урок 3. Математика ЕГЭ
Как найти производную от функции
Как считать производные?
Никто не использует определение производной, чтобы ее вычислить. Как же тогда ее посчитать?
Оказывается, существуют специальные формулы, с помощью которых производная от функции вычисляется достаточно просто.
Формулы производной
Выпишем теперь все формулы производной функции и порешаем примеры.
Производная от константы
Производная от любого числа всегда равна (0):
$$(const)^{/}=0;$$
Пример 1
$$(5)^{/}=0;$$
Производная от (x)
Производная просто от (x) равна (1):
$$x^{/}=1;$$
Производная от степени
$$(x^n)^{/}=n*x^{n-1};$$
Пример 2
$$(x^4)^{/}=4*x^{4-1}=4*x^{3};$$
$$(x^{10})^{/}=10*x^{10-1}=10*x^{9};$$
$$(x^{-3})^{/}=-3*x^{-3-1}=-3*x^{-4};$$
$$(x^{frac{1}{3}})^{/}=frac{1}{3}*x^{1-frac{1}{3}}=frac{1}{3}*x^{frac{2}{3}};$$
Производная от квадратного корня
$$(sqrt{x})^{/}=frac{1}{2sqrt{x}};$$
Тут полезно заметить, что формулу производной от квадратного корня можно не учить. Она сводится к формуле производной от степени:
$$(sqrt{x})^{/}=(x^{frac{1}{2}})^{/}=frac{1}{2}*x^{frac{1}{2}-1}=frac{1}{2}*x^{-frac{1}{2}}=frac{1}{2sqrt{x}};$$
Производная от синуса
$$sin(x)^{/}=cos(x);$$
Производная от косинуса
$$cos(x)^{/}=-sin(x);$$
Производная от тангенса
$$tg(x)^{/}=frac{1}{cos^{2}(x)};$$
Производная от котангенса
$$tg(x)^{/}=frac{-1}{sin^{2}(x)};$$
Производная от экспоненты
$$(e^x)^{/}=e^x;$$
Производная от показательной функции
$$(a^x)^{/}=a^x*ln(a);$$
Пример 3
$$(2^x)^{/}=2^{x}*ln(2);$$
Производная от натурального логарифма
$$(ln(x))^{/}=frac{1}{x};$$
Производная от логарифма
$$(log_{a}(x))^{/}=frac{1}{x*ln(a)};$$
Свойства производной
Помимо формул по вычислению производной еще есть свойства производной, их тоже надо выучить.
Вынесение константы за знак производной
$$(alpha*f(x))^{/}=alpha*(f(x))^{/};$$
Пример 4
$$(3*x^5)^{/}=3*(x^5)^{/}=3*5x^4=15x^4;$$
$$(10sin(x))^{/}==10*(sin(x))^{/}=10*cos(x);$$
Производная от суммы и разности двух функций
$$(f(x) pm g(x))^{/}=(f(x))^{/} pm (g(x))^{/};$$
Пример 5
$$(2x^4+x^3)^{/}=?$$
Тут (f(x)=2x^4), а (g(x)=x^3). Тогда по формуле производной от суммы:
$$(2x^4+x^3)^{/}=(2x^4)^{/}+(x^3)^{/}=2*(x^4)^{/}+(x^3)^{/}=2*4x^3+3x^2=8x^3+3x^2;$$
Пример 6
$$(ln(x)+cos(x))^{/}=(ln(x))^{/}+(cos(x))^{/}=frac{1}{x}-sin(x);$$
Пример 7
$$(x^6-e^x)^{/}=(x^6)^{/}-(e^x)^{/}=6x^5-e^x;$$
Производная от произведения двух функций
$$(f(x)*g(x))^{/}=(f(x))^{/}*g(x)+f(x)*(g(x))^{/};$$
Пример 8
$$(x^2*sin(x))^{/}=?$$
$$(x^2*sin(x))^{/}=(x^2)^{/}*sin(x)+x^2*(sin(x))^{/}=2x*sin(x)+x^2*cos(x);$$
Пример 9
$$(ln(x)*e^x)^{/}=(ln(x))^{/}*e^x+ln(x)*(e^x)^{/}=frac{1}{x}*e^x+ln(x)*e^x;$$
Производная от частного двух функций
$$left(frac{f(x)}{g(x)}right)^{/}=frac{(f(x))^{/}*g(x)-f(x)*(g(x))^{/}}{(g(x))^2};$$
Пример 10
$$left(frac{x^3}{sin(x)}right)^{/}=frac{(x^3)^{/}*sin(x)-x^3*(sin(x))^{/}}{(sin(x))^2}=frac{3x^2*sin(x)-x^3*cos(x)}{(sin(x))^2};$$
Примеры нахождения производной
Рассмотрим несколько примеров нахождения производной, чтобы разобраться, как применяются свойства и формулы производной на практике.
Пример 11
$$(5x^3+2cos(x))^{/}=(5x^3)^{/}+(2cos(x))^{/}=$$
$$=5*(x^3)^{/}+2*(cos(x))^{/}=5*3*x^2+2*(-sin(x))=15x^2-2sin(x);$$
Пример 12
$$left(-frac{3x^2}{2x^4+5x}right)^{/}=-frac{(3x^2)^{/}*(2x^4+5x)-3x^2*(2x^4+5x)^{/}}{(2x^4+5x)^2}=$$
$$=-frac{6x*(2x^4+5x)-3x^2*(8x+5)}{(2x^4+5x)^2}=-frac{12x^5-24x^3+15x^2}{(2x^4+5x)^2};$$
Пример 13
$$(2xsqrt{x})^{/}=(2x)^{/}*sqrt{x}+2x*(sqrt{x})^{/}=$$
$$=2*sqrt{x}+2x*frac{1}{2sqrt{x}}=2*sqrt{x}+frac{2x}{2sqrt{x}}=2*sqrt{x}+sqrt{x}=3sqrt{x};$$
Производная сложной функции
Сложная функция — это функция не от аргумента (x), а от какой-то другой функции: (f(g(x))). Например, функция (sin(x^2)) будет сложной функцией: «внешняя» функция синуса берется от «внутренней» функции степени ((x^2)). Так как под синусом стоит аргумент не (x), а (x^2), то такая функция будет называться сложной.
Еще примеры сложных функций:
-
$$ln(3x^4);$$
Внешняя функция: натуральный логарифм; Внутренняя функция: ((3x^4)). -
$$cos(ln(x));$$
Внешняя функция: косинус; Внутренняя функция: ((ln(x))). -
$$e^{2x^2+3};$$
Внешняя функция: экспонента; Внутренняя функция: ((2x^2+3)). -
$$(sin(x))^3;$$
Внешняя функция: возведение в третью степень; Внутренняя функция: (sin(x)).
Чтобы посчитать производную от такой функции, нужно сначала найти производную внешней функции, а затем умножить результат на производную внутренней функции. В общем виде формула выглядит так:
$$f(g(x))^{/}=f^{/}(g(x))*g^{/}(x);$$
Скорее всего, выглядит непонятно, поэтому давайте разберем на примерах.
Пример 14
$$((cos(x))^4)^{/}=?$$
Внешней функцией тут будет возведение в четвертую степень, поэтому сначала считаем производную от степени по формуле ((x^n)^{/}=n*x^{n-1}). А потом умножаем результат на производную внутренней функции, у нас это функция косинуса, по формуле (cos(x)^{/}=-sin(x)):
$$((cos(x))^4)^{/}=underset{text{внешняя производная}}{underbrace{4*(cos(x))^3}}*underset{text{внутренняя производная}}{underbrace{(cos(x))^{/}}}=$$
$$=4*(cos(x))^3*(-sin(x))=-4*(cos(x))^3*sin(x);$$
Пример 15
$$(e^{2x^3+5})^{/}=?$$
Внешняя функция — это экспонента ((e^x)^{/}=e^x), а внутренняя функция — квадратный многочлен ((2x^3+5)):
$$(e^{2x^3+5})^{/}=e^{2x^3+5}*(2x^3+5)^{/}=e^{2x^3+5}*((2x^3)^{/}+5^{/})=e^{2x^3+5}*6x^2.$$
Пример 16
$$(ln((2x^2+3)^6))^{/}=?$$
Внешняя функция — это натуральной логарифм, берем производную от него по формуле ((ln(x))^{/}=frac{1}{x}), и умножаем на производную внутренней функции, у нас это шестая степень: ((x^n)^{/}=n*x^{n-1}). Но и на этом еще не все: под шестой степенью стоит не просто (x), а квадратный многочлен, значит еще нужно умножить на производную от этого квадратного многочлена:
$$ln((2x^2+3)^6)=frac{1}{(2x^2+3)^6}*((2x^2+3)^6)^{/}*(2x^2+3)^{/}=$$
$$=frac{1}{(2x^2+3)^6}*6*(2x^2+3)^5*(4x+0)=frac{1}{(2x^2+3)^6}*6*(2x^2+3)^5*4x=$$
$$=frac{6*(2x^2+3)^5*4x}{(2x^2+3)^6}=frac{24x*(2x^2+3)^5}{(2x^2+3)^6}=frac{24x}{(2x^2+3)^6}.$$
Вывод формул производной функции
Выведем некоторые из этих формул, чтобы было понимание, откуда они берутся. Но перед этим познакомимся с новыми обозначениями. Запись (f(x)) означает, что функция берется от аргумента (x). Например:
$$f(x)=x^3+sin(x);$$
На месте аргумента (x) может стоять все что угодно, например выражение (2x+3). Обозначение такой функции будет (f(2x+3)), а сама функция примет вид:
$$f(2x+3)=(2x+3)^3+sin(2x+3);$$
То есть, везде вместо аргумента (x) мы пишем (2x+3).
И несколько важных замечаний про (Delta f(x)) и (Delta x). Напомню, что значок (Delta) означает изменение некоторой величины. (Delta x) — изменения координаты (x) при переходе от одной точки на графике функции к другой; (Delta f(x)) — разница координат (y) между двумя точками на графике. Подробнее про это можно почитать в главе, где мы вводим понятие производной. Распишем (Delta x) для двух близких точек на графике функции (O) и (B):
$$Delta x=x_B-x_O;$$
Отсюда можно выразить (x_B):
$$x_B=x_O+Delta x;$$
Абсцисса (координата точки по оси (x)) точки (B) получается путем сложения абсциссы точки (O) и (Delta x).
Кстати, функцию (f(x)=x^3+sin(x)) от аргумента (x_B=x_O+Delta x) можно расписать:
$$f(x_B)=f(x_O+Delta x)=(x_O+Delta x)^3+sin(x_O+Delta x);$$
Рис.1. График произвольной функции
И распишем (Delta f):
$$Delta f(x)=f(x_B)-f(x_O)=f(x_O+Delta x)-f(x_O);$$
Тогда определение производной можно записать в виде:
$$f^{/}(x)=frac{Delta f(x)}{Delta x}=frac{f(x_O+Delta x)-f(x_O)}{Delta x} quad при quad Delta x to 0;$$
За (x_O) обычно обозначают точку, в окрестности которой берут производную. То есть, получается (x_O) — это абсцисса начальной точки, а (x_O+Delta x) — абсцисса конечной точки.
Нам это пригодится при выводе формул производной.
Производная квадратичной функции
Выведем теперь формулу производной от (f(x)=x^2), воспользовавшись определением производной:
$$f^{/}(x)=frac{Delta f(x)}{Delta x}=frac{f(x+Delta x)-f(x)}{Delta x} quad при quad Delta x to 0;$$
Распишем числитель (f(x+Delta x)-f(x)) с учетом, что (f(x)=x^2):
$$f(x+Delta x)-f(x)=(x+Delta x)^2-x^2=x^2+2xDelta x+(Delta x)^2-x^2=2xDelta x+(Delta x)^2;$$
Подставим в определение производной:
$$f^{/}(x)=frac{2xDelta x+(Delta x)^2}{Delta x}=frac{Delta x*(2x+Delta x)}{Delta x}=2x+Delta x;$$
Напоминаю, что (Delta x) это бесконечно малая величина:
$$(Delta x)^2 ll 0;$$
Поэтому этим слагаемым можно пренебречь. Вот мы и получили формулу для производной от квадратной функции:
$$f^{/}(x)=(x^2)^{/}=2x;$$
Производная от третьей степени
Аналогичные рассуждения можно провести для функции третьей степени:
$$f(x)=x^3;$$
Воспользуемся определением производной:
$$f^{/}(x)=frac{f(x+Delta x)-f(x)}{Delta x} quad при quad Delta x to 0;$$
$$f(x+Delta x)-f(x)=(x+Delta x)^3-x^3=(x+Delta x-x)((x+Delta x)^2+(x+Delta x)*x+x^2)=$$
$$=Delta x*(x^2+2x*Delta x+(Delta x)^2+x^2+x*Delta x+x^2)=Delta x*(3x^2+3xDelta x);$$
$$f^{/}(x)=frac{f(x+Delta x)-f(x)}{Delta x}=frac{Delta x*(3x^2+3xDelta x)}{Delta x}=3x^2+3xDelta x;$$
Так как при умножении на бесконечно малую величину получается бесконечно малая величина, то слагаемым (3xDelta x) можно пренебречь:
$$f^{/}(x)=(x^3)^{/}=3x^2;$$
Точно таким же способом можно вывести формулы производных для любых степеней:
$$(x^4)^{/}=4x^3;$$
$$(x^5)^{/}=5x^4;$$
$$…$$
$$(x^n)^{/}=n*x^{n-1};$$
Кстати, эта формула справедлива и для дробных степеней.
Вывод остальных формул делается похожим образом, только там может понадобиться знание пределов. Вывод всех формул разбирается в университетском курсе математического анализа.
Что такое производная функции простыми словами? Для чего нужна производная? Определение производной
Как решать задания №7 из ЕГЭ по математике. Анализ графиков при помощи производной. Графики производной и графики функции
Исследуем функцию с помощью производной. Находим точки минимума и максимума, наибольшее и наименьшее значение функции. Точки экстремума. Промежутки возрастания и убывания.
Связь коэффициента наклона и тангенса угла наклона касательной к функции и производной функции в точке касания. Задание №7 в ЕГЭ по математике.
Таблица производных, правила нахождения производных
- Таблица производных основных функций
- Основные правила нахождения производной
- Правило дифференцирования сложной функции
- Логарифмическая производная
- Производная обратной функции
- Производная функции, заданной параметрически
- Производная неявной функции
Таблица производных основных функций
Основные правила нахождения производной
Если
– постоянная и
,
– функции, имеющие производные, то
1) Производная от постоянного числа равна нулю.
2) Производная от переменной равна единице
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
3) Производная суммы равна сумме производных
Пример 1
Найдем производную функции
4) Производная произведения постоянной на
некоторую функцию равна произведению этой постоянной на производную от заданной
функции.
Пример 2
Найдем производную функции
5) Производная
произведения функций
Пример 3
Найдем производную функции
6) Производная
частного:
Пример 4
Найдем производную функции
Правило дифференцирования сложной функции
или в других обозначениях:
Пример 5
Найдем производную функции
Пример 6
Найдем производную функции
Логарифмическая производная
Логарифмической производной функции
называется производная от логарифма этой
функции, то есть:
Применение предварительного логарифмирования функции иногда
упрощает нахождение ее производной.
Пример 7
Найдем производную функции
Прологарифмируем заданную
функцию:
Искомая производная:
Производная обратной функции
Если для функции
производная
,
то производная обратной функции
есть
или в других обозначениях:
Пример 8
Найдем производную
,
если
Имеем:
Следовательно:
Производная функции, заданной параметрически
Если зависимость функции
и аргумента
задана посредством параметра
то
или в других обозначениях:
Пример 9
Найдем производную функции
Воспользуемся формулой:
Производная неявной функции
Если зависимость между
и
задана в неявной форме
(*)
то для нахождения производной
в простейших случаях достаточно:
1) вычислить производную по
от левой части равенства (*), считая
функцией от
;
2) приравнять эту производную к нулю, то есть положить:
3) решить полученное уравнение относительно
.
Пример 10
Найдем производную функции
Вычисляем производную от
левой части равенства:
Решаем уравнение
относительно
:
Искомая производная:
1. Вычисление производной функции
Правила дифференцирования
Дифференцирование сложной функции
Таблица производных
2. Приложение производной
Уравнение касательной к графику функции y=f(x) в точке (x0;f(x0)):
y=f(x0)+f ‘(x0)(x-x0); f ‘(x0) – угловой коэффициент касательной (тангенс угла наклона касательной).
Достаточные признаки монотонности функции:
- если
f ‘(x)>0 в каждой точке интервала (a, b), то функция f(x) возрастает на этом интервале. - если
f ‘(x)<0 в каждой точке интервала (a, b), то функция f(x) убывает на этом интервале.
Необходимое условие экстремума: если x0 – точка экстремума функции f(x) и производная f ’ существует в этой точке, то f ‘(x0)=0.
Критические точки функции – внутренние точки области определения функции, в которых ее производная равна нулю или не существует.
Достаточные условия экстремума:
- если производная при переходе через точку
x0 меняет свой знак с плюса на минус, то
x0 – точка максимума. - если производная при переходе через точку x0 меняет свой знак с минуса на плюс, то
x0 – точка минимума.
3. Первообразная функции
Функция F(x) называется первообразной функции f(x) на интервале (a, b), если для любого 
Если F(x) – первообразная для f(x) на промежутке (a, b), то любая первообразная может быть записана в виде F(x)+C, где C – некоторое действительное число.
Для вычисления первообразной рекомендуем пользоваться приведенной выше таблицей производных и приведенными ниже правилами.
Правила нахождения первообразных
Пример 1. Найти производную функции 
Решение:

Ответ: 
Пример 2. Найти 

Решение:
По правилу дифференцирования дроби имеем: .

Ответ:
Пример 3. Чему равен тангенс угла наклона касательной к графику функции у = х2 + 2, в точке хо = – 1.
Решение:
Тангенс угла наклона касательной к графику функции есть значение производной данной функции в точке хо.

Ответ: – 2.
Пример 4. Найдите значение 3tg2t , если t – наименьший положительный корень уравнения 
Решение:

Очевидно, что наименьшее положительное решение полученного уравнения 

Ответ: 1.
Пример 5. Укажите промежутки возрастания и убывания функции 
Решение:
Область определения функции: x>0.
На области определения найдём критические точки функции 
Критические точки: 0; 1.
На основании достаточного признака возрастания (убывания) функции имеем:
Ответ: на интервале (0; 1) функция убывает; на интервале 
Пример 6. Найти наибольшее и наименьшее значения функции y=ex+2-ex на промежутке [-2; 0].
Решение:
Функция y=ex+2-ex на отрезке [-2; 0] непрерывна.
1) найдём критические точки, принадлежащие отрезку [-2; 0]:
2) найдём значения функции в критической точке и на концах данного отрезка:
3) выберем наибольшее и наименьшее из полученных значений:
наименьшее y|x=-1=2e наибольшее y|x=0=e2.
Ответ:
наименьшее y|x=-1=2e наибольшее y|x=0=e2.
Пример 7. Записать уравнение касательной к графику функции f(x)=x3, параллельной прямой y=3x+1,5.
Решение:
Уравнение касательной к графику функции y=f(x) в точке х0 имеет вид:

Так как касательная параллельна прямой y=3x+1,5, то f ‘(x0)=3 .
f ‘(x)=3x2, следовательно, 
Ответ: 
Пример 8. Найдите какую-либо первообразную функции 
Решение:
Представим функцию 





Ответ: 
Пример 9. Для функции 

Решение:
Первообразная данной функции будет F(x)=-3ctgx-7cox-2sinx+C.
Так как график первообразной проходит через точку 

Ответ: F(x)=-3ctgx-7cox-2sinx+11.
Задания для самостоятельного решения
Базовый уровень
Производная функции
1) Найти производную функции f(x)=2ex+3x2 .
2) Вычислите производную функции f(x)x•sinx.
3) Найти производную функции у = (3х – 1)(2 – х).
4) Вычислите производную функции y=9x2-cosx.
5) Найдите производную функции y=ex-x7 .
6) Вычислить производную функции 
7) Найти f ‘(1), если f(x)=3x2-2x+1.

9) Вычислите 
10) Найдите f ‘(1), если f(x)=(3-x2)(x2+6).
11) Вычислите f ‘(1), если f(x)=(x4-3)(x2+2).
12) Найдите значение производной функции 
13) Найдите f ‘(4), если 
14) Найдите значение производной функции f(x)=3tgx+2ctgx при 
15) Найдите значение производной функции f(x)=2sinx при 
16) Найдите значение производной функции f(x)=1-3cosx при 
17) Определите промежутки возрастания и убывания функции 
18) Найдите максимум и минимум функции y=5x4-10x2+9.
19) Найти экстремумы функции у = – х3 + 6х2 + 15х + 1.
20) Найдите точки экстремума функции у = – х3 – 3х2 + 24х – 4 на промежутке 
21) Найдите наибольшее значение выражения 3х5 – 5х3 + 6 на отрезке [–2;2].
22) Написать уравнение касательной к параболе у = х2 – 6х + 5 в точке пересечения её с осью ординат.
23) Найдите максимум функции 
24) Найдите экстремальные значения функции 
25) Исследуйте на максимум и минимум функцию у = 3х4 – 3х2 + 2.
26) Найдите тангенс угла наклона касательной, проведённой к графику функции 
27) Составьте уравнение касательной к графику функции у = х – 3х2 в точке с абсциссой х0 = 2.
28) Найдите угловой коэффициент касательной к графику функции y=7x-5sinx в точке с абсциссой 
Найдите первообразные функций:
29) 
30) f(x)=-7sinx.
31) 
32) f(x)=1,2cosx.
33) f(x)=-7cosx.
34) f(x)=sinx-cosx.
35) 
36) 
37) 
Вычислите площадь фигур, ограниченных линиями:
38) 
39) 
40) 
41) 
Повышенный уровень
Производная функции
42) Найдите значение 

43) Найдите значение 
44) Найдите значение 
45) Найдите значение 
46) Найдите значение 

47) Найдите значение 

48) Найдите значение 
49) При каком значении параметра а функция 
50) Решите уравнение f ‘(x)=0, если 
51) Найдите наименьшее целое значение функции у = 4х – 5∙2х + 3,25.
52) При каких значениях а функция 
53) На кривой у = 4х2 – 6х + 3 найдите точку, в которой касательная параллельна прямой у = 2х + 3.
54) Найти значение выражения tg2t, где t – наибольший отрицательный корень уравнения f ‘(x)=0, 
Первообразная
55) Найдите значение первообразной функции 

56) Найдите значение первообразной функции 

57) Найдите значение первообразной функции 


Задача о площади криволинейной трапеции
58) Найдите площадь фигуры, ограниченной линиями 
59) Найдите площадь фигуры, ограниченной линиями 
60) Найдите площадь фигуры, ограниченной линиями 
Таблица производных в алгебре нужна для решения целого ряда различных прикладных задач. Поскольку смысл производной иначе интерпретируется как “скорость изменения”, то, каждый раз, беря производную, мы находим величину на ступеньку более “быструю”, чем та, от которой мы берем производную. Например, беря производную от y(x) по x, мы фактически находим скорость изменения координаты y в зависимости от изменения координаты x, а беря производную от скорости изменения координаты y в зависимости от координаты x, мы находим ускорение.
Что такое производная функции
Например, при использовании производной в физике, мы знаем, что производная расстояния s по времени – это скорость. Потому что скорость – это величина, характеризующая быстроту изменения расстояния в зависимости от времени. А производная скорости – ничто иное как ускорение, так как ускорение – это величина, характеризующая быстроту изменения скорости.
Поскольку производная находится по формуле: , то бесконечное количество различных функций усложняют задачу дифференцирования, так как удобно функцию, которую можно представить из различных элементарных функций, дифференцировать основываясь на уже выведенных выражениях для производных этих элементарных функций.
Характеристика производной и ее смысл
Производная характеризует быстроту изменения функции в зависимости от изменения аргумента.
Таблица производных
Таким образом, чтобы работать с производными, необходима таблица производных элементарных функций. Руководствуясь этой таблицей, можно взять производную от какой угодно функции. Но прежде чем работать с таблицей – нужно знать как брать производную функции, есть определенные правила дифференцирования, которые представим в таблице.
Правила дифференцирования
| № правила | Название правила | Правило дифференцирования |
| 1 | Производная постоянной величины | |
| 2 | Производная суммы | |
| 3 | Производная произведения постоянной на функцию | |
| 4 | Производная переменной x | |
| 5 | Производная произведения двух функций | |
| 6 | Производная деления двух функций | |
| 7 | Производная сложной функции |
Таблица производных простых и сложных функций
Теперь таблица производных для элементарных и для сложных функций.
| Номер формулы | Название производной | Основные элементарные функции | Сложные функции |
| 1 | Производная натурального логарифма по x | ||
| 2 | Производная логарифмической функции по основанию a | ||
| 3 | Производная по x в степени n | ||
| 4 | Производная квадратного корня | ||
| 5 | Производная a в степени x | ||
| 6 | Производная e в степени x | ||
| 7 | Производная синуса | ||
| 8 | Производная косинуса | ||
| 9 | Производная тангенса | ||
| 10 | Производная котангенса | ||
| 11 | Производная арксинуса | ||
| 12 | Производная арккосинуса | ||
| 13 | Производная арктангенса | ||
| 14 | Производная арккотангенса |
Примеры нахождения производных
Пример 1
Пользуясь формулами и правилами дифференцирования, найти производную функции: .
Решение:
Мы использовали правило 2 дифференцирования суммы. Теперь найдем производную каждого слагаемого:
По формуле 3 “производная по x в степени n” (у нас в степени 2).
По правилам дифференцирования 3 и 4.
По первому правилу дифференцирования “производная постоянной равна нулю”
Итак, получим: .
Пример 2
Найти производную функции
Решение:
Находим производную, пользуясь правилам дифференцирования 6.
Ответ:
Пример 3
Найти производную функции
Решение: здесь все просто, мы возьмем производную из таблицы производных.
Ответ:
Пример 4
Найдите производную функции
Решение: Здесь мы уже имеем не простую функцию, а сложную функцию и брать производную мы будем по формуле 8 таблицы производных для сложных функций.
Ответ:
Пример 5
Пользуясь правилами дифференцирования и таблицей производных, найдите производную функции
Решение: У нас сложная функция, так как под корнем стоит не просто , а квадратная функция.
То есть мы имеем функцию вида .
Возьмем производную этой функции:
Ответ:
Пример 6
Найдите скорость тела, если траектория его движения задана уравнением м
Решение: скорость тела – это первая производная траектории по времени: . м/с.
Находим скорость тела:
Ответ: 3 м/с.
Итак, таблица производных и правила дифференцирования дают возможность легко брать производные и простых, и сложных функций.
Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная — одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Геометрический и физический смысл производной
Пусть есть функция f(x), заданная в некотором интервале (a, b). Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0. Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:
Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.
Иначе это можно записать так:
Какой смысл в нахождении такого предела? А вот какой:
Геометрический смысл производной: производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.
Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.
Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t. Средняя скорость за некоторый промежуток времени:
Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:
Кстати, о том, что такое пределы и как их решать, читайте в нашей отдельной статье.
Приведем пример, иллюстрирующий практическое применение производной. Пусть тело движется то закону:
Нам нужно найти скорость в момент времени t=2c. Вычислим производную:
Правила нахождения производных
Сам процесс нахождения производной называется дифференцированием. Функция, которая имеет производную в данной точке, называется дифференцируемой.
Как найти производную? Согласно определению, нужно составить отношение приращения функции и аргумента, а затем вычислить предел при стремящемся к нулю приращении аргумента. Конечно, можно вычислять все производные так, но на практике это слишком долгий путь. Все уже давно посчитано до нас. Ниже приведем таблицу с производными элементарных функций, а затем рассмотрим правила вычисления производных, в том числе и производных сложных функций с подробными примерами.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Правило первое: выносим константу
Константу можно вынести за знак производной. Более того — это нужно делать. При решении примеров по математике возьмите за правило — если можете упростить выражение, обязательно упрощайте.
Пример. Вычислим производную:
Правило второе: производная суммы функций
Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.
Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.
Найти производную функции:
Решение:
Правило третье: производная произведения функций
Производная произведения двух дифференцируемых функций вычисляется по формуле:
Пример: найти производную функции:
Решение:
Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.
В вышеуказанном примере мы встречаем выражение:
В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.
Правило четвертое: производная частного двух функций
Формула для определения производной от частного двух функций:
Пример:
Решение:
Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.
С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис. За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.






























