. Пусть дано общее уравнение прямой Прямая линия на плоскости и в пространстве с примерами решения в котором коэффициент Прямая линия на плоскости и в пространстве с примерами решения Разрешим общее уравнение прямой относительно переменной Прямая линия на плоскости и в пространстве с примерами решения Обозначим через Прямая линия на плоскости и в пространстве с примерами решения тогда уравнение примет вид Прямая линия на плоскости и в пространстве с примерами решения которое называется уравнением прямой с угловым коэффициентом. Выясним геометрический смысл параметров Прямая линия на плоскости и в пространстве с примерами решения При х = 0, у = b, т.е. параметр b показывает, какой величины отрезок отсекает прямая на оси ординат, считая от начала отсчета. При Прямая линия на плоскости и в пространстве с примерами решения т.е. прямая отсекает на оси абсцисс отрезок к Прямая линия на плоскости и в пространстве с примерами решения (Рис. 23, для определенности принято, что Прямая линия на плоскости и в пространстве с примерами решения):

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 23. Отрезки, отсекаемые прямой на координатных осях.

Из рисунка видно, что Прямая линия на плоскости и в пространстве с примерами решения т.е. угловой коэффициент k определяет тангенс угла наклона прямой к положительному направлению оси абсцисс Ох.

2. Уравнение прямой в отрезках.

Пусть в общем уравнении прямой параметр Прямая линия на плоскости и в пространстве с примерами решения Выполним следующие преобразования Прямая линия на плоскости и в пространстве с примерами решения

Обозначим через Прямая линия на плоскости и в пространстве с примерами решения тогда последнее равенство перепишется в виде Прямая линия на плоскости и в пространстве с примерами решения. которое называется уравнением прямой в отрезках. Выясним геометрический смысл величин m и n (Рис. 24). При х=0, у=n, т.е. параметр n показывает, какой величины отрезок отсекает прямая на оси ординат, считая от начала отсчета.

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 24. Отрезки, отсекаемые прямой на координатных осях.

При у=о, х=m, т.е. прямая отсекает на оси абсцисс отрезок m. Следовательно, прямая проходит через 2 точки: Прямая линия на плоскости и в пространстве с примерами решения

3. Уравнение прямой, проходящей через две заданные точки. Пусть дано общее уравнение прямой Ах + Ву + С = 0, которая проходит через две известные точки Прямая линия на плоскости и в пространстве с примерами решения Так как точки Прямая линия на плоскости и в пространстве с примерами решения лежат на прямой, то их координаты удовлетворяют общему уравнению прямой, т.е. выполняются равенства Прямая линия на плоскости и в пространстве с примерами решения Вычтем первое из этих равенств из общего уравнения прямой и из второго равенства:

Прямая линия на плоскости и в пространстве с примерами решения

Пусть Прямая линия на плоскости и в пространстве с примерами решения тогда полученные равенства можно преобразовать к виду Прямая линия на плоскости и в пространстве с примерами решения Отсюда находим, что Прямая линия на плоскости и в пространстве с примерами решения или Прямая линия на плоскости и в пространстве с примерами решения Полученное уравнение называется уравнением прямой, проходящей через две заданные точки Прямая линия на плоскости и в пространстве с примерами решения и Прямая линия на плоскости и в пространстве с примерами решения

4. Уравнение прямой, проходящей через заданную точку Прямая линия на плоскости и в пространстве с примерами решенияпараллельно заданному вектору Прямая линия на плоскости и в пространстве с примерами решения (каноническое уравнение прямой). Пусть прямая проходит через заданную точку Прямая линия на плоскости и в пространстве с примерами решения параллельно вектору Прямая линия на плоскости и в пространстве с примерами решения

Определение: Вектор Прямая линия на плоскости и в пространстве с примерами решения называется направляющим вектором прямой. Возьмем на прямой произвольную точку Прямая линия на плоскости и в пространстве с примерами решения и создадим вектор Прямая линия на плоскости и в пространстве с примерами решения Прямая линия на плоскости и в пространстве с примерами решения (Рис. 25):

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 25. Прямая, проходящая через данную точку параллельно направляющему вектору.

В силу того, что вектора Прямая линия на плоскости и в пространстве с примерами решения коллинеарны, то воспользуемся первым условием коллинеарности: отношения соответствующих проекций равны между собой Прямая линия на плоскости и в пространстве с примерами решения

Определение: Полученное уравнение называется либо уравнением, проходящим через заданную точку параллельно направляющему вектору, либо каноническим уравнением прямой.

5. Параметрическое уравнение прямой. Если каждую дробь в каноническом уравнении прямой приравнять некоторому параметру t, то получим параметрическое уравнение прямой Прямая линия на плоскости и в пространстве с примерами решения

Основные задачи о прямой на плоскости

1. Координаты точки пересечения двух прямых. Пусть две прямые заданы общими уравнениями Прямая линия на плоскости и в пространстве с примерами решения Требуется найти координаты точки пересечения этих прямых. Для того чтобы вычислить координаты точки пересечения М(х; у), необходимо решить вышеприведенную систему линейных алгебраических уравнений, так как координаты точки М(х; у) должны одновременно удовлетворять уравнениям прямых Прямая линия на плоскости и в пространстве с примерами решения

2. Угол между двумя пересекающимися прямыми. Пусть даны две пересекающиеся прямые, заданные уравнениями с угловыми коэффициентами

Прямая линия на плоскости и в пространстве с примерами решения

Требуется найти угол между этими прямыми (Рис. 26):

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 26. Угол между двумя прямыми.

Из рисунка видно, что Прямая линия на плоскости и в пространстве с примерами решения ВычислимПрямая линия на плоскости и в пространстве с примерами решения

Прямая линия на плоскости и в пространстве с примерами решения

Наименьший угол между пересекающимися прямыми определим формулой Прямая линия на плоскости и в пространстве с примерами решения Из полученной формулы видно:

Отсюда следует условие перпендикулярности прямых: угловые коэффициенты прямых связаны между собой соотношением Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Определить угол между прямыми Прямая линия на плоскости и в пространстве с примерами решения

Решение:

В силу того, что Прямая линия на плоскости и в пространстве с примерами решения что прямые параллельны, следовательно, Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Выяснить взаимное расположение прямых Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Так как угловые коэффициенты Прямая линия на плоскости и в пространстве с примерами решения и связаны между собой соотношением Прямая линия на плоскости и в пространстве с примерами решения то прямые взаимно перпендикулярны.

3. Расстояние от точки до прямой. Расстояние от точки до прямой определятся вдоль перпендикуляра, опущенного из точки Прямая линия на плоскости и в пространстве с примерами решения на прямую Прямая линия на плоскости и в пространстве с примерами решения Если прямая Прямая линия на плоскости и в пространстве с примерами решения задана общим уравнением, то расстояние от точки до прямой определяется формулой: Прямая линия на плоскости и в пространстве с примерами решения

Если прямая Прямая линия на плоскости и в пространстве с примерами решения задана уравнением прямой с угловым коэффициентом, то расстояние от точки до прямой определяется формулой: Прямая линия на плоскости и в пространстве с примерами решения

Прямая линия на плоскости и в пространстве. Системы координат на плоскости

Рассмотрим произвольную прямую. Выберем на этой прямой начальную точку, обозначаемую буквой О, определим положительное направление, выберем некоторый отрезок в качестве линейной единицы, благодаря чему прямая станет осью. После этого условимся называть координатой любой точки М на этой оси величину отрезка Прямая линия на плоскости и в пространстве с примерами решения. Точку О будем называть началом координат; ее собственная координата равна нулю. Так вводятся координаты на прямой.

Декартова прямоугольная система координат определяется заданием линейной единицы для измерения длин и двух взаимно перпендикулярных осей, занумерованных в каком-нибудь порядке, т.е. указано, какая из них считается первой, а какая — второй. Точка пересечения осей называется началом координат и обозначается через О, а сами оси — координатными осями, причем первую из них называют также осью абсцисс и обозначают через Ох, а вторую — осью ординат, обозначаемую Оу.

Пусть М- произвольная точка плоскости. Спроектируем точку M на координатные оси, т.е., проведем через М перпендикуляры к осям Ох и Оу; основания этих перпендикуляров обозначим соответственно Прямая линия на плоскости и в пространстве с примерами решения.

Координатами точки М в заданной системе называются числа Прямая линия на плоскости и в пространстве с примерами решения, обозначающие величину отрезка Прямая линия на плоскости и в пространстве с примерами решенияоси абсцисс и величину отрезка Прямая линия на плоскости и в пространстве с примерами решения оси ординат, где х — первая координата, а у- вторая координата точки М (рис.7.1). Символически это записывается в виде М(х, у). Прямая линия на плоскости и в пространстве с примерами решения

Если задана декартова прямоугольная система координат, то каждая точка М плоскости в этой системе имеет одну вполне определенную пару координат х, у — М(х, у). И обратно, для любых х и у на плоскости найдется одна вполне определенная точка с абсциссой х и ординатой у.

На рис. 7.2 положение точки Р полностью определяется ее координатами (2;3). Прямая линия на плоскости и в пространстве с примерами решения

Две координатные оси разделяют всю плоскость на четыре части, называемыми координатными плоскостями, определяемыми соответственно:

Декартова прямоугольная система координат является наиболее употребительной. Однако, в отдельных случаях могут оказаться более удобными или косоугольная декартова или полярная системы координат.

Косоугольная система координат от прямоугольной декартовой системы координат отличается только произвольным углом между осями координат.

Полярная система координат определяется заданием некоторой точки О, называемой полюсом, исходящего из этой точки луча OA, называемого полярной осью, масштаба для измерения длин и направления- вращения в плоскости, считаемого положительным (рис. 7.3). Прямая линия на плоскости и в пространстве с примерами решения

Каждая точка М в полярной системе координат задается парой координат Прямая линия на плоскости и в пространстве с примерами решения.

Декартова прямоугольная система координат связана с полярной системой формулами: Прямая линия на плоскости и в пространстве с примерами решения

Основным инструментом аналитической геометрии служит формула для вычисления расстояния между двумя точкамиПрямая линия на плоскости и в пространстве с примерами решенияи Прямая линия на плоскости и в пространстве с примерами решения. Числа Прямая линия на плоскости и в пространстве с примерами решениямогут быть любыми действительными числами, положительными, отрицательными или 0. На рис. 7.4 все числа выбраны положительными. Проведем через точку Прямая линия на плоскости и в пространстве с примерами решения горизонтальную прямую, а через точку Прямая линия на плоскости и в пространстве с примерами решения — вертикальную. Пусть R -точка их пересечения. Тогда по теореме Пифагора

Прямая линия на плоскости и в пространстве с примерами решения или Прямая линия на плоскости и в пространстве с примерами решения (7.1.1)

Это и есть формула для вычисления расстояния между двумя точками. Прямая линия на плоскости и в пространстве с примерами решения

Важно иметь в виду, что эта формула остается в силе независимо от того, как расположены точки Прямая линия на плоскости и в пространстве с примерами решения. Например, если точка Прямая линия на плоскости и в пространстве с примерами решения расположена ниже точки Прямая линия на плоскости и в пространстве с примерами решенияи справа от нес, как на рис. 7.5, то отрезок Прямая линия на плоскости и в пространстве с примерами решения можно считать равныму Прямая линия на плоскости и в пространстве с примерами решения.

Расстояние между точками, вычисляемое по формуле (7.1.1), от этого не изменится, так как Прямая линия на плоскости и в пространстве с примерами решения. Заметим, что, так как величина Прямая линия на плоскости и в пространстве с примерами решения в этом случае отрицательна, то разность Прямая линия на плоскости и в пространстве с примерами решения больше, чемПрямая линия на плоскости и в пространстве с примерами решения

Прямая линия на плоскости и в пространстве с примерами решения

Если обозначить через Прямая линия на плоскости и в пространстве с примерами решения угол, образованный положительным направлением оси абсцисс и отрезком Прямая линия на плоскости и в пространстве с примерами решения , то формулы

Прямая линия на плоскости и в пространстве с примерами решения

выражают проекции произвольного отрезка на координатные оси через его длину и полярный угол. Из формул (7.1.2) получаем формулы:

Прямая линия на плоскости и в пространстве с примерами решения

позволяющие определить полярный угол отрезка по координатам его конца и начала. Кроме того, если u — произвольная ось, аПрямая линия на плоскости и в пространстве с примерами решения — угол наклона отрезкаПрямая линия на плоскости и в пространстве с примерами решения к этой оси, то проекция отрезка на ось равна его длине, умноженной на косинус угла наклона к этой оси:

Прямая линия на плоскости и в пространстве с примерами решения.

Пусть на плоскости даны две произвольные точки, из которых одна считается первой, другая — второй. Обозначим их в заданном порядке через Прямая линия на плоскости и в пространстве с примерами решения. Проведем через данные точки ось u. Пусть М- еще одна точка оси и, расположенная на ней как угодно, но не совпадает с точкой Прямая линия на плоскости и в пространстве с примерами решения.

Определение 7.1.1. Число Прямая линия на плоскости и в пространстве с примерами решенияопределяемое равенствомПрямая линия на плоскости и в пространстве с примерами решения где Прямая линия на плоскости и в пространстве с примерами решения— величины направленных отрезков Прямая линия на плоскости и в пространстве с примерами решения оси u, называется отношением, в котором точка М делит направленный отрезок Прямая линия на плоскости и в пространстве с примерами решения .

Число Прямая линия на плоскости и в пространстве с примерами решения не зависит от направления оси и от масштаба, т.к. при изменении этих параметров будут одновременно меняться величины Прямая линия на плоскости и в пространстве с примерами решения . Кроме того, Прямая линия на плоскости и в пространстве с примерами решения будет положительно, если Мнаходится между точками Прямая линия на плоскости и в пространстве с примерами решения если же М вне отрезка Прямая линия на плоскости и в пространстве с примерами решения , то Прямая линия на плоскости и в пространстве с примерами решения -отрицательное.

Задача о делении отрезка в данном отношении формулируется следующим образом:

Считая известными координаты двух точек Прямая линия на плоскости и в пространстве с примерами решения и Прямая линия на плоскости и в пространстве с примерами решенияПрямая линия на плоскости и в пространстве с примерами решения и отношение Прямая линия на плоскости и в пространстве с примерами решения в котором некоторая неизвестная точка М делит отрезок Прямая линия на плоскости и в пространстве с примерами решения, найти координаты точки М.

Решение задачи определяется следующей теоремой.

Теорема 7.1.1. Если точка М(х, у) делит направленный отрезок Прямая линия на плоскости и в пространстве с примерами решения в отношении Прямая линия на плоскости и в пространстве с примерами решения то координаты этой точки выражаются формулами:

Прямая линия на плоскости и в пространстве с примерами решения

Доказательство:

Спроектируем точки Прямая линия на плоскости и в пространстве с примерами решения на ось Ох и обозначим их проекции соответственно через Прямая линия на плоскости и в пространстве с примерами решения (рис. 7.6). На основании теоремы о пропорциональности отрезков прямых, заключенных между параллельными прямыми (Если две прямые пересечь тремя параллельными прямыми, то отношение двух отрезков, получившихся на одной прямой, равно отношению двух соответствующих отрезков другой прямой), имеем:

Прямая линия на плоскости и в пространстве с примерами решения

Подставив в (7.1.4) величины отрезков Прямая линия на плоскости и в пространстве с примерами решенияи

Прямая линия на плоскости и в пространстве с примерами решения, получимПрямая линия на плоскости и в пространстве с примерами решения

Прямая линия на плоскости и в пространстве с примерами решения

Разрешая это уравнение относительно х, находим: Прямая линия на плоскости и в пространстве с примерами решения

Вторая формула (7.1.3) получается аналогично. Прямая линия на плоскости и в пространстве с примерами решения

Если Прямая линия на плоскости и в пространстве с примерами решения — две произвольные точки и М(х,y) —

середина отрезкаПрямая линия на плоскости и в пространстве с примерами решения , то Прямая линия на плоскости и в пространстве с примерами решения. Эти формулы

получаются из (7.1.3) при Прямая линия на плоскости и в пространстве с примерами решения.

Основная теорема о прямой линии на плоскости

Предположим, что в данной плоскости задана прямоугольная система координат и некоторая прямая l.

Всякий ненулевой вектор, коллинеарный данной прямой, называется её направляющим вектором. Всякие два направляющих вектора Прямая линия на плоскости и в пространстве с примерами решения одной и той же прямой коллинеарны между собой, т.е.

Прямая линия на плоскости и в пространстве с примерами решения, .

Для всех направляющих векторов Прямая линия на плоскости и в пространстве с примерами решения данной прямой, не параллельной оси ординат, отношение Прямая линия на плоскости и в пространстве с примерами решения ординаты вектора к его абсциссе имеет одно и то же постоянное значение k, называемое угловым коэффициентом данной прямой.

Действительно, если Прямая линия на плоскости и в пространстве с примерами решения — два направляющих вектора данной прямой /, то векторы коллинеарны, т.е.

Прямая линия на плоскости и в пространстве с примерами решения их координаты пропорциональны: Прямая линия на плоскости и в пространстве с примерами решенияа значит Прямая линия на плоскости и в пространстве с примерами решения

Угловой коэффициент прямой можно определить и по-другому: как тангенс угла, образованного положительным направлением оси абсцисс и заданной прямой.

Справедлива следующая теорема.

Теорема 7.3,1. Всякая прямая на плоскости определяется уравнением первой степени с двумя переменными х и у; и обратно, всякое уравнение первой степени с двумя переменными х и у определяет некоторую прямую на плоскости.

Доказательство: Пусть В = (О,b}- точка пересечения прямой L с осью у, а Р = (х,у) — любая другая точка на этой прямой. Проведем через точку В прямую, параллельную оси х, а через точку Р — прямую, параллельную оси у; проведем также прямую х = 1. Пусть k -угловой коэффициент прямой L (см. рис. 7.7). Случай к =0 не исключается.

Прямая линия на плоскости и в пространстве с примерами решения

Так как треугольники BSQ и BRP подобны, то Прямая линия на плоскости и в пространстве с примерами решения или после упрощения

Прямая линия на плоскости и в пространстве с примерами решения

Следовательно, если точка Р принадлежит прямой L, то ее координаты удовлетворяют уравнению (7.2.1). Обратно, нетрудно показать, что если х и у связаны уравнением (7.2.1), то точка Р принадлежит прямой L, проходящей через точку (0;b) и имеющей угловой коэффициент k.

Таким образом, уравнение любой прямой можно записать в виде:

Прямая линия на плоскости и в пространстве с примерами решения (не вертикальная прямая) Прямая линия на плоскости и в пространстве с примерами решения, (7.2.2), х = а (вертикальная прямая) (7.2.3).

В обоих случаях мы получаем уравнение первой степени. Кроме того, каждое уравнение первой степени ио х и у можно привести к виду (7.2.2) либо (7.2.3).

Докажем обратное утверждение. Предположим, что задано произвольное уравнение первой степени:

Ах+Ву+С=0. (7.2.4)

Если Прямая линия на плоскости и в пространстве с примерами решения, мы можем записать уравнение (7.2.4) в виде

Прямая линия на плоскости и в пространстве с примерами решения

т.е. в виде (7.2.2). При В = 0 уравнение (7.2.3) сводится к уравнению

А х = —С,

или Прямая линия на плоскости и в пространстве с примерами решения, т.е. к уравнению вида (7.2.3).

Таким образом, любая прямая описывается уравнением первой степени с неизвестными х и у, и обратно, каждое уравнение первой степени с неизвестными х и v определяет некоторую прямую. Прямая линия на плоскости и в пространстве с примерами решения

Уравнение (7.2.4) называется общим уравнением прямой. Так

как Прямая линия на плоскости и в пространстве с примерами решения, то вектор Прямая линия на плоскости и в пространстве с примерами решения является направляющим вектором прямой (7.2.4). Вектор Прямая линия на плоскости и в пространстве с примерами решения перпендикулярен прямой (7.2.4) и называется нормальным вектором. Возможны частные случаи:

1. Прямая линия на плоскости и в пространстве с примерами решения или у =b, где Прямая линия на плоскости и в пространстве с примерами решения, -это уравнсние прямой, параллельной оси Ох.

2. Прямая линия на плоскости и в пространстве с примерами решения или х = а, где Прямая линия на плоскости и в пространстве с примерами решения, — это уравнение прямой, параллельной оси Оу.

3. Прямая линия на плоскости и в пространстве с примерами решения— это уравнение прямой, проходящей через начало координат.

4. А=0; С=0; Ву-0 или у = 0 — это уравнение оси абсцисс Ох.

5. В=0;С=0; Ах=0 или х = 0 — это уравнение оси ординат Оу.

Различные виды уравнений прямой на плоскости

Положение прямой на плоскости относительно системы координат можно задать различными способами. Например, прямая однозначно определяется: двумя различными точками; точкой и направляющим вектором; отрезками, отсекаемыми прямой на осях координат и др. Однако, обязательно, должна быть точка, лежащая на этой прямой.

Пусть в уравнении (7.2.4) ни один из коэффициентов А, В, С не равен нулю. Перенесем свободные члены вправо и разделим на (-С). Получим уравнение прямой в отрезках:

Прямая линия на плоскости и в пространстве с примерами решения

где Прямая линия на плоскости и в пространстве с примерами решения-длины отрезков, отсекаемых прямой l на осях координат, взятые с соответствующими знаками (в зависимости от того, положительные или отрицательные полуоси координат пересекает прямая l).

Рассмотрим прямую l на плоскости и выберем на этой прямой какие-нибудь точки Прямая линия на плоскости и в пространстве с примерами решения. Тогда вектор Прямая линия на плоскости и в пространстве с примерами решения является направляющим вектором этой прямой l.

Геометрическое место концов всевозможных векторов вида Прямая линия на плоскости и в пространстве с примерами решения где Прямая линия на плоскости и в пространстве с примерами решения пробегает все вещественные числовые значения, определяет прямую l. Уравнение (7.3.2) называется уравнением прямой в векторной форме (векторным уравнением прямой). Записав векторное уравнение (7.3.2) в координатной форме Прямая линия на плоскости и в пространстве с примерами решения и воспользовавшись определением равенства векторов, получим параметрические уравнения прямой:

Прямая линия на плоскости и в пространстве с примерами решения

где Прямая линия на плоскости и в пространстве с примерами решения— координаты направляющего вектора.

Система (7.3.3) равносильна уравнению

Прямая линия на плоскости и в пространстве с примерами решения

называемым каноническим уравнением прямой на плоскости. Из системы (7.3.3) можно получить уравнение

Прямая линия на плоскости и в пространстве с примерами решения которое называется уравнением прямой, проходящей через две данные точки Прямая линия на плоскости и в пространстве с примерами решения

Если абсциссы точек Прямая линия на плоскости и в пространстве с примерами решения одинаковы, т. е.Прямая линия на плоскости и в пространстве с примерами решения то прямая Прямая линия на плоскости и в пространстве с примерами решения параллельна оси ординат и ее уравнение имеет вид: х=а.

Если ординаты точек Прямая линия на плоскости и в пространстве с примерами решения одинаковы, т. е. Прямая линия на плоскости и в пространстве с примерами решения, то прямая Прямая линия на плоскости и в пространстве с примерами решения параллельна оси абсцисс и ее уравнение имеет вид: у=b. Уравнение (7.3.5) можно преобразовать к виду:

Прямая линия на плоскости и в пространстве с примерами решения

или

Прямая линия на плоскости и в пространстве с примерами решения

где

Прямая линия на плоскости и в пространстве с примерами решения

угловой коэффициент прямой.

Уравнение (7.3.6) называется уравнением прямой, проходящей через точку Прямая линия на плоскости и в пространстве с примерами решения и имеющей угловой коэффициент k.

Пример:

Составить уравнение прямой, проходящей через две точки Прямая линия на плоскости и в пространстве с примерами решения

Решение:

I способ. Воспользуемся уравнением (7.3.5). Подставив известные координаты точек Прямая линия на плоскости и в пространстве с примерами решения, получим искомое уравнение прямой:

Прямая линия на плоскости и в пространстве с примерами решения

II способ. Зная координаты точек Прямая линия на плоскости и в пространстве с примерами решения по формуле (7.3.7) можно найти угловой коэффициент искомой прямой:

Прямая линия на плоскости и в пространстве с примерами решения

Тогда, воспользовавшись уравнением (7.3.6), найдём искомое уравнение прямой: Прямая линия на плоскости и в пространстве с примерами решения.

Заметим, что составленное уравнение можно записать как уравнение прямой в отрезках, разделив все члены уравнения

Прямая линия на плоскости и в пространстве с примерами решения.

Взаимное расположение двух прямых на плоскости

Пусть на плоскости заданы две прямые общими уравнениями Прямая линия на плоскости и в пространстве с примерами решения. Угол между ними можно вычислить как угол между направляющими векторами

Прямая линия на плоскости и в пространстве с примерами решения этих прямых:

Прямая линия на плоскости и в пространстве с примерами решения

Если прямые параллельныПрямая линия на плоскости и в пространстве с примерами решения, то их нормальные векторы Прямая линия на плоскости и в пространстве с примерами решенияколлинеарны, а это значит, что их соответствующих координаты пропорциональны:

Прямая линия на плоскости и в пространстве с примерами решения

И обратно, если координаты при неизвестных х и у пропорциональны, то прямые параллельны. Следовательно, можно сформулировать следующую теорему:

Теорема 7.4.1. Две прямыеПрямая линия на плоскости и в пространстве с примерами решения параллельны тогда и только тогда, когда в их уравнениях коэффициенты при соответствующих переменных х и у пропорциональны.

Например, прямые Прямая линия на плоскости и в пространстве с примерами решения параллельны,

т. к.Прямая линия на плоскости и в пространстве с примерами решения.

Если прямые перпендикулярны Прямая линия на плоскости и в пространстве с примерами решения, то их нормальные векторы Прямая линия на плоскости и в пространстве с примерами решения тоже перпендикулярны, а это значит, что скалярное произведение этих векторов равно нулю: Прямая линия на плоскости и в пространстве с примерами решения , или в координатной форме

Прямая линия на плоскости и в пространстве с примерами решения

Справедливо и обратное утверждение: если скалярное произведение нормальных векторов равно нулю, то прямые /, и /2 перпендикулярны.

Теорема 7.4.2. Две прямые Прямая линия на плоскости и в пространстве с примерами решения перпендикулярны тогда и только тогда, когда коэффициенты при переменных х и у удовлетворяют равенству Прямая линия на плоскости и в пространстве с примерами решения.

Например, прямые Прямая линия на плоскости и в пространстве с примерами решения перпендикулярны, так как

Прямая линия на плоскости и в пространстве с примерами решения.

Если прямые заданы уравнениями вида Прямая линия на плоскости и в пространстве с примерами решенияи Прямая линия на плоскости и в пространстве с примерами решения, то угол между ними находится по формуле:

Прямая линия на плоскости и в пространстве с примерами решения

Для того чтобы прямые были параллельны, необходимо и достаточно, чтобы выполнялось равенство

Прямая линия на плоскости и в пространстве с примерами решения (7.4.5)

а для их перпендикулярности необходимо и достаточно, чтобы

Прямая линия на плоскости и в пространстве с примерами решения (7.4.6)

Пример:

Найти проекцию точки Р (2, 3) на прямую, проходящую через точки А (4, 3) и В (6, 5).

Решение:

Проекция точки Р на прямую АВ — это точка пересечения перпендикуляра, проведенного к этой прямой из точки Р.

Вначале составим уравнение прямой АВ. Воспользовавшись уравнением (7.3.5), последовательно получаем:

Прямая линия на плоскости и в пространстве с примерами решения

Для того, чтобы составить уравнение перпендикуляра, проведенного из точки Р на прямую АВ, воспользуемся уравнением (7.3.6). Угловой коэффициент k определим из условия перпендикулярности двух прямых, т. е. из формулы (7.4.6). Поскольку Прямая линия на плоскости и в пространстве с примерами решения,то из равенства Прямая линия на плоскости и в пространстве с примерами решения находим угловой коэффициент перпендикуляра Прямая линия на плоскости и в пространстве с примерами решения. Подставляя найденное значение углового коэффициента Прямая линия на плоскости и в пространстве с примерами решения и координаты точки Р (2, 3) в уравнение (7.3.6), получаем:

Прямая линия на плоскости и в пространстве с примерами решения.

Решая систему уравнений, составленную из уравнений прямой АВ и перпендикуляра

Прямая линия на плоскости и в пространстве с примерами решения

найдём координаты проекции точки Р на прямую АВ: х=3 у=2, т.е.

Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Издержки на производство шести автомобилей составляют 1000 млн. ден. ед., а на производство двадцати автомобилей- 15000 млн. ден. ед. Определить издержки на производство 22 автомобилей при условии, что функция К(х) издержек производства линейна, т.е. имеет вид у = ах + b .

Решение:

Обозначим через х количество автомобилей, а через y- издержки производства. Тогда из условия задачи следует, что заданы координаты двух точек- А(6; 1000) и В(20; 15000), принадлежащих линейной функции у = ах +b. Воспользовавшись уравнением (7.3.6 ), найдём искомое уравнение:

Прямая линия на плоскости и в пространстве с примерами решения

Подставив в найденную функцию х = 22, определим издержки на производство 22 автомобилей:

Прямая линия на плоскости и в пространстве с примерами решения (млн. дсн. ед)

Пример:

Фирма продаёт свои изделия по 10 ден. ед. за единицу. Затраты на изготовление одного изделия составляют 6 ден. ед. Непроизводственные расходы фирмы равны 300 ден. ед. в год. Определить годовой выпуск продукции, необходимой для того, чтобы фирма работала с прибылью.

Решение:

Обозначим через х объём произведенной продукции. Тогда доход фирмы равен D = 10x. Затраты на производство определяются уравнением: Прямая линия на плоскости и в пространстве с примерами решения. Найдём точку безубыточности. т.е. значение x, при котором доход фирмы равен затратам: D=K, т.е. 10x = 6x + 300. Решив это уравнение, получим значение объёма производства, при котором фирма работает без убытка: х=75. Следовательно, если объём производства Прямая линия на плоскости и в пространстве с примерами решения то фирма будет работать с прибылью.

Прямая линия в пространстве

Системы координат в пространстве

В трехмерном пространстве система координат определяется тремя взаимно перпендикулярными осями, проходящими через начало координат О. Снабдив каждую ось единицей измерения длин, можно задать тремя упорядоченными числами (называемыми координатами) положение точки в пространстве. Например, точка Р задается упорядоченной тройкой чисел Р( 1,2,3).

Прямая линия на плоскости и в пространстве с примерами решения

Пусть задано пространствоПрямая линия на плоскости и в пространстве с примерами решения. Важнейшим понятием пространственной аналитической геометрии является понятие уравнения поверхности. Всякая же линия рассматривается как пересечение двух поверхностей. Мы остановимся на изучении поверхности первого порядка — плоскости и прямой линии.

Положение прямой в пространстве вполне определяется заданием какой-либо сё фиксированной точки Прямая линия на плоскости и в пространстве с примерами решения и вектора Прямая линия на плоскости и в пространстве с примерами решенияпараллельного этой прямой.

Вектор Прямая линия на плоскости и в пространстве с примерами решения, параллельный прямой, называется направляющим вектором этой прямой.

Итак, пусть прямая L проходит через точку Прямая линия на плоскости и в пространстве с примерами решения, лежащую на прямой, параллельно вектору Прямая линия на плоскости и в пространстве с примерами решения Прямая линия на плоскости и в пространстве с примерами решения(см. рис. 7.9).

Рассмотрим произвольную точку M(x,y,z) на этой прямой. Из рисунка видно, что вектор Прямая линия на плоскости и в пространстве с примерами решения параллельный (коллинеарный) вектору Прямая линия на плоскости и в пространстве с примерами решения. Поскольку векторыПрямая линия на плоскости и в пространстве с примерами решения коллинеарны, то найдётся такое число t, что Прямая линия на плоскости и в пространстве с примерами решения , где множитель t может принимать любое числовое значение в зависимости от положения точки М на прямой.

Прямая линия на плоскости и в пространстве с примерами решения

Уравнение Прямая линия на плоскости и в пространстве с примерами решения (7.5.1) называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки M, лежащей на прямой. Это уравнение можно записать в виде: Прямая линия на плоскости и в пространстве с примерами решения (см. рис. 7.9). Запишем это уравнение в координатной форме. Подставив координаты векторов Прямая линия на плоскости и в пространстве с примерами решения в уравнение (7.5.1) и воспользовавшись определением алгебраических операций над векторами и равенством векторов, получим уравнения:

Прямая линия на плоскости и в пространстве с примерами решения

Полученные уравнения называются параметрическими уравнениями прямой.

При изменении параметра t изменяются координаты х, у и z и точка М перемещается по прямой.

Разрешив уравнения (7.5.2) относительно t

Прямая линия на плоскости и в пространстве с примерами решения

и приравняв найденные значенияt получим канонические уравнения прямой:

Прямая линия на плоскости и в пространстве с примерами решения

Если прямая L в пространстве задается двумя своими точками Прямая линия на плоскости и в пространстве с примерами решения,то вектор

Прямая линия на плоскости и в пространстве с примерами решения

можно взять в качестве направляющего вектора и тогда уравнения (7.5.3) преобразуются в уравнения

Прямая линия на плоскости и в пространстве с примерами решения

где Прямая линия на плоскости и в пространстве с примерами решения. (7.5.4)- это уравнение прямой, проходящей через две заданные точки Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Составить параметрические уравнения прямой, проходящей через точкуПрямая линия на плоскости и в пространстве с примерами решения, перпендикулярно плоскости Oxz.

Решение:

В качестве направляющего вектораПрямая линия на плоскости и в пространстве с примерами решения искомой прямой можно взять единичный вектор оси Оу: Прямая линия на плоскости и в пространстве с примерами решения • Подставив значения координат точкиПрямая линия на плоскости и в пространстве с примерами решения и значения координат направляющего вектора в уравнения (7.5.2), получаем: Прямая линия на плоскости и в пространстве с примерами решения.

Пример:

Записать уравнения прямой Прямая линия на плоскости и в пространстве с примерами решения в параметрическом виде.

ОбозначимПрямая линия на плоскости и в пространстве с примерами решения. Тогда Прямая линия на плоскости и в пространстве с примерами решения,

Прямая линия на плоскости и в пространстве с примерами решения, откуда следует, что Прямая линия на плоскости и в пространстве с примерами решения.

Замечание. Пусть прямая перпендикулярна одной из координатных осей, например, оси Ох. Тогда направляющий вектор Прямая линия на плоскости и в пространстве с примерами решения

прямой перпендикулярный оси Ох, имеет координаты (о; n; р) и параметрические уравнения прямой примут вид Прямая линия на плоскости и в пространстве с примерами решения

Исключая из уравнений параметр t, получим уравнения прямой в виде

Прямая линия на плоскости и в пространстве с примерами решения

Однако и в этом случае формально можно записывать канонические уравнения прямой в виде Прямая линия на плоскости и в пространстве с примерами решения. Таким образом, если в знаменателе одной из дробей стоит нуль, то это означает, что прямая перпендикулярна соответствующей координатной оси.

Аналогично, канонические уравнения

Прямая линия на плоскости и в пространстве с примерами решения определяют прямую перпендикулярную осям О х и О у или параллельную оси О z.

Пример:

Составить канонические и параметрические уравнения прямой, проходящей через точку Прямая линия на плоскости и в пространстве с примерами решения параллельно вектору Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Подставив координаты точки Прямая линия на плоскости и в пространстве с примерами решения, и вектора Прямая линия на плоскости и в пространстве с примерами решения в (7.5.2) и (7.5.3), находим искомые канонические уравнения:

.Прямая линия на плоскости и в пространстве с примерами решенияи параметрические уравнения:

Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Составить канонические уравнения прямой, проходящей через точку М(2, -1,4) параллельно

а) прямой Прямая линия на плоскости и в пространстве с примерами решения;

б) оси Ох;

в) оси Оу;

г) оси Oz.

Решение:

а) Поскольку направляющий вектор заданной прямой

Прямая линия на плоскости и в пространстве с примерами решения является направляющим вектором искомой прямой, то

подставив координаты точки М(2; -1; 4) и вектора Прямая линия на плоскости и в пространстве с примерами решения в (7.5.3) получим уравнение искомой прямой: Прямая линия на плоскости и в пространстве с примерами решения

б) Поскольку единичный вектор оси О х: Прямая линия на плоскости и в пространстве с примерами решения будет направляющим вектором искомой прямой, то подставив в уравнение

(7.5.3) координаты точки М(2; -1; 4 ) и вектора Прямая линия на плоскости и в пространстве с примерами решения, получаем:

Прямая линия на плоскости и в пространстве с примерами решения

в) В качестве направляющего вектора Прямая линия на плоскости и в пространстве с примерами решения искомой прямой можно взять единичный вектор оси Оу: Прямая линия на плоскости и в пространстве с примерами решения. В соответствии с уравнением (7.5.3), получаем Прямая линия на плоскости и в пространстве с примерами решения или Прямая линия на плоскости и в пространстве с примерами решения.

г) Единичный вектор оси Oz : Прямая линия на плоскости и в пространстве с примерами решения будет направляющим вектором искомой прямой. В соответствии с уравнением (7.5.3), получаем

Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Составить уравнение прямой, проходящей через две заданные точки Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Подставив координаты точек Прямая линия на плоскости и в пространстве с примерами решенияв уравнение

(7.5.4), получим:Прямая линия на плоскости и в пространстве с примерами решения

Взаимное расположение двух прямых в пространстве

Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведенными через произвольную точку параллельно данным. Пусть в пространстве заданы две прямые:

Прямая линия на плоскости и в пространстве с примерами решения

Очевидно, что за угол Прямая линия на плоскости и в пространстве с примерами решения между прямыми можно принять угол между их направляющими векторами Прямая линия на плоскости и в пространстве с примерами решения и

Прямая линия на плоскости и в пространстве с примерами решения, косинус которого находится по формуле:

Прямая линия на плоскости и в пространстве с примерами решения

Условия параллельности и перпендикулярности двух прямых равносильны условиям параллельности и перпендикулярности их направляющих векторовПрямая линия на плоскости и в пространстве с примерами решения:

Две прямые параллельны тогда и только тогда, когда пропорциональны соответствующие координаты направляющих векторов:

Прямая линия на плоскости и в пространстве с примерами решения

т.е. Прямая линия на плоскости и в пространстве с примерами решения параллельна Прямая линия на плоскости и в пространстве с примерами решения тогда и только тогда, когда Прямая линия на плоскости и в пространстве с примерами решения параллелен

Прямая линия на плоскости и в пространстве с примерами решения.

Две прямые перпендикулярны тогда и только тогда, когда сумма произведений соответствующих координат направляющих векторов равна нулю: Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Найти угол между прямыми Прямая линия на плоскости и в пространстве с примерами решения и

Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Воспользуемся формулой (7.6.1), в которую подставим координаты направляющих векторов Прямая линия на плоскости и в пространстве с примерами решения и

Прямая линия на плоскости и в пространстве с примерами решения. Тогда Прямая линия на плоскости и в пространстве с примерами решения, откуда Прямая линия на плоскости и в пространстве с примерами решения илиПрямая линия на плоскости и в пространстве с примерами решения.

Вычисление уравнения прямой

Пусть PQ — некоторая прямая на плоскости Оху (рис. 22). Через произвольную точку М0 (х0, у0) этой прямой (условно называемую «начальной точкой») проведем прямую М0х параллельную оси Ох и имеющую с ней одинаковое направление. Тогда наименьший неотрицательный угол Прямая линия на плоскости и в пространстве с примерами решения, образованный полупрямой M0Q, лежащей выше оси М0х’ или совпадающей с ней, называется углом между данной прямой и осью Ох.

Прямая линия на плоскости и в пространстве с примерами решения

Очевидно, этот угол не зависит от выбора точки М0. Если прямая PQ пересекает ось Ох в некоторой точке А (а, 0), то ф есть обычный угол между направленными прямыми. Если PQ || Ох, то, очевидно, Ф = 0. Начальная точка М0 прямой и угол ф («направление прямой») однозначно определяют положение этой прямой на плоскости.

1) Пусть сначала Прямая линия на плоскости и в пространстве с примерами решения. Тогда прямая PQ пересекает ось Оу в некоторой точке В (0, b), которую можно принять за начальную.

Ордината у = NM текущей точки М (х, у) прямой (рис. 23) состоит из двух частей:

Прямая линия на плоскости и в пространстве с примерами решения

из них первая постоянна, а вторая переменна. Введя угловой коэффициент tg ф = k9 из рис. 23 будем иметь

Прямая линия на плоскости и в пространстве с примерами решения

при х > 0.

Прямая линия на плоскости и в пространстве с примерами решения

Таким образом,

Прямая линия на плоскости и в пространстве с примерами решения

при х > 0.

Нетрудно проверить, что формула (3) остается справедливой также и при х < 0.

Мы доказали, что координаты любой точки М (х, у) прямой PQ удовлетворяют уравнению (3). Легко убедиться в обратном: если координаты какой-нибудь точки Ml Прямая линия на плоскости и в пространстве с примерами решения удовлетворяют уравнению (3), то точка Мх обязательно лежит на прямой PQ. Следовательно, уравнение (3) представляет собой уравнение прямой линии PQ (так называемое уравнение прямой с угловым коэффициентом). Постоянные величины Прямая линия на плоскости и в пространстве с примерами решения (параметры) имеют следующие значения: b = ОБ — начальный отрезок (точнее, начальная ордината), k = tg ф — угловой коэффициент. Заметим, что если точка В расположена выше оси Ох, то Прямая линия на плоскости и в пространстве с примерами решения, а если ниже, то b < 0. При 6 = 0 прямая проходит через начало координат и уравнение такой прямой есть

Прямая линия на плоскости и в пространстве с примерами решения

При k = 0 получаем уравнение прямой, параллельной оси Ох:

Прямая линия на плоскости и в пространстве с примерами решения

2) Если Прямая линия на плоскости и в пространстве с примерами решения, то с помощью аналогичных рассуждений мы также приходим к уравнению (3).

3) Если Прямая линия на плоскости и в пространстве с примерами решения, т. е. прямая АВ перпендикулярна оси Ох, то ее уравнение есть

Прямая линия на плоскости и в пространстве с примерами решения

где а — абсцисса следа этой прямой на оси Ох (т. е. ее точки пересечения с осью Ох).

Замечание. Как частные случаи получаем уравнения осей координат:

Прямая линия на плоскости и в пространстве с примерами решения

Прямую легко построить по ее уравнению.

Пример:

Построить прямую, заданную уравнением

Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Известно, что две точки вполне определяют положение прямой. Поэтому достаточно найти две точки, через которые проходит наша прямая. В данном уравнении b = -4. Следовательно, прямая проходит через точку В (0, -4). С другой стороны, координаты х и у любой точки, лежащей на нашей прямой, связаны заданным уравнением. Поэтому, задав абсциссу некоторой точки, лежащей на прямой, мы из уравнения прямой найдем ее ординату. Положим, например, х = 2; из уравнения прямой получим у = -1. Таким образом, наша прямая проходит через точки А (2, -1) и В (0, -4). Построив эти точки по их координатам и проведя через них прямую (рис. 24), мы получим искомую прямую.

Прямая линия на плоскости и в пространстве с примерами решения

Из предыдущего видно, что для произвольной прямой на плоскости можно составить ее уравнение; обратно, зная уравнение некоторой прямой, можно построить эту прямую. Таким образом, уравнение прямой полностью характеризует положение ее на плоскости.

Из формул (3) и (5) видно, что уравнение прямой есть уравнение первой степени относительно текущих координат х и у. Справедливо и обратное утверждение.

Теорема: Всякое невырожденное уравнение первой степени

Прямая линия на плоскости и в пространстве с примерами решения

представляет собой уравнение некоторой прямой линии на плоскости Оху (общее уравнение прямой линии).

Доказательство: 1) Пусть сначала В ^ 0. Тогда уравнение (7) можно представить в виде

Прямая линия на плоскости и в пространстве с примерами решения Сравнивая с (3), мы получим, что это есть уравнение прямой с угловым коэффициентом k = -А/В и начальной ординатой Прямая линия на плоскости и в пространстве с примерами решения

2) Пусть теперь В = 0; тогда А Прямая линия на плоскости и в пространстве с примерами решения 0. Имеем Ах + С = 0 и

х = -С/А.

Уравнение (9) представляет собой уравнение прямой, параллельной оси Оу и отсекающей на оси Ох отрезок a = -С/А.

Так как все возможные случаи исчерпаны, то теорема доказана.

  • Заказать решение задач по высшей математике

Угол между двумя прямыми

Рассмотрим две прямые (не параллельные оси Оу)у заданные их уравнениями с угловыми коэффициентами (рис. 25):

Прямая линия на плоскости и в пространстве с примерами решения

Требуется определить угол 9 между ними. Точнее, под углом 0 мы будем понимать наименьший угол, отсчитываемый против хода часовой стрелки, на который вторая прямая повернута относительно первой (0 < 0 < я). Этот угол 9 (рис. 25) равен углу АСВ треугольника ABC. Далее, из элементарной геометрии известно, что внешний угол треугольника равен сумме внутренних, с ним не смежных. Поэтому ф’ = ф + 0, или

0 = ф’ — ф;

отсюда на основании известной формулы тригонометрии получаем

Прямая линия на плоскости и в пространстве с примерами решения

Заменяя tg ф и tg ф’ соответственно на к и k окончательно будем иметь

Прямая линия на плоскости и в пространстве с примерами решения

Формула (3) дает выражение тангенса угла между двумя прямыми через угловые коэффициенты этих прямых.

Прямая линия на плоскости и в пространстве с примерами решения

Выведем теперь условия параллельности и перпендикулярности двух прямых.

Если прямые (1) и (2) параллельны, то ф’ = ф и, следовательно,

k’ = к. (4)

Обратно, если выполнено условие (4), то, учитывая, что ф’ и ф заключаются в пределах от 0 до я, получаем

Ф’ — ф, (5)

и, следовательно, рассматриваемые прямые или параллельны, или сливаются (параллельность в широком смысле).

Правило 1. Прямые на плоскости параллельны (в широком смысле) тогда и только тогдау когда их угловые коэффициенты равны между собой.

Если прямые перпендикулярны, то Прямая линия на плоскости и в пространстве с примерами решения и, следовательно,

Прямая линия на плоскости и в пространстве с примерами решения

отсюда 1 + kk’ = 0 и

k’ = -l/k.

Справедливо также и обратное утверждение.

Правило 2. Две прямые на плоскости перпендикулярны тогда и только тогда, когда их угловые коэффициенты обратны по величине и противоположны по знаку.

Пусть теперь уравнения прямых заданы в общем виде:

Ах + By + С = 0 (7)

и

А’х + В’у + С’ = 0. (8)

Отсюда, предполагая, что Прямая линия на плоскости и в пространстве с примерами решения, получаем

Прямая линия на плоскости и в пространстве с примерами решения

Следовательно, угловые коэффициенты этих прямых есть

Прямая линия на плоскости и в пространстве с примерами решения

Из формулы (3), производя несложные выкладки, находим тангенс угла между этими прямыми:

Прямая линия на плоскости и в пространстве с примерами решения

Отсюда получаем:

1) условие параллельности прямых (0 = 0)

Прямая линия на плоскости и в пространстве с примерами решения

2) условие перпендикулярности прямых Прямая линия на плоскости и в пространстве с примерами решения

Прямая линия на плоскости и в пространстве с примерами решения

Отметим, в частности, что прямые

Прямая линия на плоскости и в пространстве с примерами решения взаимно перпендикулярны.

Для прямых, параллельных осям Ох и Оу, условно полагают Прямая линия на плоскости и в пространстве с примерами решения и Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Определить угол между прямыми у = х и у = 1,001Прямая линия на плоскости и в пространстве с примерами решения + 10. Здесь угловые коэффициенты прямых есть k = 1 и k’ = 1,001.

Решение:

По формуле (3) получаем

Прямая линия на плоскости и в пространстве с примерами решения

Так как для малых углов 0 справедливо приближенное равенство Прямая линия на плоскости и в пространстве с примерами решения, то

Прямая линия на плоскости и в пространстве с примерами решения

Уравнение прямой, проходящей через данную точку в данном направлении

Пусть прямая РМ образует угол ф с положительным направлением оси Ох (рис. 26) и проходит через заданную точку Р Прямая линия на плоскости и в пространстве с примерами решения. Выведем уравнение этой прямой, предполагая сначала, что прямая не параллельна оси Оу.

В этом случае, как мы видели, уравнение прямой имеет вид

у = kx + b, (1)

где k = tg ф — угловой коэффициент прямой, а Ь — длина отрезка, отсекаемого нашей прямой на оси Оу. Так как точка Р Прямая линия на плоскости и в пространстве с примерами решения лежит на прямой РМ, то ее координаты хг и ух должны удовлетворять уравнению (1), т. е.

ух = kxt+ b. (2)

Вычитая из равенства (1) равенство (2), получим

Прямая линия на плоскости и в пространстве с примерами решения

Это и есть уравнение искомой прямой.

Если прямая, проходящая через точку Р Прямая линия на плоскости и в пространстве с примерами решения параллельна оси Оу, то ее уравнение, очевидно, будет

Прямая линия на плоскости и в пространстве с примерами решения

Прямая линия на плоскости и в пространстве с примерами решения

Если k — заданное число, то уравнение (3) представляет вполне определенную прямую. Если же k — переменный параметр, то это уравнение определит пучок прямых у проходящих через точку Р Прямая линия на плоскости и в пространстве с примерами решения (рис. 27); при этом k называется параметром пучка.

Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Написать уравнение прямой, проходящей через точку Р (3, 2) и параллельной прямой:

Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Так как искомая прямая параллельна данной прямой, то ее угловой коэффициент k = 4/3. Следовательно, на основании формулы (3) уравнение этой прямой имеет вид Прямая линия на плоскости и в пространстве с примерами решения, или

Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Написать уравнение прямой, проходящей через точку Р (4, 5) и перпендикулярной к прямой:

Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Так как искомая прямая перпендикулярна прямой с угловым коэффициентом k = -2/3, то ее угловой коэффициент k’ = -l/k = 3/2. Следовательно, на основании формулы (3) уравнение этой прямой таково:

Прямая линия на плоскости и в пространстве с примерами решения, или окончательно

Прямая линия на плоскости и в пространстве с примерами решения

Уравнение прямой, проходящей через две данные точки

Известно, что через две не совпадающие между собой точки можно провести прямую, и притом только одну. Отыщем уравнение прямой, проходящей через точки Прямая линия на плоскости и в пространстве с примерами решения

Предположим сначала, что Прямая линия на плоскости и в пространстве с примерами решения, т. е. прямая PQ не параллельна оси Оу, Поскольку прямая PQ проходит через точку Прямая линия на плоскости и в пространстве с примерами решения то ее уравнение имеет вид 

Прямая линия на плоскости и в пространстве с примерами решения

где k — неизвестный нам угловой коэффициент этой прямой. Однако так как наша прямая проходит также через точку Q Прямая линия на плоскости и в пространстве с примерами решения, то координаты Прямая линия на плоскости и в пространстве с примерами решения этой последней точки должны удовлетворять уравнению (1). Отсюда

Прямая линия на плоскости и в пространстве с примерами решения=Прямая линия на плоскости и в пространстве с примерами решения

и, следовательно, при Прямая линия на плоскости и в пространстве с примерами решения имеем

Прямая линия на плоскости и в пространстве с примерами решения

Подставляя выражение (2) для углового коэффициента k в уравнение (1), получим уравнение прямой PQ:

Прямая линия на плоскости и в пространстве с примерами решения

Это уравнение при Прямая линия на плоскости и в пространстве с примерами решения можно записать также в виде пропорции:

Прямая линия на плоскости и в пространстве с примерами решения

Если Прямая линия на плоскости и в пространстве с примерами решения, т. е. прямая, проходящая через точки Прямая линия на плоскости и в пространстве с примерами решения и Прямая линия на плоскости и в пространстве с примерами решения, параллельна оси Оу, то уравнение этой прямой, очевидно, будет

Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Написать уравнение прямой, проходящей через точки Р(4, -2) и Q(3, -1).

Решение:

На основании уравнения (3) имеем

Прямая линия на плоскости и в пространстве с примерами решения

Уравнение прямой в «отрезках»

Выведем теперь уравнение прямой, положение которой на плоскости задано ненулевыми отрезками, отсекаемыми ею на осях координат. Предположим, например, что прямая АВ отсекает на оси Ох отрезок OA = а, а на оси Оу — отрезок О В = b (рис. 28), причем ясно, что тем самым положение прямой вполне определено.

Для вывода уравнения прямой АВ заметим, что эта прямая проходит через точки А (а, 0) и Б Прямая линия на плоскости и в пространстве с примерами решения поэтому уравнение ее легко получается из уравнения (3′), если положить в нем Прямая линия на плоскости и в пространстве с примерами решения. Имеем

Прямая линия на плоскости и в пространстве с примерами решения

Отсюда

Прямая линия на плоскости и в пространстве с примерами решения

и окончательно

Прямая линия на плоскости и в пространстве с примерами решенияПрямая линия на плоскости и в пространстве с примерами решения

Это и есть так называемое уравнение прямой в «отрезках». Здесь х и у, как обычно, — координаты произвольной точки М (х, у), лежащей на прямой АВ (рис. 28).

Пример:

Написать уравнение прямой АВ, отсекающей на оси Ох отрезок OA = 5, а на оси Оу отрезок ОВ = -4.

Полагая в уравнении (1) а = 5 и b = -4, получим Прямая линия на плоскости и в пространстве с примерами решения, или

Прямая линия на плоскости и в пространстве с примерами решения

Примечание. Уравнение прямой, проходящей через начало координат или параллельной одной из осей координат, не может быть записано как уравнение прямой в «отрезках».

Точка пересечения двух прямых

Пусть имеем две прямые

Прямая линия на плоскости и в пространстве с примерами решения

Точка пересечения этих прямых лежит как на первой прямой, так и на второй. Поэтому координаты точки пересечения должны удовлетворять как уравнению первой, так и уравнению второй прямой. Следовательно, для того чтобы найти координаты точки пересечения двух данных прямых, достаточно решить совместно систему уравнений этих прямых.

Последовательно исключая из уравнений (1) и (2) неизвестные у и х, будем иметь

Прямая линия на плоскости и в пространстве с примерами решения

Отсюда если Прямая линия на плоскости и в пространстве с примерами решения, то для координат точки пересечения прямых получаем такие выражения: Прямая линия на плоскости и в пространстве с примерами решения или, введя определители второго порядка, имеемПрямая линия на плоскости и в пространстве с примерами решения

Для прямых (1) и (2) возможны следующие три случая.

Прямая линия на плоскости и в пространстве с примерами решения

На основании  прямые не параллельны. Координаты их единственной точки пересечения определяются из формул (6).

Прямая линия на плоскости и в пространстве с примерами решения

Прямые параллельны и точки пересечения нет. Аналитически это видно из того, что по меньшей мере одно из уравнений (3) или (4) противоречиво и, значит, система (1) и (2) несовместна.

Прямая линия на плоскости и в пространстве с примерами решения

Прямые (1) и (2) сливаются, и, таким образом, существует бесчисленное множество точек пересечения. В этом случае левые части уравнений (1) и (2) отличаются только на постоянный множитель и, следовательно, система этих уравнений допускает бесконечно много решений.

Пример:

Решая совместно систему уравнений прямых

Прямая линия на плоскости и в пространстве с примерами решения

получаем х = 2 и у = 1. Следовательно, эти прямые пересекаются в точке N(2,1).

Расстояние от точки до прямой

Рассмотрим прямую KL, заданную общим уравнением

Прямая линия на плоскости и в пространстве с примерами решения

и некоторую точку МПрямая линия на плоскости и в пространстве с примерами решения. Под расстоянием от точки М до прямой KL понимается длина перпендикуляра d = Прямая линия на плоскости и в пространстве с примерами решения Прямая линия на плоскости и в пространстве с примерами решения, опущенного из точки М на прямую KL (рис. 29).

Прямая линия на плоскости и в пространстве с примерами решения

Уравнение перпендикуляра MN можно записать в виде

Прямая линия на плоскости и в пространстве с примерами решения

Отсюда для основания перпендикуляра N(x2, у2) будем иметь

Прямая линия на плоскости и в пространстве с примерами решения

и, следовательно,

Прямая линия на плоскости и в пространстве с примерами решения

где t — коэффициент пропорциональности. Поэтому

Прямая линия на плоскости и в пространстве с примерами решения

С другой стороны, учитывая, что точка N(*2, i/2) лежит на прямой KL, причем из (4) имеем Прямая линия на плоскости и в пространстве с примерами решения получаем

Прямая линия на плоскости и в пространстве с примерами решения

Следовательно,

Прямая линия на плоскости и в пространстве с примерами решения

Таким образом, в силу формулы (5) имеем

Прямая линия на плоскости и в пространстве с примерами решения

В частности, полагая Прямая линия на плоскости и в пространстве с примерами решения, получаем расстояние от начала координат до прямой

Прямая линия на плоскости и в пространстве с примерами решения

Замечание. Разделив обе части уравнения прямой (1) на Прямая линия на плоскости и в пространстве с примерами решения, получим уравнение

Прямая линия на плоскости и в пространстве с примерами решения

свободный член которого Прямая линия на плоскости и в пространстве с примерами решения численно равен расстоянию от

начала координат до прямой. Такое уравнение прямой будем называть нормированным.

Из формулы (7) получаем правило:

чтобы определить расстояние от точки до прямой, нужно в левую часть нормированного уравнения этой прямой подставить координаты данной точки и взять модуль полученного результата.

Пример:

Определить расстояние от точки М (-2, 7) до прямой

Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Нормируя уравнение этой прямой, будем иметь

Прямая линия на плоскости и в пространстве с примерами решения

Отсюда искомое расстояние есть

Прямая линия на плоскости и в пространстве с примерами решения

  • Плоскость в трехмерном пространстве
  • Функция одной переменной
  • Производная функции одной переменной
  • Приложения производной функции одной переменной
  • Обратная матрица — определение и нахождение
  • Ранг матрицы — определение и вычисление
  • Определители второго и третьего порядков и их свойства
  • Метод Гаусса — определение и вычисление

(9x-3)^{2} -(x-11)^{2} =0
81 x^{2} -54x+9 - x^{2} +22x-121 =0
80 x^{2} -32x-112 =0
5x^{2} -2x-7 =0
по формуле корней получим 
x_{1}=1,4
x_{2}=-1

Прямоугольная система координат. Ось абсцисс и ординат

О чем эта статья:

Прямоугольная декартова система координат

Французский математик Рене Декарт предложил вместо геометрических построений использовать математические расчеты. Так появился метод координат, о котором мы сейчас расскажем.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты школы тоже можно записать числами — они помогут понять, где именно находится наша школа. С точками на плоскости та же история.

Координатой можно назвать номер столика в кафе, широту и долготу на географической карте, положение точки на числовой оси и даже номер телефона друга. Проще говоря, когда мы обозначаем какой-то объект набором букв, чисел или других символов, тем самым мы задаем его координаты.

Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.

Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.

Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.

Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.

Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.

  • Координатные оси — это прямые, образующие систему координат.
  • Ось абсцисс Ox — горизонтальная ось.
  • Ось ординат Oy — вертикальная ось.
  • Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
  • Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.

Единичные отрезки располагаются справа и слева от оси Oy, вверх и вниз от оси Oy. Числовые значения на оси Oy располагаются слева или справа, на оси Ox — внизу под ней. Чаще всего единичные отрезки двух осей соответствуют друг другу, но бывают задачи, где они не равны.

Оси координат делят плоскость на четыре угла — четыре координатные четверти.

У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:

  • верхний правый угол — первая четверть I;
  • верхний левый угол — вторая четверть II;
  • нижний левый угол — третья четверть III;
  • нижний правый угол — четвертая четверть IV;

Чтобы узнать координаты точки в прямоугольной системе координат, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра. Координаты записывают в скобках, первая по оси Ох, вторая по оси Оу.

  • Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
  • Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то число находится в третьей четверти.
  • Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Координаты точки в декартовой системе координат

Для начала отложим точку М на координатной оси Ох. Любое действительное число xM равно единственной точке М, которая располагается на данной прямой. При этом начало отсчета координатных прямых всегда ноль.

Каждая точка М, которая расположена на Ох, равна действительному числу xM. Этим действительным числом и является ноль, если точка М расположена в начале координат, то есть на пересечении Оx и Оу. Если точка удалена в положительном направлении, то число длины отрезка положительно и наоборот.

Число xM — это координата точки М на заданной координатной прямой.

Пусть точка будет проекцией точки Mx на Ох, а My на Оу. Значит, через точку М можно провести перпендикулярные осям Оx и Оу прямые, после чего получим соответственные точки пересечения Mx и My.Тогда у точки Mx на оси Оx есть соответствующее число xM, а My на ОуyM. Как это выглядит на координатных осях:

Каждой точке М на заданной плоскости в прямоугольной декартовой системе координат соответствует пара чисел (xM, yM), которые называются ее координатами. Абсцисса М — это xM, ордината М — это yM.

Обратное утверждение тоже верно: каждая пара (xM, yM) имеет соответствующую точку на плоскости.

Как найти абсциссу точки окружности

Как найти координаты точки?

О чем эта статья:

3 класс, 4 класс, 9 класс, 11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Понятие системы координат

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты вашей квартиры тоже можно записать числами — они помогут понять, где именно находится тот дом, где вы живете. С точками на плоскости та же история.

Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.

Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.

Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.

Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.

  • Координатные оси — это прямые, образующие систему координат.
  • Ось абсцисс Ox — горизонтальная ось.
  • Ось ординат Oy — вертикальная ось.
  • Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
  • Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.

Оси координат делят плоскость на четыре угла — четыре координатные четверти.

У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:

  • верхний правый угол — первая четверть I;
  • верхний левый угол — вторая четверть II;
  • нижний левый угол — третья четверть III;
  • нижний правый угол — четвертая четверть IV;
  • Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
  • Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то число находится в третьей четверти.
  • Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.

Определение координат точки

Каждой точке координатной плоскости соответствуют две координаты.

Точка пересечения с осью Ох называется абсциссой точки А, а с осью Оу называется ординатой точки А.

Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра.

Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.

Смотрим на график и фиксируем: A (1; 2) и B (2; 3).

Особые случаи расположения точек

В геометрии есть несколько особых случаев расположения точек. Лучше их запомнить, чтобы без запинки решать задачки. Вот они:

  1. Если точка лежит на оси Oy, то ее абсцисса равна 0. Например,
    точка С (0, 2).
  2. Если точка лежит на оси Ox, то ее ордината равна 0. Например,
    точка F (3, 0).
  3. Начало координат — точка O. Ее координаты равны нулю: O (0,0).
  4. Точки любой прямой, которая перпендикулярна оси абсцисс, имеют одинаковые абсциссы.
  5. Точки любой прямой, которая перпендикулярна оси ординат, имеют одинаковые ординаты.
  6. Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0).
  7. Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y).

Способы нахождения точки по её координатам

Чтобы узнать, как найти точку в системе координат, можно использовать один из двух способов.

Способ первый. Как определить положение точки D по её координатам (-4, 2):

  1. Отметить на оси Ox, точку с координатой -4, и провести через нее прямую перпендикулярную оси Ox.
  2. Отметить на оси Oy, точку с координатой 2, и провести через нее прямую перпендикулярную оси Oy.
  3. Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.

Способ второй. Как определить положение точки D (-4, 2):

  1. Сместить прямую по оси Ox влево на 4 единицы, так как у нас
    перед 4 стоит знак минус.
  2. Подняться из этой точки параллельно оси Oy вверх на 2 единицы, так как у нас перед 2 стоит знак плюс.

Чтобы легко и быстро находить координаты точек или строить точки по координатам, скачайте готовую систему координат и храните ее в учебнике:

Декартовы координаты точек плоскости. Уравнение окружности

Числовая ось

Определение 1 . Числовой осью ( числовой прямой, координатной прямой ) Ox называют прямую линию, на которой точка O выбрана началом отсчёта (началом координат) (рис.1), направление

указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины.

Определение 2 . Отрезок, длина которого принята за единицу длины, называют масштабом .

Каждая точка числовой оси имеет координату , являющуюся вещественным числом. Координата точки O равна нулю. Координата произвольной точки A , лежащей на луче Ox , равна длине отрезка OA . Координата произвольной точки A числовой оси, не лежащей на луче Ox , отрицательна, а по абсолютной величине равна длине отрезка OA .

Прямоугольная декартова система координат на плоскости

Определение 3 . Прямоугольной декартовой системой координат Oxy на плоскости называют две взаимно перпендикулярных числовых оси Ox и Oy с одинаковыми масштабами и общим началом отсчёта в точке O , причём таких, что поворот от луча Ox на угол 90° до луча Oy осуществляется в направлении против хода часовой стрелки (рис.2).

Замечание . Прямоугольную декартову систему координат Oxy , изображённую на рисунке 2, называют правой системой координат , в отличие от левых систем координат , в которых поворот луча Ox на угол 90° до луча Oy осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат, не оговаривая этого особо.

Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат Oxy , то каждая точка плоскости приобретёт две координатыабсциссу и ординату, которые вычисляются следующим образом. Пусть A – произвольная точка плоскости. Опустим из точки A перпендикуляры AA1 и AA2 на прямые Ox и Oy соответственно (рис.3).

Определение 4 . Абсциссой точки A называют координату точки A1 на числовой оси Ox , ординатой точки A называют координату точки A2 на числовой оси Oy .

Обозначение . Координаты (абсциссу и ординату) точки A в прямоугольной декартовой системе координат Oxy (рис.4) принято обозначать A (x ; y) или A = (x ; y).

Замечание . Точка O , называемая началом координат , имеет координаты O (0 ; 0) .

Определение 5 . В прямоугольной декартовой системе координат Oxy числовую ось Ox называют осью абсцисс , а числовую ось Oy называют осью ординат (рис. 5).

Определение 6 . Каждая прямоугольная декартова система координат делит плоскость на 4 четверти ( квадранта ), нумерация которых показана на рисунке 5.

Определение 7 . Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью .

Замечание . Ось абсцисс задаётся на координатной плоскости уравнением y = 0 , ось ординат задаётся на координатной плоскости уравнением x = 0.

Формула для расстояния между двумя точками координатной плоскости

Утверждение 1 . Расстояние между двумя точками координатной плоскости

вычисляется по формуле

Доказательство . Рассмотрим рисунок 6.

| A1A2| 2 =
= ( x2x1) 2 + ( y2y1) 2 .
(1)

что и требовалось доказать.

Уравнение окружности на координатной плоскости

Поскольку расстояние от любой точки окружности до центра равно радиусу, то, в соответствии с формулой (1), получаем:

Уравнение (2) и есть искомое уравнение окружности радиуса R с центром в точке A0 (x0 ; y0) .

Следствие . Уравнение окружности радиуса R с центром в начале координат имеет вид

9 класс. Геометрия. Метод координат. Уравнение окружности.

9 класс. Геометрия. Метод координат. Уравнение окружности.

  • Оглавление
  • Занятия
  • Обсуждение
  • О курсе

Вопросы

Задай свой вопрос по этому материалу!

Поделись с друзьями

Комментарии преподавателя

Решение задач

Вы­яс­ни­те, какие из дан­ных урав­не­ний яв­ля­ют­ся урав­не­ни­я­ми окруж­но­сти.

Най­ди­те ко­ор­ди­на­ты цен­тра и ра­ди­ус каж­дой окруж­но­сти.

а)

б)

в)

г) ;

д)

Рас­смот­рим каж­дое урав­не­ние в от­дель­но­сти.

а) – окруж­ность,

б) – окруж­ность,

в)
Вы­де­лим пол­ный квад­рат:

урав­не­ние не яв­ля­ет­ся урав­не­ни­ем окруж­но­сти.

г) .
Вы­де­лим пол­ный квад­рат:
– окруж­ность,

д)
Вы­де­лим пол­ный квад­рат:
– окруж­ность,

На окруж­но­сти, за­дан­ной урав­не­ни­ем , най­ди­те точки

а) с абс­цис­сой –4; б) с ор­ди­на­той 3.

Ре­ше­ние: по­стро­им окруж­ность с цен­тром (0;0) ра­ди­у­са 5 (рис. 1).

Рис. 1. Ил­лю­стра­ция к за­да­че

а) Ко­ор­ди­на­ты точек окруж­но­сти с абс­цис­сой –4 яв­ля­ют­ся ре­ше­ни­я­ми си­сте­мы:

По­лу­ча­ем точку и точку

Рис. 2. Ил­лю­стра­ция к за­да­че

б) Ко­ор­ди­на­ты точек окруж­но­сти с ор­ди­на­той 3 яв­ля­ют­ся ре­ше­ни­я­ми си­сте­мы:

Рис. 3. Ил­лю­стра­ция к за­да­че

По­лу­ча­ем точку и ту же самую точку

Ответ: .

За­пи­ши­те урав­не­ние окруж­но­сти ра­ди­у­са r с цен­тром в точке А, если

а)

б)

в)

г)

а) Окруж­ность
Ответ:

б) Окруж­ность .
Ответ:

в) Окруж­ность
Ответ:

г) Окруж­ность
Ответ:

На­пи­ши­те урав­не­ние окруж­но­сти с цен­тром в на­ча­ле ко­ор­ди­нат, про­хо­дя­щей через точку

Рис. 4. Ил­лю­стра­ция к за­да­че

Най­дем ра­ди­ус, как рас­сто­я­ние ОВ:

За­пи­шем урав­не­ние окруж­но­сти с цен­тром О(0;0):

Для кон­тро­ля про­ве­рим, удо­вле­тво­ря­ют ли по­лу­чен­но­му урав­не­нию ко­ор­ди­на­ты точки В:

зна­чит, точка В лежит на окруж­но­сти.

Ответ:

На­пи­ши­те урав­не­ние окруж­но­сти, про­хо­дя­щей через точку А(1;3), если из­вест­но, что центр окруж­но­сти лежит на оси абс­цисс, а ра­ди­ус равен 5.

Сколь­ко су­ще­ству­ет таких окруж­но­стей?

Дано: А(1;3) – точка окруж­но­сти,

Найти: урав­не­ние окруж­но­сти (С; r=5).

Ре­ше­ние: центр ис­ко­мой окруж­но­сти уда­лен от точки А(1;3) на рас­сто­я­ние 5, зна­чит, он лежит на окруж­но­сти с цен­тром в точке А(1;3) ра­ди­у­са 5, но он еще лежит и на оси Ох. По­стро­им окруж­ность (А(1;3); r=5) (рис. 5).

Рис. 5. Ил­лю­стра­ция к за­да­че

Точек, удо­вле­тво­ря­ю­щих нашим усло­ви­ям, на оси Ох две:

Для опре­де­ле­ния ко­ор­ди­нат этих точек со­ста­вим си­сте­му:

За­пи­шем урав­не­ния ис­ко­мых окруж­но­стей:

окруж­ность (

окруж­ность ( и по­стро­им эти окруж­но­сти (рис. 6):

Рис. 6. Ил­лю­стра­ция к за­да­че

Ответ: две окруж­но­сти.

На­пи­ши­те урав­не­ние окруж­но­сти, про­хо­дя­щей через две за­дан­ные точки и В(0;9), если из­вест­но, что центр окруж­но­сти лежит на оси ор­ди­нат.

Дано: окруж­но­сти ;

oкруж­но­сти .

за­пи­сать урав­не­ние окруж­но­сти.

Рис. 7. Ил­лю­стра­ция к за­да­че

За­пи­шем урав­не­ние окруж­но­сти так как окруж­ность про­хо­дит через точки А и В, то их ко­ор­ди­на­ты удо­вле­тво­ря­ют урав­не­нию окруж­но­сти:

Под­ста­вим най­ден­ные зна­че­ния в урав­не­ние.

Ответ:

На­пи­ши­те урав­не­ние окруж­но­сти с цен­тром в точке А(6;0), про­хо­дя­щей через точку В(-3;2).

Дано: А(6;0) – центр,

окруж­но­сти.

Найти: урав­не­ние окруж­но­сти.

Рис. 8. Ил­лю­стра­ция к за­да­че

На­хо­дим ра­ди­ус как рас­сто­я­ние АВ:

За­пи­шем урав­не­ние окруж­но­сти:

Ответ:

Заключение

Итак, мы рас­смот­ре­ли серию задач по теме «Окруж­ность» и в каж­дой за­да­че ис­поль­зо­ва­ли урав­не­ние окруж­но­сти.

На сле­ду­ю­щем уроке мы вы­ве­дем урав­не­ние пря­мой.

Как найти абсциссу и ординату точки на числовой окружности

Единичной окружностью называют окружность радиуса 1.

Числовая окружность — это единичная окружность, точки которой соответствуют определенным действительным числам.

Отсчет по числовой окружности может вестись как по часовой стрелке, так и против часовой стрелки. Отсчет от точки А против часовой стрелки называется положительным направлением. Отсчет от точки А по часовой стрелке называется отрицательным направлением.

Центр радиуса числовой окружности соответствует началу координат (числу 0). Горизонтальный диаметр соответствует оси x, вертикальный — оси y. Начальная точка А числовой окружности находится на оси x и имеет координаты (1; 0).

Любая точка числовой окружности с координатами (x; y) не может быть меньше -1, но не может быть больше 1:  ; 

Есть несколько простых закономерностей, которые помогут вам легко запомнить основные имена числовой окружности. Перед тем как начать, напомним: отсчет ведется в положительном направлении, то есть от точки А (2П) против часовой стрелки.

1) Начнем с крайних точек на осях координат. Начальная точка — это 2П (крайняя правая точка на оси х, равная 1). Как вы знаете, 2П — это длина окружности. Значит, половина окружности — это 1П или П. Ось х делит окружность как раз пополам. Соответственно, крайняя левая точка на оси х, равная -1, называется П. Крайняя верхняя точка на оси у, равная 1, делит верхнюю полуокружность пополам. Значит, если полуокружность — это П, то половина полуокружности — это П/2. Одновременно П/2 — это и четверть окружности. Отсчитаем три таких четверти от первой до третьей — и мы придем в крайнюю нижнюю точку на оси у, равной -1. Но если она включает три четверти — значит имя ей 3П/2.

Определение. Если точка М числовой окружности соответствует числу t, то абсциссу точки М называют косинусом числа t и обозначают соs t, а ординату точки М называют синусом числа t и обозначают sin t.
Если М(t) = М(х;у), то х = cost, у = sint.

Определение. Отношение синуса числа t к косинусу того же числа называют тангенсом числа t. Отношение косинуса числа t к синусу того же числа называют котангенсом числа t.

источники:

http://b4.cooksy.ru/articles/kak-nayti-abstsissu-tochki-okruzhnosti

http://matematika-ru.1gb.ru/9.html

Ответ:

Для того, чтобы найти абсциссу точки, лежащей на прямой, заданной уравнением 4x + 3y = 5, ордината которой равна 1, нужно в уравнение прямой подставить значение у = 1 и решить полученное уравнение относительно х.

Подставляя в уравнение 4x + 3y = 5 значение у = 1, получаем:

4х + 3 * 1 = 5.

Решаем полученное уравнение с переменной х:

4х + 4 = 5.

4х + 4 — 4 = 5 — 4;

4х = 1.

Разделив правую и левую части данного уравнения на число 4, получаем:

4х / 4 = 1 / 4;

х = 1/4.

Ответ: искомая абсцисса равна 1/4.

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается
только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

На главную страницу
На главную страницу

на главную

Как найти координаты точки

Поддержать сайтспасибо

Каждой точке координатной плоскости соответствуют две координаты.

Координаты точки на плоскости — это пара чисел, в которой на
первом месте стоит
абсцисса, а на
втором
ордината точки.

Найти координаты точки

Рассмотрим как в системе координат (на координатной плоскости):

  • находить координаты точки;
  • найти положение точки.

Чтобы найти координаты точки на плоскости, нужно опустить из этой точки
перпендикуляры на оси координат.

Точка пересечения с осью «x» называется абсциссой точки «А»,
а с осью y называется ординатой точки «А».

Координаты точки плоскости

Обозначают координаты точки, как указано выше (·) A (2; 3).

Пример (·) A (2; 3) и (·) B (3; 2).

Точки с разными координатами

Запомните!
!

На первом месте записывают абсциссу (координату по оси «x»), а на втором —
ординату (координату по оси «y») точки.

Особые случаи расположения точек

  1. Если точка лежит на оси «Oy»,
    то её абсцисса равна 0. Например,
    точка С (0, 2).
  2. Если точка лежит на оси «Ox», то её ордината равна 0.
    Например,
    точка F (3, 0).
  3. Начало координат — точка O имеет координаты, равные нулю O (0,0).
    Точки на координатный осях
  4. Точки любой прямой перпендикулярной оси абсцисс, имеют одинаковые абсциссы.
    Точки на прямой перпендикулярной оси абсцисс
  5. Точки любой прямой перпендикулярной оси ординат, имеют одинаковые ординаты.
    Точка на оси абсцисс
  6. Координаты любой точки, лежащей на оси абсцисс имеют вид (x, 0).
    Точка на оси абсцисс
  7. Координаты любой точки, лежащей на оси ординат имеют вид (0, y).
    Точка на оси ординат

Как найти положение точки по её координатам

Найти точку в системе координат можно двумя способами.

Первый способ

Чтобы определить положение точки по её координатам,
например, точки D (−4 , 2), надо:

  1. Отметить на оси «Ox», точку с координатой
    «−4», и провести через неё прямую перпендикулярную оси «Ox».
  2. Отметить на оси «Oy»,
    точку с координатой 2, и провести через неё прямую перпендикулярную
    оси «Oy».
  3. Точка пересечения перпендикуляров (·) D — искомая точка.
    У неё абсцисса равна «−4», а ордината равна 2.

    Как найти точку в системе координат

Второй способ

Чтобы найти точку D (−4 , 2) надо:

  1. Сместиться по оси «x» влево на
    4 единицы, так как у нас
    перед 4
    стоит «».
  2. Подняться из этой точки параллельно оси y вверх на 2 единицы, так
    как у нас перед 2 стоит «+».
    Как найти точку на координатной плоскости

Чтобы быстрее и удобнее было находить координаты точек или строить точки по координатам на
листе формата A4 в клеточку, можно скачать и использовать
готовую систему координат на нашем сайте.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:


Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Составьте характеристику событий 1591 года в угличе по плану как вы думаете
  • Как найти удельный вес на начало года
  • Как можно найти работа без документов
  • Как составить план хобби
  • Код ошибки 0x80070005 как исправить на windows 10

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии